VITESSE

06-053r0 Roadmap to SAS-2 Physical Layer Specification

Kevin Witt

SAS-2 PHY Working Group

January 9, 2006

YOUR PARTNER FOR SUCCESS

Serial

SCSI

Attached

Proposed Road Map

- Establish General Link Assumptions & Goals
 - Based on Market need (STA) and technical contributions to date
- Compare to some other Relevant Specifications
 - See 06-011r1 & May 2005 Meeting Post
- Propose a set of Electrical Specifications & Compliance test for discussion
 - Encourage Counter Proposals or Proposal Modifications (started in 06-011r1)
 - Form a consensus on what will be specified, <<= This is the focus of this presentation
- Identify Specifications & Compliance Test which will need additional work and research
 - Recruit Technical Contributors
- 💝 Draft Document

Outline

- 📚 Specification Goal
- Specification Usage Models
 - Application Based Perspective
- Proposed Outline of Specification
- Specification Usage Models (Continued)
 - Design and Test Perspective
- First Pass Target Specification Numbers
- 📚 Open Item & Discussion

Specification Goal

VITESSE

Draft a Specification which will Meet All Users' Requirements

- 1. System Users (End Users)
 - Meet Objectives set by STA
 - Provide a Robust Interface
 - Support Interoperability at the System Level
- 2. System Designer (Server & Storage System Builders)
 - Enable System Designers to Design and Predict if the Design will be Compliant
 - Enable System Designers to Test a System and Determine if it is Compliant
 - Support High Port-Count Applications (Low Power/ Small Phy.),
 - Support Interoperability at the Component Level (Drives, Cables...)
- 3. Component Supplier (Drives, ASIC, Connector & Cable Vendors)
 - Provide Compliance Test which Enable Component Supplier to Test Product

SAS-2 Specification Usage Models To Consider

- 1. System User's Perspective
 - Standard Interfaces Chassis-to-Chassis or Intra-Chassis
 - Interoperability of different Vendors Required

VITESSE

Channel Model Has 3 Major Sections, two connector interfaces

User Models

SAS-2 Specification Usage Models To Consider

2. System Designers' Perspective (1 of 2)

Single Standard Interface, Intra-Chassis Multi-Vendor

SERVER & •<

User Models

Channel Model has two Major Sections, one connector interfaces

SAS-2 Specification Usage Models To Consider

3. System Designers' Perspective (2 of 2)

- No Standard Interfaces
- Intra-Chassis Self Contained, System Designer Owns Entire Channel
- PCB, connectors, backplanes, cables

User Models

Channel Model is a Single Section, zero connector interfaces

SAS-2 Specification Proposal (Modified CEI) VITESSE

1. Specify a Reference Transmitter based on Target Channels

- Swing, De-emphasis, jitter, Output Impendence
- ASIC Designed to Exceed the Reference Transmitter Specification
- 2. Specify a Reference Receiver based on Target Channels
 - # DFE taps (Design must be as good as, not defining the implementation)
 - Return loss, Jitter tolerance
 - ASIC Designed to Exceed the Reference Receiver Specification

3. Specify a Reference ASIC to Standard Interface Channel based on Current Design Practices

- Assumed to be Small Part of the Worst Case Channel
- C_{TX}, C_{RX} (Based on T11 work, T11/05-346v1?)
- 4. Channel Compliance Based on Above & Target BER
 - Estimate Channel Performance via Simulation Using Predicted or Measured S-parameters of the Composite Channel.
 - Use the Composite Channel Model & StatEye Methodologies or other Communication Channels Simulation Methods.
 - Analysis Tool or Algorithm Need Not be Specified.
- 5. Specify a Standard Connector-Based Transmit Eye Mask and De-Emphasis Test
 - Based on Reference Transmitter and C_{TX}
- 6. Specify Receiver Compliance Test
 - Emulate Reference Transmitter, Channel and C_{RX}
 - Emulate zero length and Worst Case Channels
 - Specify a Jitter Tolerance Mask and Test Methodology
 - Test With Specified a Cross-talk budget

? Why Not just Use CEI Standard ?

