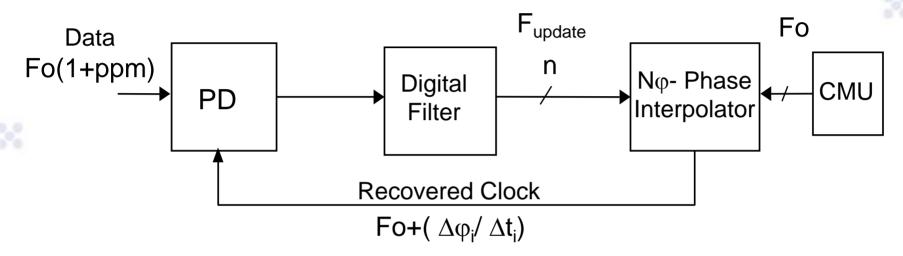


Symmetrical SSC in SAS-2 physical interface

Yuriy Greshishchev
Tamer Kafafi
www.pmc-sierra.com

T10/06-193r0



Background

- Spread-spectrum clock (SSC) modulation in SATA is down- spreading from 0 to -5000 ppm maximum. In SAS-2 new SSC modulation profile is under debate
- Symmetrical SSC is an attractive option for SAS-2 due to better ppm tracking range and receiver jitter tolerance
 - Relevant for clock recovery with digital phase interpolation - dominant technique in multi-channel physical interfaces
- This presentation explains why symmetrical SSC allows to double the ppm tracking range in digital clock and data recovery

Digital CDR with Phase Interpolation

 Maximum frequency modulation supported by phase rotation (jitter free condition)

$$ppm_{MAX} = \pm (F_{update}/N_{\phi} \cdot F_{o})$$

Where: Fo - 6GHz in SAS-2;

Nφ - number of phases, typically 16-64

The +/- range comes from the fact that the **phase** rotation is bi-directional

Symmetrical SSC vs. Down-spreading

- Down-spreading exploits half of the interpolator capacity in tracking the frequency modulation
 - Can't be overcome by "centering" the phase interpolator
- Symmetrical SSC "naturally" fits phase interpolator ability for bi-directional tracking of data frequency modulation
 - Allows to double the ppm range for same interpolator design
 - Improves jitter tracking ability for same ppm range
- Data rate with symmetrical modulation averages to nominal value, thus may beneficial for data rate alignment mechanism

Thinking You Can Build On

www.pmc-sierra.com