06-103r2.txt 3/4/2006

To: INCITS T10 Committee

From: David L. Black, EMC

Date: 4 March 2006

Document: T10/06-103r2

Subject: SSC-3: Encrypt keys for transfer to device

--- (0) --- Changes from prior versions

Changes from r1 to r2:

- 05-446 is now at r6. It will likely go into SSC-3 before this,
making this a proposal against SSC-3. 05-446 dependencies
will be removed if/when that occurs.

- Better explanation of rationale for no authentication.

- Fill in more text from RFCs. Still have lots of details that
need to be pulled in from RFC 4303, but need to first
decide if the ESP payload will only support combined
modes vs. separate encryption and integrity algorithms.

- Explain how to add other key generation algorighthms for ESP -
the device server just has to keep the SPI's unique.

Include text to warn against using referenced keys
directly (adding a nonce exchange is sufficient).

Changes from r0O to ri:

- 05-446 is now at r5

- Do not remove support for Key Format 0 (key in cleartext) - instead
require that encrypted keys be supported if cleartext keys are
supported. Adjust text in introduction that called for replacement
of Key Format O.

- Explain use of SCSI commands for key exchange to avoid the impression
that the Device Server sends something to the initiator on
its own initiative. The key exchange is realized via two
successive SCSI commands issued by the initiator.

- Add open issue on device server "announcement" of what to use vs.
initiator reading device server capabilities and deciding
what to use.

- Clarify that NIST approval of AES GCM has not yet resulted in its
addition to FIPS 140-2 (that should happen in near future). This
is somewhat of a red herring as FIPS approval is *not* a goal of
this design, but it is still a good reason for use of AES GCM.

- Clarify that the need for a new id for the HMAC _SHA256 PRF is not
a barrier to using the HMAC_SHA256 PRF.

--- (1) --- Introduction

Document T10/05-446r6 SSC-3: Add commands to control data encryption passes
encryption keys to device servers in cleartext. Providing this as the only
means of passing encryption keys is not acceptable for network-oriented SCSI
transports such as Fibre Channel (FCP) and iSCSI because the keys may carry
great value to an eavesdropping observer in a small amount of data. The
keys are far easier to obtain and remove from the victim's infrastructure
than the data they protect, and put a passive observer in a position to
exploit data on an encrypted tape. Forcing users to pass keys in plaintext
is an unacceptable security practice for new network protocol designs in this
day and age. Users may still choose to pass keys in plaintext, but the
protocol needs to make the means of encrypting the keys available so that

06-103r2.txt 3/4/2006
the keys can be encrypted if the situation warrants.

The purpose of this document is to provide a relatively simple protocol
design

that encrypts encryption keys for transfer to the device server. The design
is deliberately kept simple to enable it to be incorporated without
significant delay. This requires focusing the design on a simple problem:

Prevent an eavesdropper from learning the encryption keys.

The design also protects against a related replay vulnerability by
preventing an eavesdropper from replaying any command that passes
encrypted keys to the device. An eavesdropper might benefit from a
replay attack if she has learned the key via other means, and is
capable of injecting a SCSI command, but is not capable of functioning
as a full SCSI initiator.

The goal of this design is to solve these two problems (eavesdropping and
replay), and only these two problems in order to quicky specify a means of
passing encrypted keys that can augment T10/05-446r6's current approach of
passing keys in the clear. The resulting narrow focus yields a protocol
design that deliberately does not address a number of security issues

that could be addressed in a subsequent, more broadly scoped design.

One of the most important issues that is deliberately not addressed is
that this protocol contains no authentication, authorization or access
control beyond that already provided by the data encryption control and
other SCSI commands. There are three primary reasons for leaving these
functions out:
- This protocol is intended to be a drop-in replacement for the current
approach of passing keys in the clear. Use of authentication
would depart from this goal by requiring authentication identities
and credentials to be deployed before keys could be encrypted.
- Other proposals and groups will define authentication protocols for
SCSI, starting with the Trusted Computing Group (TCG). As will
be explained in the discussion of the Security Parameters Index
(SPI), the format for encrypting the keys can be used with other
authentication protocols that can generate keying material.
- As a drop-in replacement, this protocol preserves the current
authorization approach of T10/05-446r6, where an initiators
ability to send commands that a device server processes is
deemed to be sufficient authority to set encryption keys.