- 1. Does Not Support Connector Interfaces
- 2. Unbounded Receiver Compliance Testing
- 3. 8B/10B Encoding
- 4. Reference Tx & Rx should match SAS Channel

Look at Users' Application of the Specification

- 1. Self-Contained Zero-Connector system
- 2. One-Connector System Storage System w/ Drive Bays
- 3. Design with one Tx Standard Interface Storage Device or External Interface
- 4. Tx ASIC Design
- 5. Design with one Rx Standard Interface Storage Device or External Interface
- 6. Rx ASIC Design
- 7. External Cable

VITESSE

Self-Contained System Design

Common SAS Applications

System Designer Estimate Channel Compliance via Simulation

- Assume the Reference Transmitter and Receiver
- Uses Predicted or Measured S-parameters of the Channel, C, C_{RX} & C_{TX}
- StatEye Methodologies or other Communication Channels Simulation Methods.

One Connector System Design and Test Perspective

System Designer Estimate Channel Compliance via Simulation

- Assume the Reference Transmitter and Receiver
- Uses Predicted or Measured S-parameters of the Channel, C_{CH}, C_{TX}& C_{RX}
- StatEye Methodologies or other Communication Channels Simulation Methods.

VITESSE

- External Transmit Interface Design and Test Perspective
 - Servers, Storage Boxes, & Storage Interface .
 - ASIC and Board Design Determine Eye at Interoperability Point
- System Designer Test Compliance at the Connector Interface "T"
 - Measure Salient Specification at the Connector
 - Eye mask w/o DE, Output Impedance, De-Emphasis test
 - Specifications Based on C_{TX} and Reference Transmitter •

Squarewave Response

VITESSE

- Signer test Compliance at the ASIC Pin
 - Specification is the Reference Transmitter Specification
 - Measure Salient Specification at ASIC Pin by De-Embedding the Test Fixture
 - Eye mask, Output Impedance, De-Emphasis test

ASIC Designer Want to Characterize a Part for Compliance

Squarewave Response

- External Receive Interface Design and Test Perspective
 - Servers, Storage Boxes, & Storage Interface
 - External Channel Determines Eye at Interoperability Point
- System Designer Test Compliance at the Connector Interface "R"
 - ISI Generator Emulates Reference Transmitter, C_{TX}, Jitter, Channels of interest
 - Test Channels Emulated
 - Zero length
 - Worst Case
 - Others

Receive ASIC Design and Test Perspective

- Test Receiver with low-loss test fixture w/o C_{RX}
- ISI Generator Emulates Reference Transmitter, C_{TX}, C_{RX}, Jitter, Channels of interest
- Test Channels Emulated
 - Zero length
 - · Worst Case based on S-Parameter Data base
 - Other

SAS-2 Receiver Compliance Test Hardware

- Receiver Compliance w/ Jitter, Crosstalk and Interference (same as OIF-CEI, & 10GBase-KR)
- Standardize Test Setup based on 10GBase-LRM ISI Generator
 - Generate ISI coefficients for channels of Interest
 - Calibrate and Test Through Mated Connector
 - Emulate Tx DE, C_{Tx} & C

10GbE MMF Example

Post-Cursor 15 vs Model Per P802.3aq D2.3

SAS-2 Receiver Compliance Test Hardware

VITESSE

Potential Rx Compliance Test Channels

- Zero Length
- Worst Case ISI (based on PIE-D) with low Attenuation (Intra Chassis)
- Worst Case ISI (based on PIE-D) with High Attenuation (Long External Cable)
- Others ?

