
March 31, 2006 06-051r7 The Requirement for More than One Decryption Key

To: T10 Technical Committee
From: Dwayne Edling (dwayne.edling@sun.com)
Date: 30 Mar 2006
Subject: T10/06-051r7 The Requirement for More than One Decryption Key

Revision History
Revision 0(7 Jan 2006): Presentation to explain the need for more than one decryption
key.
Revision 1(19 Jan 2006): First proposal to implement more than one read Key.
Revision 2(23 Jan 2006): incorporated various edits.
Revision 3(28 Jan 2006): Remove encryption key to simplify proposal.
Revision 4(10 Feb 2006): Consistently used supplemental decryption key and increased
field sizes to 32 bits for future growth.
Revision 5(11 Mar 2006): Incorporate HP comments.
Revision 6(27 Mar 2006): Incorporate comments from 23 Mar 2006, SSC-3
teleconference.
Revision 7(31 Mar 2006): Incorporate comments for approved revision from 30 Mar
2006, SSC-3 teleconference.

Related Documents
05-446rx- SSC-3: Add commands to control data encryption
06-172r1 SSC-3: Add commands to control data encryption

Overview

Revision 1
This proposal incorporates changes that would be necessary to implement passing more
than one decryption key in proposal 05-446r1.

• Added to Data encryption algorithm descriptor page:
o MAXIMUM NUMBER OF ENCRYPTION KEYS
o MAXIMUM NUMBER OF DECRYPTION KEYS
o MAXIMUM NUMBER OF COMBINED KEYS (Used for both

encryption and decryption)
o MAXIMUM NUMBER OF KEYS FOR ALL MODES AND SCOPES

• Added to the Data encryption status page
o NUMBER OF ENCRYPTION KEYS IN USE
o NUMBER OF DECRYPTION KEYS IN USE
o NUMBER OF COMBINED KEYS IN USE
o NUMBER OF KEYS IN USE FOR ALL MODES AND SCOPES

• Added to the Set data encryption page.
o KEY USE field; indicates whether this is a combined use key, encryption

key or decryption key.

mailto:dwayne.edling@sun.com

o Keep Previous Decryption Key (KPDK) field; this field indicates whether
the device server should keep the previously send decryption key.

o Add scenarios how keys are sent and status that gets reported.
• I believe that I retained the functionality of the previous draft so that the model

should not have to change.
• There were also some edits in the model sections to incorporate the concept of

more than one key being used in the system.

Revision 2
Added edits from Paul Entzel.

• Changed wording in model section.
• Moved the following fields to the Data Encryption capabilities page

o MAXIMUM NUMBER OF ENCRYPTION KEYS
o MAXIMUM NUMBER OF DECRYPTION KEYS
o MAXIMUM NUMBER OF COMBINED KEYS (Used for both

encryption and decryption)
o MAXIMUM NUMBER OF KEYS FOR ALL MODES AND SCOPES

• Changed wording in Set data encryption page to clarify various SCOPE and mode
uses. Also changed various wording to add clarity. Removed last paragraph.

Revision 3

Change format to use only supplemental decryption key (SDK).

Removed

• MAXIMUM NUMBER OF ENCRYPTION KEYS
• MAXIMUM NUMBER OF COMBINED KEYS (Used for both encryption and

decryption)
• MAXIMUM NUMBER OF KEYS FOR ALL MODES AND SCOPES

Removed

• NUMBER OF ENCRYPTION KEYS IN USE
• NUMBER OF COMBINED KEYS IN USE
• NUMBER OF KEYS IN USE FOR ALL MODES AND SCOPES

Removed KEY TYPE and KPDK

Revision 4

Replaced:

• MAXIMUM NUMBER OF DECRYPTION KEYS
• NUMBER OF DECRYPTION KEYS SAVED

With:
• MAXIMUM NUMBER OF SUPPLEMENTAL DECRYPTION KEYS
• NUMBER OF SUPPLEMENTAL DECRYPTION KEYS SAVED

In the Data Encryption Capabilities page and the Data Encryption Status page
respectively.