The following is a list of design decisions that deliberately omit
complexity and security features in order to keep the design simple:

(1) No authentication or additional authorization/access control. There
is no need for the initiator or device server to prove its identity.
See above.

(2) No certificates. An immediate consequence of no authentication is
no certificates. Experience in IETF and T11 indicates that it
is *absolutely vital* to keep certificates and authentication out
of a design like this in order to complete it in a timely fashion.

(3) No persistence of encryption of keys. Keys are encrypted solely for
communication to the device server, and immediately decrypted. It

06-103r2.txt 3/4/2006

is not necessary to allow them to be encrypted significantly before
they are sent, or enable them to be stored for later decryption.

(4) No pre-shared keys. This would violate items (1) and (3) above.
This protocol for encrypting keys and transmitting them to the device
server starts without pre-existing security credentials of any kind.

(5) No integration with Trusted Computing Group (TCG). TCG already has
SCSI commands specified for their security protocols, which will
provide authentication. It will be TCG's responsibility to specify
how their protocols generate keying material and an SPI.

(6) No FIPS certification. Passing keys in the clear cannot possibly be
FIPS certified, hence FIPS certification is clearly not a requirement
for products based on T10/05-446r6. It is therefore not a requirement
for this protocol.

(7) No support for copy managers. T10/05-446r6 does not support copy
managers, so this protocol does not support them either.

(8) No RSA keys. Use of RSA asymmetric cryptography (public/private keys)
makes it entirely too tempting to violate some of the above design
decisions, particularly the decision to exclude authentication. This
protocol is based on an different technique, Diffie-Hellman key
exchange, that enables reuse of the cryptographic core of the IPsec
IKEv2 (IP Security Internet Key Exchange version 2) protocol
standardized by the IETF.

In addition, it is important to avoid inventing new security protocols and
mechanisms; this design is based on extensive reuse of protocols and
techniques used in the well-established IP Security (IPsec) protocols
standardized by the IETF. All references of the form [RFC nnnn] are to
IETF Request for Comments documents that can be obtained from:
http://www.ietf.org/rfc.html

Note: At this stage, not all the design details are spelled out; as
agreement is reached on pursuit of this approach, more details will
be filled in.

--- (2) --- Design Overview

Encrypting one or more data encryption keys and passing them to the

device server involves the following steps:

a) Algorithm and Parameter Selection: The initiator and device server
determine which security algorithms, protocols, and parameters
to use.

b) Key Exchange: The initiator and device server conduct a protocol
that creates a secret shared between them. The protocol makes it
computationally intractable for an eavesdropper to determine the
shared secret. The device server also creates a key identifier
and sends it to the initiator as part of this step.

c) Key Derivation: Based on the key exchange, one or more session
key(s) are created for use in passing encrypted data encryption
keys to the device server.

d) Wrap the data encryption key(s): Using an encryption cipher, encrypt
the data encryption key(s) using the appropriate session key. This
step also adds additional information that the device server needs
to decrypt the encryption key and verify the decryption:

- a key identifier to tell the device server which session key is
being used

06-103r2.txt 3/4/2006

- a sequence number to prevent replay,
- an initialization vector (IV) for the encryption
- an integrity check covering the original data encryption key(s)
(before encrypting them) and the above items of additional
information.
e) Transmit the key(s) to the device server.
f) Decrypt the wrapped data encryption key(s) and verify that they were
decrypted correctly.