💝 IEEE References on ISI Generator

- http://www.ieee802.org/3/10GMMFSG/public/mar04/witt_1_0304.pdf
- http://www.ieee802.org/3/aq/public/jan05/popescu_1_0105.pdf
- http://www.ieee802.org/3/aq/public/mar05/mcvey_1_0305.pdf
- http://www.ieee802.org/3/aq/public/sep05/mcvey_1_0905.pdf
- Many more just look for TP3 in title

- Cable Connector Design and Test Perspective
- Potential Issue w/ Connector Allocation
 - C_{TX} and C_{RX} are through matted connector
 - C_{EX} is based on De-Embedded Connectors
- System Designer Estimate Channel Compliance via Simulation
 - Assume the Reference Transmitter and Receiver
 - Uses Predicted or Measured S-parameters of the Channel, C_{EX} , C_{TX} & C_{RX}
 - StatEye Methodologies or other Communication Channels Simulation Methods.

SAS-2 Specification First Pass Numbers

VITESSE

Reference Transmitter

	Typical SAS-1		SAS-2	Units
General				
Bit Rate	1.5 +/- (a)	3 +/- (a)	6 +/- (a)	Gbps
BER	1.00E-12	1.00E-12	1.00E-15	
Transmitter				
Differential Voltage (pk-pk)	1600	1600	800 -> 1200	mV
Min. Transition Time (20%-80%)	67	67	50	ps
Max Transition Time (20%-80%)	273	137	90	ps
Output Impedance	60 min/ 115 max	60 min/ 115 max	60 min/ 115 max	ohm
Output Impedance Mismatch	5	5	5	ohm
Common Mode Impedance	15 min/ 40 max	15 min/ 40 max	15 min/ 40 max	ohm
Max. Intra-Pair Skew	20	15	15	ps
Random Jitter	0.2	0.2	0.15	UI
Deterministic Jitter	0.35	0.35	0.15	UI
Total Jitter	0.55	0.55	0.3	UI
# De-Emphasis	N.A.	N.A.	2	Taps
Min De-Emphasis	N.A.	N.A.	0	dB
Max De-Emphasis	N.A.	N.A.	6	dB

SAS-2 Specification First Pass Numbers

📚 Reference Receiver

	Typical SAS-1		SAS-2	Units
Receiver				
Reference Rx # DFE Taps	N.A.	N.A.	TBD	taps
Differential Impedance	100+/- 15%	100+/- 15%	100+/- 15%	ohm
Differential Impedance Mismatch	5	5	5	ohm
Common Mode Impedance	20 min/ 40 max	20 min/ 40 max	20 min/ 40 max	ohm
Common-Mode Tolerance (2-200MHz)	150	150	150	mV
Max Operational Input Voltage	1600	1600	1200	mV
Max Non-Operational Input Voltage	2000	2000	2000	mV
Differential Return Loss	N.A.	N.A.	TBD 10GBase-KR?	dB

Notes:

- 1) Receiver implementation is not limited to DFE architecture, however, its' equalization capability must at least be equivalent to the reference receiver.
- 2) Complexity of the Reference Should be adequate SAS Channel library and SAS-2 external cable reach objective.

SAS-2 Specification TBD Numbers

External Interface Reference Transmit Path Model (C_{TX})

- Does the T11 Model Match the SAS-2 Application
- Is a Single Model Adequate or do we Need Two or More?
 - Short trace Model w/ SAS connector for model for Drives
 - Long Trace Model w/ External Connector for External Cable Connections
- \mathbf{E} External Interface Reference Receive Path Model (C_{TX})
 - Same as Tx Path
- Solution of the set of
 - Need Proposals
- 💝 Cross-Talk Specification
 - Need Proposals

Solution 20 Contens 20

Summary

Section A Modified version of the OIF-CEI Specification is Proposed for SAS-2.

- Extends the CEI approach to support Standardized interfaces
- Narrows the Receiver Compliance Test to Finite Number of Test
- The Proposal Attempts to Address the Needs of all Users of the Physical Layer Specification.