SAS-2 Physical Layer Specification Compliance Method

Yuriy Greshishchev www.pmc-sierra.com

T10/06-065r0

Introduction

- This contribution compares compliance methods for Gigabit-range interfaces and suggests a method, which originates to OIF CEI-02.0 6G-LR, were both Tx and Rx equalizer functions are normative. A compliance channel then is defined as any channel which results in normative Rx eye after equalization
- In CEI-02.0 agreement, Statistical Eye methodology aims to evaluate, if channel yields normative Rx eye. Applicability of that particular method to SAS-2 is beyond the scope of this contribution. One can always assume that eye diagram simulations in time domain serve the purpose

Rx compliance methods

- Normative Pass/Fail Test Setup for the Rx. Compliant Rx is the one which passes "Rx tolerance test"
 - Define normative test conditions. May define compliance channel(s)
 - Pros: Rx equalization scheme is open for competition
 - Cons: One test does not cover all practical cases. Potential interoperability problem

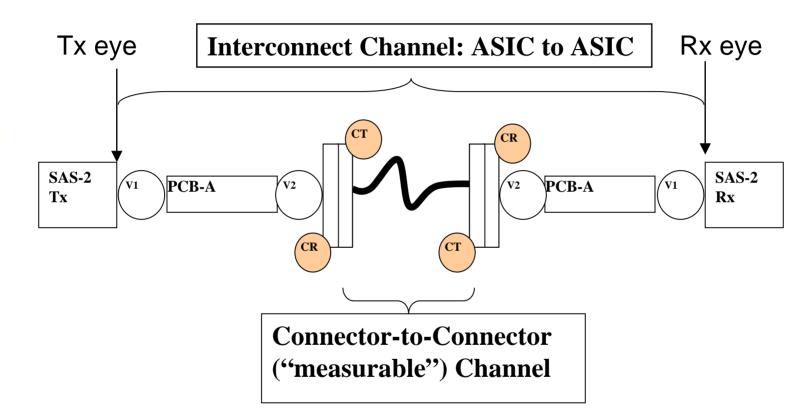
• Normative Rx functionality

- Define normative Rx equalizer functionality. It limits maximum ISI to equalize in a mixture with crosstalk noise
- Pros: eliminates an interoperability problem with infinite number of worst case practical channels
- Cons: the RX equalizer architecture is less open for competition

Compliance Methods

Standard	Compliant	Compliant	Compliant
	Тх	Channel	Rx
XAUI, FC-PI-2,	Norm Eye	Compliance	Norm Eye Rx
SAS-1.1,		Channel,	Tol test
PCIe-1, 2,		TCTF,	(Does not
XFI		Inner/Outer	specify R x
		eye ratio	equalizer)
OIF	Norm Eye,	Compliant	Norm Eye,
CEI-02.0	Equalizer	Channel must	Equalizer
		yield R x	
		Norm Eye	
10G BASE KR	Norm Eye,	Informative	Interference
	Equalizer	Channel	Tolerance test

• Compliance channel make sense if it defines "worst case" real channel (lower Gb range, low reflections, homogeneous interconnect)


• In practice, infinite number of channels exists that may create worst conditions at Rx. Theoretically impossible to define compliance test for Rx. This is why Rx normative equalizer is more practical

SAS-2 compliance method proposal

PMC-SIERRA

- Tx with Normative Equalizer
 - For instance, fixed M-dB pre-emphasis
- Rx with Normative Equalizer
 - For instance, N-tap DFE
 - An equivalent to normative is possible, however at expense of signal/noise performance
 - Compliant channel: any channel which yields normative Rx eye
 - Common agreement on "normative methodology" how to analyze the channel (similar to Stat Eye) is helpful, but not an absolute requirement for the method itself

Compliant Channel Boundaries (CR/CR points example)

- The whole "Interconnect Channel" must be verified on compliance
- If "Connector-to-Connector" part is selected to be
- "measurable" compliant interconnect, then there must be specification limits on interconnects to the ASICs

Summary

- In SAS-2 specification where infinite number of worst case ISI conditions exist, a practical way is to define normative Tx and Rx equalizers functions
- The Rx compliance test would serve to verify that Rx posses specified maximum equalization abiliy
 - For instance with N-tap DFE a "compliance channel" will require for all N taps to be fully exercised to equalize the channel
 - Plus all of the other conditions defined in CEI-02.0 method (jitter, return loss, amplitude level, BER)
- This method provides a reasonable compromise to guarantee interoperability and freedom in actual Rx equalizer implementation

PMC-SIERRA

PMC-SIERRA

Thinking You Can Build On

www.pmc-sierra.com

January 200