This protocol design proposes to use the following security techniques

and mechanisms to accomplish these steps:

a) Algorithm and Parameter Selection: An "announcement" model is
proposed, where there are a small number of possibilities for
each item that can be selected and the initiator is required
to support all possibilities. The device server selects the
ones it wants to use and announces them to the initiator.

b) Key Exchange: This design proposes use of an unauthenticated
Diffie-Hellman Key Exchange with nonces, based on the first
exchange in the IKEv2 protocol, see Section 1.2 of [RFC 4306].

c) Session Key Derivation: This design proposes to reuse the IKEv2
mechanisms based on a pseudo-random-function (prf), see Section
2.13 and 2.14 of [RFC 4306]).

d) Wrap the keys: The proposed encapsulation format is ESP [RFC 4303].
The encryption cipher and integrity check are proposed to be
provided by AES GCM [RFC 4106], a combined mode of operation
for AES that has been selected by NIST for standardization (it
will become part of FIPS 140-2), and another cipher operating
mode, possibly AES CCM [RFC 3610, RFC 4309].

e) Transmit the Keys: SECURITY PROTOCOL OUT command with a new KEY
FORMAT value.

f) Decrypt and Verify: The same ESP and AES GCM techniques as are used
to wrap the key.

Each step and how it is performed are discussed in further detail below.
--- (3) --- Negotiation via Announcement

Negotiation of security mechanisms is complex, particularly as a
security negotiation design is usually required to resist downgrade
attacks in which an attacker tampers with negotiation in a fashion
that causes weaker security to be used than would have been used

in the absence of the tampering.

This proposed design sidesteps the entire set of negotiation issues

by using an announcement approach:

- For any mechanism or parameter that has alternatives, there
are a small number of options. At least 2 are generally
needed (in case one becomes unusable due to an unexpected
cryptographic advances), but beyond that, smaller numbers
are better.

- An initiator is required to support every option for every
parameter or mechanism (hence the desire to keep the number
of options small).

- A device server selects the options that it wants to use and
announces them to the initiator.

06-103r2.txt 3/4/2006

- The initiator then uses the announced options.
There is no retry; the device server says "use <this>" and <this>
is what is used.

Each section below lists the options for each mechanism or
parameter with alternatives. An id is listed for algorithm choices;
these ids are from the IANA IKEv2 registry at:

http://www.iana.org/assignments/ikev2-parameters

Open Issue: The device server "annoucement" model for a) differs from

the approach employed elsewhere in T10/05-446r6 where the initiator

reads the device server's capabilities and decides what to use. Changing
to that approach would still requires that initiators support all options
for every item for interoperability, as a device server could choose to
only support one option for each item. For simplicity, this design
should avoid attempting to match IKEv2's complete proposal negotiation
functionality.

--- (4) --- Key Exchange

The proposed protocol uses an unauthenticated Diffie-Hellman key
exchange with nonces, based on the first exchange in the IKEv2 protocol.

A Diffie-Hellman key exchange is based on the computational
intractability of the discrete logarithm problem - when performing
arithmetic modulo a sufficiently large prime (n), if one is given
g*x mod n, it is computationally intractable to determine x when g
is a generator of a sufficiently large group modulo that prime. The
combination of n and g are said to define a Diffie-Hellman group.

A Diffie-Hellman key exchange proceeds as follows:

Initiator Responder
1) Generate a random value i Generate a random value r
2) Compute Gi = g”i mod n Compute Gr = g”r mod n
3) Send Gi to the Responder Send Gr to the Initiator
4) Compute (Gr)~i mod n = g*ir mod n Compute (Gi)”r mod n = g~ir mod n

The resulting shared secret is g~ir mod n. An eavesdropper can observe
g”i mod n and g”“r mod n, but since it is computationally intractable for
the eavesdropper to determine either i or r, the eavesdropper cannot
effectively compute g~ir mod n. A brute force attack is required, which
can be made arbitrarily difficult via choice of sufficiently large n -

the smallest n specified in this proposal is 2048 bits in size.

The field prime (n) and associated generator (g) are fixed numbers,

and n is very large in practice. These numbers are defined in [RFC 3526].

