VITESSE

06-206r2 SAS-2 Data Eyes vs. De-Emphasis

- Address the Concern that Fixed De-Emphasis on External Links Will Cause too Much Jitter for Short Links
 - Compare Fixed and Optimal De-Emphasis for Example External SAS-2 Links
 - Estimate the Jitter Penalty of Fixed vs. Adaptive De-Emphasis
 - Discuss Concerns with Optional Adaptive De-Emphasis Provisions
- Evaluate De-Emphasis on some Example T10 Chassis S-Parameters
 - Compare Results to 06-049r1
- Propose Recommendations for Discussion

Simulation Methodology

VITESSE

- Convert S-Parameters to Frequency Response
 - Use Mellitz Capacitive Package Model RL~7dB @ 3GHz Combined with S-Parameter Model

$$H(f) = \frac{S_{21}\Gamma_L + S_{21}}{(1 - S_{22}\Gamma_L) + S_{11}(1 - S_{22}\Gamma_L) + S_{21}\Gamma_L S_{12}}$$

Convert Frequency Response to an Impulse Response

$$h(t) = FFT^{-1}(H(f))$$

- Measure Transmitted Pulse Shape
- Compute the Optimal (ZF) De-Emphasis Tap Weights

$$y(t) = p(t) * h(t)$$

$$C_{zf} = \begin{bmatrix} y(\tau) & y(\tau - T) \\ y(\tau + T) & y(\tau) \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Filter the Measured & Estimated Channel Output with the De-Emphasis Filter

$$\hat{y}_m(t) = y_m(t) * c(t)$$
 $\hat{y}(t) = x(t) * h(t) * c(t)$

- Estimate the Jitter from the Data Eye $\{\hat{y}_m(t), \hat{y}(t)\}$
- Compare to Measured Results

Simulation Model

Optimal De-Emphasis for iPASS Cables

Computed Optimal and Laboratory Optimization De-Emphasis

Optimal De-Emphasis iPASS Cables

VITESSE

Simulation vs Measured

- 6 Gbps Output Driver Test Chip
 - 2 Tap De-Emphasis
 - 0 → 9.9 dB De-Emphasis Capability

Optimal De-Emphasis vs Length iPASS Cables

Optimal De-Emphasis Simulated Eyes

1m

6m

10m

15m

Optimal De-Emphasis Measured Eyes

1m

| Consider to desired. | Consider to the desired to the desire

6m

10m

15m

Non-Optimal DE 9.9dB Limit

Fixed 6dB De-Emphasis

VITESSE

Simulation vs Measured

- 6 Gbps Output Driver Test Chip
 - 2 Tap De-Emphasis
 - 0 → 9.9 dB De-Emphasis Capability

Optimal De-Emphasis vs Length iPASS Cables

6dB De-Emphasis Simulated Eyes

1m

6m

10m

15m

6dB De-Emphasis Measured Eyes

1m

6m

10m

n

Jitter Generation vs. De-Emphasis

VITESSE

Jitter vs Length with Fixed and Optimal De-Emphasis

- Minimum Length External Channel 0.5m Jitter is Simulated Only
- Jitter Penalty at 10m is higher than at 1m length
- The data to date does not support the need for adaptive Tx De-Emphasis. 6dB of Fixed Tx De-Emphasis for external links does not appear to cause too much jitter when the short links are used.

HP Chassis Simulation Comparison

VITESSE

Simulation Comparison

	06-049r0		06-206r1	
	# DFE	dB DE	ZF DE	
HP01	0	7.0 dB	4.37 dB	
HP02	0	6.4 dB	3.58 dB	
HP03	0	6.6 dB	3.03 dB	
HP04	0	5.4dB	3.49 dB	
HP05	0	6.5 dB	4.16 dB	
HP06	0	8.3dB	5.47 dB	
HP07	0	6.8 dB	3.90 dB	
HP08	0	8.1 dB	4.62 dB	
HP09	0	8.7 dB	6.53 dB	
HP10	1	5.7 dB	5.20 dB	
HP11	1	6.2 dB	5.53 dB	
HP12	0	6.1 dB	4.22 dB	
HP13	0	4.1 dB	3.11 dB	
HP14	0	2.9 dB	2.21 dB	

Simulation Model

HP Chassis Simulation Comparison

VITESSE

⇒ HP Chassis 1→9 Optimal DE Based on Test Chip Tx Pulse

Simulations Consistent with 06-049r1 and Support the Assertion that 2 tap DE Adequate for these Channels

⇒ HP Chassis 1 → 9 Fixed DE DE Levels Based on 06-049r1

Note: DE level based on assumed pulse shape in 06-049r0 not optimal for Simulated Pulse Shape

HP Chassis Simulation Comparison

VITESSE

⇒ HP Chassis 10→14 Optimal DE Based on Test Chip Tx Pulse

Simulations Consistent with 06-049r1 and Support the Assertion that 2 tap / 1 tap DFE DE Adequate for these Channels

⇒ HP Chassis 10→ 14 Fixed DE DE Levels Based on 06-049r1

h10 5.7 dB DE Vpp= 0.84 Q~14 dBh11 6.2 dB DE Vpp= 0.9 Q~13 dBh12 6.1 dB DE Vpp= 0.86 Q~19 dB

h13 4.1 dB DE Vpp= 1 Q~18 dB h14 2.9 dB DE Vpp= 1.3 Q~16 dB

Note: DE level based on assumed pulse shape in 06-049r0 HP10,11 expected to need 1 tap DFE

Summary and Recommendations

- Optimal and Fixed De-Emphasis for External Links has been Investigated
 - Simulated and Measured Results Match Well
 - Fixed 6dB De-Emphasis Does not Cause Excessive Jitter for Short Links
- Simulations Consistent with 06-049r1
- Recommendations
 - Do not define "optional" primitives for adaptive De-Emphasis in the Training Sequence unless technical need determined.
 - Do Specify a Fixed 6dB Fixed De-Emphasis for External Links.
 - Do Provide Adjustable De-Emphasis for Internal Links.
 - Do Assume a Maximum of 6dB De-Emphasis for Link Analysis and Specification.
 - Determine a Compliance Test Methodology for External Links.