Replaced reference to supported and values with references for storage space.

Revision 5

Incorporated comments from HP, which were not provided until the SSC meeting:

Remove

• MAXIMUM NUMBER OF SUPPLEMENTAL DECRYPTION KEYS
• NUMBER OF SUPPLEMENTAL DECRYPTION KEYS SAVED

Add model references for more than one key in 4.2.19.3 and 4.2.19.4

Add SDK_C field to algorithm descriptor page.

Define behavior with SDK set to zero.

Removed references to a key list

Revision 6

Incorporated comments from the SSC-3 teleconference meeting on 23 Mar 2006:

Add:

• Definition for SDK after furst use.
• A line in paragraph 4.2.19.3 stating that the method for determining which

decryption key to use in vendor specific.
• A line in paragraph 4.2.19.7 with only the SDK addressed on it.
• A line in paragraph 4.2.19.8 stating that SDK’s will not cause the Key Instance

Counter to be incremented.
• Replace

Replace

• SDC_C with SDK_C on table E2.
• Replace “has not previously saved” with “does not currently have” on the first

line of the second paragraph on page 14 of this proposal.

Revision 7

Made editorial and spelling corrections.
Merged the approved changes into the latest version of 06-172r1.

Suggested Changes

4.2.19.3 Reading encrypted data on the medium
A volume may contain no encrypted blocks, all encrypted blocks, or a mixture of
encrypted blocks and unencrypted blocks. The fact that blocks are encrypted shall not
alter space or locate operations.

A device server that supports encryption should be capable of distinguishing encrypted
blocks from unencrypted blocks. The device server reports its capability of
distinguishing encrypted blocks from unencrypted blocks through the DED_C bit in the
Data Encryption Algorithm descriptor (see 8.5.2.4). If the device server is capable of
distinguishing encrypted blocks from unencrypted blocks, an attempt to read or verify an
encrypted block when the decryption mode is set to DISABLED shall cause the device
server to terminate the command with CHECK CONDITION status, with the sense key
set to DATA PROTECT, and the additional sense code set to UNABLE TO DECRYPT
DATA. The device server shall establish the logical position at the BOP side of the
encrypted block.

If the device server is capable of distinguishing encrypted blocks from unencrypted
blocks and the decryption mode is set to DECRYPT or RAW, an attempt to read or verify
an unencrypted block shall cause the device server to terminate the command with
CHECK CONDITION status, with the sense key set to DATA PROTECT, and the
additional sense code set to UNENCRYPTED DATA ENCOUNTERED WHILE
DECRYPTING. The device server shall establish the logical position at the BOP side of
the unencrypted block.

NOTE E1: It is possible for a device server that is not capable of distinguishing
encrypted blocks from unencrypted blocks to decrypt data that was not encrypted.
Application clients are responsible for checking the integrity of the data in this
environment.

A device server that supports encryption and has been configured to decrypt the data may
be capable of determining that the encryption key is correct for an encrypted block. The
correct key to use for this encrypted block may be either the encryption key or one of the
supplemental decryption keys (SDK). The method for determining which key to use for
decryption shall be vendor specific. If the device server is capable of determining that the
encryption key is correct, an attempt to read or verify an encrypted block when the
decryption mode is set to either DECRYPT or MIXED but all of the encryption keys
provided are is incorrect for the encrypted block shall cause the device server to terminate
the command with CHECK CONDITION status, with the sense key set to DATA
PROTECT, and the additional sense code set to INCORRECT DATA ENCRYPTION
KEY. The device server shall establish the logical position at the BOP side of the
encrypted block.

A device server that supports encryption and has been configured to decrypt the data may
be capable of validating the integrity of the data after decrypting it (i.e., that the
decrypted data matches the data that was encrypted). If the device server is capable of

validating the integrity of the data after decrypting it, an attempt to read or verify an
encrypted block when the decryption mode is set to either DECRYPT or MIXED but the
data fails the integrity validation process shall cause the device server to terminate the
command with CHECK CONDITION status, with the sense key set to DATA
PROTECT, and the additional sense code set to CRYPTOGRAPHIC INTEGRITY
VALIDATION FAILED. The device server shall establish the logical position at the
BOP side the encrypted block.