Exponentiation modulo a large prime can be an expensive computational
operation, and hence there is a desire to reuse the results; if a
responder reuses g°r mod n, it need only perform one exponentiation to
complete the key exchange, and if a responder can determine that the
initiator has reused g~i mod n, it can skip that exponentiation and
reuse the previous g~ir mod n. Needless to say, reuse of an old shared

06-103r2.txt 3/4/2006

secret would be bad from a security standpoint, so the key exchange
protocol proposed here includes randomly generated nonces (Ni, Nr) that
are hashed with g~ir mod n to create the shared secret.

The resulting key exchange protocol looks like the following, where
SPIr is a Security Parameters Index (SPI) that identifies the results
of this key exchange, and PARMs is the Device server's announcement of
the security parameters that are to be used (e.g., DH group, prf,
encryption algorithm, key size).

Initiator Device Server
1) <-- g°r mod n, Nr, SPIr, PARMs
2) 971 mod n, Ni, SPIi, PARMs -->

This key exchange is realized via the issuance of a SECURITY PROTOCOL
IN command to page 12h (step 1) followed by the issuance of a SECURITY
PROTOCOL OUT command to page 12h (step 2). Specifications of page

12h that realize this protocol will need to be added to both of these
commands in T10/05-446r6.

Open Issue: Is this the right way to realize the key exchange?

The initiator passes SPIi for symmetry (and to enable exact reuse of

the IKEv2 algorithms), but it has no use aside from initial key generation.
The initiator can set it to an arbitrary value. Both SPI values are 32
bit integers. Note that the security role of "responder" has been

assigned to the Device Server in order that the SCSI initiator can be
called the security "initiator", despite the fact that the device server
provides the first part of the key exchange.

The nonces shall be freshly generated 128-bit truly random numbers. The
parameters (PARMs) are passed in both directions to avoid any possible
confusion about what is being used - they are announced by the Device
Server, and returned by the initiator as verification that the initiator
understood what was being announced. See Section (9) below for the
specification of these parameters. The Diffie-Hellman group announced
by the device server determines the size of g”i mod n and g”r mod n

(as well as determining the values of g and n). Diffie-Hellman
exponentials may be reused in accordance with the discussion and
requirements given in Section 2.12 of [RFC 4306]. This enables a

device server to be implemented in a fashion that does not require
computation of a new g”"r mod n value in order to respond to the SECURITY
PROTOCOL IN command that initiates the key exchange.

Open Issue: Need to provide some guidance and requirements on the number
of security contexts (simultaneously valid SPIs) that a device server
needs to support - in typical tape cases, the required number may be
quite small.

The Diffie-Hellman exchange requires selection of a Diffie-Hellman group.
The two groups for this protocol are:

- The 2048-bit group defined in Section 3 of [RFC 3526], whose id is 14.
- The 3072-bit group defined in Section 4 of [RFC 3526], whose id is 15.
The 3072-bit group is considered to have strength greater than that of

06-103r2.txt 3/4/2006

a 128 bit symmetric encryption key. The 2048-bit group is considered
to be somewhat weaker. As indicated in Section (3) above, initiators
are required to support both groups, and device servers are required to
support at least one group.

--- (5) --- Session Key Derivation

The shared secret is calculated from the key exchange using a pseudo-random
function (prf) as specified in Section 2.14 of [RFC 4306]:

SKEYSEED = prf(Ni | Nr, g*ir mod n)

where "|" concatenates its arguments as bit strings. [RFC 4306] specifies
that g”ir mod n is represented as a string of octets in big endian order
padded with zeros if necessary to make it the length of the modulus (n).
Ni and Nr are the nonces, stripped of any headers.

Since the proposed encryption algorithm is a combined mode (one key for
both encryption and the integrity check of the data), only one
session key is needed:

SK_cr = prf+(SKEYSEED, Ni | Nr | SPIi | SPIr)

See Section 2.13 of [RFC 4306] for the definition of prf+() based on prf().
SK _cr is the first m bits of prf+ where m is the number of bits needed to
key the cipher in the operating mode selected (128 bits for the combined
modes used in this protocol). If separate encryption (SK er) and integrity
(SK_ar) keys are needed, they are generated from the same prf+ construction,
but consume more bits:

(SK_ar | SK er) = prf+(SKEYSEED, Ni | Nr | SPIr | SPIi)

The Session Key Derivation requires selection of a pseudo-random function.
The two functions for this protocol are:

- The HMAC_SHA1 PRF defined in [RFC 2104], whose id is 2

- The AES XCBC PRF with 128 bit key defined in [RFC 3664], whose id is 4
As indicated in Section (3) above, initiators are required to support both
PRFs, and device servers are required to support at least one PRF.

IETF is in the process of updating RFC 3664, which will not result in a
change to the specification of the PRF algorithm for this use, but will
result in a new RFC number. The AES XCBC PRF takes a fixed length 128
bit key, requiring application of the following text from [RFC 4306] to
the initial calculation of SKEYSEED, resulting in the first 64 bits of
each nonce being used:

If the

negotiated prf takes a fixed-length key and the lengths of Ni and Nr
do not add up to that length, half the bits must come from Ni and
half from Nr, taking the first bits of each.

Open Issue: In private communication a desire has been expressed to use

an HMAC _SHA256 PRF defined by the application of the HMAC construction in
[RFC2104] to SHA-256 - this would replace the AES_XCBC PRF, and would need
a new id taken from the private use range (this is not a barrier to use of

06-103r2.txt 3/4/2006
HVAC_SHA256) .
--- (6) --- Key Encryption and Wrapping

The format for wrapping an encrypted key is ESP (see [RFC 4303]) with the
Next Header field set to zero (see the first diagram in Section 2 of

[RFC 4303]). TFC padding is not used. The Sequence Number starts at O
and is incremented on every use. The SPI used with ESP is SPIr from

the key exchange. Each SPI value has its own set of sequence numbers;
sequence numbers shall be used in order within an SPI. The SPI is the
only field use to determine how the device server processes an ESP-
wrapped key, hence the device server shall ensure that SPI values are
unique.

Note: Need a data structure diagram. Have to convert to Word first.

Note: See [RFC 4303] - a significant amount of text probably needs to be
imported from there to specify all the fields of ESP and how to determine
their values.

The IV field shall be eight octets. For a given key, the IV shall not
repeat because counter modes of encryption are being used. If two
different plaintexts are encrypted with the same key and IV, XORing
the ciphertexts yields the XOR of the plaintexts, which can be of
great value to an attacker. The most natural way to implement this
requirement is with a counter, but anything that guarantees uniqueness
can be used, such as a linear feedback shift register (LFSR). Any

IV generation method that meets the uniqueness requirement may be used.

Open Issue: May want to put some more structure in the ESP payload than
just the key(s) to be encrypted to allow its use for other things in
the future - 16-bit type and length fields would be fully general, even
though they would duplicate the unencrypted key length field in the set
data encryption page. It's not clear that this is useful, as one can
also expect other cases to determine what the ESP payload is from
context (as is the case here).

Key Encryption and Wrapping requires selection of algorithms for encryption,

generation of the Integrity Check Value, and associated parameters (e.g.,

key sizes) for those algorithms. For simplicity, this proposal employs

combined modes of the AES encryption ciphers; these use a single key (SK cr

in section (4) above) for both encryption and the integrity check. The

combined mode cipher algorithms and associated parameters are:

- AES GCM with a 128 bit key and 16-octet integrity check value, as
specified in [RFC 4106], whose id is 20.

- AES CCM with a 128 bit key and 16-octet integrity check value, as
specified in [RFC 4309], whose id is 16.

As indicated in Section (3) above, initiators are required to support

both algorithms, and device servers are required to support at least

one algorithm.