A device server that is capable of distinguishing encrypted blocks from unencrypted
blocks and has been configured to decrypt the data should perform at least one of the
following for each encrypted block that is decrypted:

a) determine if the encryption key is correct for the encrypted block; or
b) validate the integrity of the data after decrypting it.

A device server that is capable of both determining if the encryption key or one of the
supplemental decryption keys is correct for the encrypted block and validating the
integrity of the data after decrypting it shall:

1. determine if the encryption key is correct for the encrypted block; and
2. validate the integrity of the data.

4.2.19.4 Exhaustive-search attack prevention
To prevent an exhaustive-search attack from discovering the encryption key or
supplemental decryption keys, the device server should provide a mechanism to prevent
unlimited attempts at setting a data encryption key or supplemental decryption keys and
then attempting to read the data. The use of such a mechanism may protect against an
encryption algorithm being broken due to undiscovered mathematical weaknesses in the
encryption algorithm.

If the device server has reached its limit on failed attempts to set the data encryption key
or supplemental decryption keys and decrypt data, it shall disable decryption for all I_T
nexuses. All subsequent SECURITY PROTOCOL OUT commands specifying the Tape
Data Encryption security protocol and with the SECURITY PROTOCOL SPECIFC field set to
Set Data Encryption page with the DECRYPT field or ENCRYPT field set to any value other
than DISABLE shall be terminated with CHECK CONDITION status, with the sense key
set to DATA PROTECT, and the additional sense code set to DATA DECRYPTION
KEY FAIL LIMIT REACHED. This condition shall persist until the volume is de-
mounted from the device or a hard reset condition occurs.

4.2.19.5 Managing keys within the device server
To increase the security of keys, the data encryption parameters are volatile in the device
server and the data encryption keys are never reported to an application client. The
device server also may have limited resources for storage of keys.

A device server that supports encryption shall support at least one of the key formats that
are defined in this standard (see table Y5).

A vendor specific key reference is an identifier that is associated with a specific key. The
method by which keys and their associated vendor specific key references are made
available to the device server is outside the scope of this standard. A device server that

supports passing keys by vendor specific key reference shall include the code for vendor
specific key reference format (see table Y5) in the SUPPORTED KEY FORMATS LIST field in
the Supported Key Formats Page (see 8.5.2.5).

The device server shall release the resources used to save a set of data encryption
parameters under the following conditions:

a) the CKOD bit is set to one in the saved data encryption parameters and the volume
is de-mounted;

b) the CKORL bit is set to one and the key scope is set to LOCAL in the saved data
encryption parameters and the I_T nexus that established the set of data
encryption parameters loses its reservation;

c) the CKORL bit is set to one and the key scope is set to ALL I_T NEXUS in the
saved data encryption parameters and the device server experiences a reservation
loss (see 3.1.B);

d) the CKORP bit is set to one in the saved data encryption parameters and the
device server processes a PERSISTENT RESERVE OUT command with a
service action of either PREEMPT or PREEMPT AND ABORT;

e) a microcode update is performed on the device;

f) a power on condition occurs; or

g) other vendor specific events.

If a device server processes a Set Data Encryption page with the ENCRYPTION MODE field
set to DISABLE and DECRYPTION MODE field set to DISABLE or RAW, the device server
shall:

a) release any resources that it had allocated to store data encryption parameters for
the I_T nexus associated with the SECURITY PROTOCOL OUT command and
shall change the contents of all memory containing a key values associated with
the data encryption parameters that are released; and

b) establish a unit attention condition with the additional sense of DATA
ENCRYPTION PARAMETERS CHANGED BY ANOTHER INITIATOR for
all other I_T nexus that has its registered for encryption unit attentions state set to
one (see 4.2.19.6) and is affected by the loss of the keys, (i.e., any I_T nexus that
is using a data encryption scope of PUBLIC and sharing the keys)

If a device server processes a Set Data Encryption page that includes a key and the SDK
bit is set to zero, the device server shall:

a) release all resources that it had allocated to store a key values set by a previous
SECURITY PROTOCOL OUT command from that I_T nexus and shall change
the contents of all memory containing a key values associated with the data
encryption parameters that are released;

b) establish a unit attention condition with the additional sense of DATA
ENCRYPTION PARAMETERS CHANGED BY ANOTHER INITIATOR for all
other I_T nexus that have their registered for encryption unit attentions state set to

one (see 4.2.19.6) and are affected by the change of the keys (i.e., any I_T nexus
that is using a data encryption scope of PUBLIC and sharing the keys); and

c) establish a set of data encryption parameters with the values from the Set Data
Encryption page.

A device server shall save at most one set of data encryption parameters with a key scope
of ALL I_T NEXUS. If a device server processes a Set Data Encryption page with the
SCOPE field set to ALL I_T NEXUS, the device server shall:

a) release any resources that it had allocated to store data encryption parameters
with a key scope value of ALL I_T NEXUS and shall change the contents of all
memory containing a key values associated with the data encryption parameters
that are released;

b) establish a unit attention condition with the additional sense of DATA
ENCRYPTION PARAMETERS CHANGED BY ANOTHER INITIATOR for
all other I_T nexus that have their registered for encryption unit attentions state
set to one (see 4.2.19.6) and are affected by the change of the keys (i.e. any I_T
nexus that is using a data encryption scope of PUBLIC and sharing the keys); and

c) establish a set of data encryption parameters with the values from the Set Data
Encryption page and a key scope value of ALL I_T NEXUS.

If a vendor specific event occurs that changes or clears a set of data encryption
parameters, the device server shall establish a unit attention condition with the additional
sense of DATA ENCRYPTION PARAMETERS CHANGED BY VENDOR SPECIFIC
EVENT for any I_T nexus that has its registered for encryption unit attentions state set to
one (see 4.2.19.6) and is affected by the change of the keys.

4.2.19.6 Saved information per I_T Nexus

If the device server supports data encryption it shall save the following information on a
per I_T nexus basis:

a) data encryption scope;
b) lock;
c) key instance counter value at lock;
d) key instance counter value assigned to the last key established by a Set Data

Encryption page for this I_T Nexus with a scope value of LOCAL and the SDK bit
is set to zero; and

e) registered for encryption unit attentions state.

The set of possible data encryption scope values for an I_T nexus is:

a) PUBLIC;
b) LOCAL; or
c) ALL I_T NEXUS

If an I_T Nexus data encryption scope is set to PUBLIC it indicates the device server
does not have a saved set of data encryption parameters that were established by that I_T

Nexus. Device servers that support encryption shall support an I_T Nexus data
encryption scope of PUBLIC.

A device server shall set the data encryption scope for an I_T Nexus to LOCAL when it
successfully completes the processing of a Set Data Encryption page with a scope of
LOCAL from that I_T Nexus. The device server shall only use the data encryption
parameters established by the Set Data Encryption page with a scope of LOCAL for
processing commands from the I_T Nexus that established the parameters. A device
server shall revert to using default data encryption parameters for an I_T Nexus that is
configured with a data encryption scope of LOCAL if the resources used to save the data
encryption parameters for the I_T Nexus are released.

A device server shall set the data encryption scope for an I_T Nexus to ALL I_T NEXUS
when it successfully completes the processing of Set Data Encryption page with a scope
value of ALL I_T NEXUS from that I_T Nexus. At most, one I_T Nexus shall be
assigned the data encryption scope of ALL I_T NEXUS. If the device server releases
resources used to store a set of data encryption parameters with a key scope of ALL I_T
NEXUS, it shall change the data encryption scope for the I_T Nexus that established that
set of data encryption parameters to PUBLIC. Device servers that support encryption
shall support an I_T Nexus data encryption scope of ALL I_T NEXUS.

By default, the device server shall set the saved I_T Nexus parameters data encryption
scope value to PUBLIC and lock value to zero.