Open Issue: Increase key sizes to 256 bits? Allow both 128 and 2567

Open Issue: GCM is an obvious choice. CCM is the only other obvious
combined mode. Use of only combined modes simplifies importing text

06-103r2.txt 3/4/2006

from [RFC 4303]. An alternative that shares no algorithms with AES
GCM is 3DES CBC + HMAC_SHAT.

--- (7) --- Key Transmission

The SECURITY PROTOCOL OUT command is used to send data to the Set Data
Encryption Page, as described in T10/05-446r6. Key Format 2h is allocated
to be ESP wrapping of an encrypted key as specified above. Key Format

Oh (cleartext keys) remains in the specification, but text needs to

be added to require or at least strongly encourage any implementation

that supports Key Format Oh or any other inband means (including vendor
specific) of passing a key or keys in cleartext to the device server

to also support Key Format 2h and the key exchange algorithm in this
document.

--- (8) --- Decrypt and Verify

The device server shall verify that ESP-wrapped keys are received in
sequence number order for each SPI. The SPI identifies the key and
parameters needed to decrypt the wrapped keys and verify that they
have been received successfully. If any error occurs in this process
(including out of order sequence number, and integrity check failure),
the command shall be terminated with CHECK CONDITION and an ASC of
KEY FORMAT ERROR (need a new ASC for that).

Note: Need to take text from [RFC 4303] specifying details of the
decrypt and verify process.

--- (9) --- PARMs Parameters

The key exchange described in section 4 passes a PARMs element in

both directions. That element contains six 16-bit values as fixed
size fields. The allowed values for identifiers are from the IANA
IKEv2 registry at http://www.iana.org/assignments/ikev2-parameters.

The six 16-bit values are:

- Key exchange protocol version number. This shall be set to 1h to
indicate the protocol specified in this document.

- Diffie Hellman group identifier. The allowed values are 14d [Eh]
(2048-bit group) and 15d [Fh] (3072-bit group).

- Pseudo-random function identifier. The allowed values are 2h
(HMAC-SHA1) and 4h (AES XCBC)

- Encryption algorithm identifier. The allowed values are 20d [14h]
(AES GCM) and 16d [10h] (AES CCM). These identifiers indicate
that the Integrity Check Values are 128 bits in size.

- Key length for the Encryption algorithm. This shall be set to 128d
[80h].

- Integrity algorithm. This shall be set to Oh (NONE) because combined
modes that incorporate an integrity check are being used.

These represent IKEv2 transform types 4 (DH), 2 (PRF), 1 (Encryption) and

3 (Integrity), plus the Key Length attribute of the Encryption Algorithm.

The latter two fixed values are included for completeness. Key Length

is not included for the integrity algorithm because IKEv2 does not

support variable key lengths for integrity algorithms.

06-103r2.txt 3/4/2006

If an initiator receives invalid values for any of the above parameters,
it shall not complete the key exchange. If a device server receives
invalid values for any of the above parameters it shall terminate the
command with CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to INVALID FIELD IN CDB.

--- (10) --- Use of Other Authentication and Key Exchange Protocols

The connection between the key exchange protocol and the encrypted

key transfer is realized by the use of the SPIr value from the key
exchange as the SPI in the ESP structure that transfers the encrypted
key. SPIr is chosen by the device server and used to locate the keys
needed to decrypt and verify the transferred key. Other protocols can
be used to generate keys for ESP as long as they generate as associated
SPI value, as that is the only means by which the device server can
locate the keys to use. A device server shall ensure that SPI values
are unique. To specify an additional protocol that generates keys

for ESP, it is necessary to specify the equivalent of Sections (4)

and (5) above to state how the key exchange occurs and how the keys
for ESP are derived from that key exchange.

Among the protocols that could be defined is one that generates keys
and an SPI for ESP from a key reference. In defining such a protocol,
it is vital than the initiator and device server exchange nonces and
that session keys be derived from those nonces and the referenced key.
The reason this is important is that if a referenced key is used
directly by multiple initiators, there is a strong risk of the same
IV being used twice with that key, which is not safe for the counter
modes of encyrption being used in this document.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