The registered for encryption unit attentions state is a single bit state variable that
indicates if the device server shall generate unit attention conditions related to encryption
status for the I_T Nexus. The device server shall set the registered for encryption unit
attentions state to one for an I_T Nexus if the device server processes a:

a) SECURITY PROTOCOL IN command specifying the Tape Data Encryption
protocol from the I_T Nexus; or

b) SECURITY PROTOCOL OUT command specifying the Tape Data Encryption
protocol from the I_T Nexus.

The device server shall set the registered for encryption unit attentions state to zero for an
I_T Nexus if an I_T nexus loss occurs. The device server shall set the registered for
encryption unit attentions state to zero for all I_T Nexus if the device server processes a
Logical Unit Reset.

4.2.19.7 Data encryption parameters

A device server that supports data encryption shall have the ability to save the following
information as a set of data encryption parameters when a Set Data Encryption page is
processed:

a) For SCSI transport protocols where initiator port names are required, the
initiator port name; otherwise, the initiator port identifier;

b) indication of the target port through which the data encryption parameters
were established;

c) key scope;
d) encryption mode;
e) decryption mode;
f) key;
g) supplemental decryption keys where supported;
h) algorithm index;
i) key instance counter;
j) CKOD;
k) CKORL;
l) CKORP;
m) U-KAD;
n) A-KAD; and
o) nonce.

A device server may have limited resources for storage of sets of data encryption
parameters (i.e., it may not have enough resources to store a unique set of data encryption
parameters for every I_T Nexus that it is capable of managing). A device server may
release a previously established set of data encryption parameters when a Set Data
Encryption page is processed and there are no unused resources available. The method of
choosing which set of data encryption parameters to release is vendor specific. If the
device server does release a previously established set of data encryption parameters to
free the resource, it shall establish a unit attention condition for every affected I_T Nexus
(see 4.2.19.5) that has its registered for encryption unit attentions state set to one (see
4.2.19.6). A device server is not required to have separate resources to store data
encryption parameters for every scope that is support.

A device server shall support an encryption key scope value of ALL I_T NEXUS and
shall have resources to save one set of data encryption parameters with this scope.

If the device server supports an encryption key scope value of LOCAL, it shall have
resources to save one or more sets of data encryption parameters with this scope.

The data encryption parameters that shall be used for an I_T nexus shall be established by
the following order of precedence:

a) If the data encryption scope for the I_T nexus is set to LOCAL or ALL I_T
NEXUS (see 4.2.19.6), the data encryption parameters set by the last Set Data
Encryption page from that I_T Nexus; or

b) If the data encryption scope for the I_T nexus is set to PUBLIC:

1) the data encryption parameters that have been saved by the device server with
a key scope of ALL I_T NEXUS if any data encryption parameters have been
saved with this key scope; or

2) the default data encryption parameters.

4.2.19.8 Key instance counter
The device server shall keep a counter for each key that it is managing called the key
instance counter. All key instance counters shall be set to zero when a power on
condition occurs. Any other event that sets, clears, or changes a parameter in a set of data
encryption parameters, except the supplemental decryption keys, shall cause the key
instance counter for that set of data encryption parameters to be incremented. The value
of the key instance counter associated with the currently selected key for an I_T Nexus is
reported in the Data Encryption Status page of SECURITY PROTOCOL IN command.
The key instance counters are 32 bits and shall roll over to zero when incremented past
their maximum value.

8.5.2.4 Data Encryption Capabilities page

Table E1 shows the format of the Data Encryption Capabilities page.

Table E1 – Data Encryption Capabilities page

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (n-3)

(LSB)

4

19
Reserved

 Encryption algorithm descriptor list

20

Data Encryption Algorithm descriptor (first)

 :

n
Data Encryption Algorithm descriptor (last)

See SPC-4 for a description of the PAGE LENGTH field.

Each Data Encryption Algorithm descriptor (see table E2) contains information about a
data encryption algorithm supported by the device server. If more than one descriptor is
included, they shall be sorted in ascending order of the value in the ALGORITHM INDEX
field.

Table E2 – Data Encryption Algorithm descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 ALGORITHM INDEX

1 Reserved

2 (MSB)

3
DESCRIPTOR LENGTH (20)

(LSB)

4 Reserved SDK_C MAC_C DED_C DECRYPT_C ENCRYPT_C

5 Reserved NONCE_C IV_RN IV_EBU IV_WPU IV_MU

6 (MSB)

7
MAXIMUM UNAUTHENTICATED KEY-ASSOCIATED DATA

BYTES (LSB)

8 (MSB)

9
MAXIMUM AUTHENTICATED KEY-ASSOCIATED DATA BYTES

(LSB)

10 (MSB)

11
KEY SIZE

(LSB)

12

19
Reserved

20 (MSB)

23
ENCRYPTION ALGORITHM IDENTIFIER

(LSB)

The ALGORITHM INDEX field is a device server assigned value associated with the
algorithm that is being described. The value in the ALGORITHM INDEX field is used by the
SECURITY PROTOCOL OUT command Set Data Encryption page to select this
algorithm.

The ENCRYPT_C field (see table E3) indicates the encryption capabilities of the device.

Table E3 - ENCRYPT_C field values

Code Description

0 The device server has no data encryption capability using this
algorithm.

1 The device server has the ability to encrypt data using this algorithm
in software.

2 The device server has the ability to encrypt data using this algorithm
in hardware.

3 Reserved

The DECRYPT_C field (see table E4) indicates the decryption capabilities of the device.

Table E4 - DECRYPT_C field values

Code Description

0 The device server has no data decryption capability using this
algorithm.

1 The device server has the ability to decrypt data using this algorithm
in software.

2 The device server has the ability to decrypt data using this algorithm
in hardware.

3 Reserved

The supplemental decryption key capable (SDK_C) bit shall be set to one if the device
server is capable of supporting one or more supplemental decryption keys. The
supplemental decryption keys shall be used for decryption only. The SDK_C bit shall be
set to zero if the device server is not capable of supporting supplemental decryption keys.

The distinguish encrypted data capable (DED_C) bit shall be set to one if the device server
is capable of distinguishing encrypted data from unencrypted data when reading it from
the medium. The DED_C bit shall be set to zero if the device server is not capable of
distinguishing encrypted data from unencrypted data when reading it from the medium.
If the ability to distinguish encrypted data from unencrypted data is format specific and a
volume is mounted, the DED_C bit shall be set based on the current format of the medium.
If no volume is mounted, the DED_C bit shall be set to one if the device server is capable
of distinguishing encrypted data from unencrypted data in any format that the device
server supports.

The message authentication code capable (MAC_C) bit shall be set to one if the algorithm
includes a message authentication code added to encrypted blocks. The MAC_C bit shall
be set to zero if the algorithm does not include a message authentication code added to
encrypted blocks. If the inclusion of a message authentication code is format specific and
a volume is mounted, the MAC_C bit shall be set based on the current format of the
medium. If no volume is mounted, the MAC_C bit shall be set to one if the device server

adds a message authentication code to data encrypted with this algorithm in any format
that the device server supports.

The initialization vector medium unique (IV_MU) bit shall be set to one if the initialization
vector used by the encryption algorithm is unique for each medium. The IV_MU bit shall
be set to zero if the initialization vector used by the encryption algorithm is not unique for
each medium.

The initialization vector write pass unique (IV_WPU) bit shall be set to one if the
initialization vector used by the encryption algorithm is unique for each write operation
that over writes the same portion of the medium. The IV_WPU bit shall be set to zero if
the initialization vector used by the encryption algorithm is not unique for each write
operation that over writes the same portion of the medium.

The initialization vector encrypted block unique (IV_EBU) bit shall be set to one if the
initialization vector used by the encryption algorithm is unique for each encrypted block
on the medium. The IV_EBU bit shall be set to zero if the initialization vector used by the
encryption algorithm is not unique for each encrypted block on the medium.

The initialization vector random number (IV_RN) bit shall be set to one if the initialization
vector used by the encryption algorithm is either in part or wholly a random number. The
IV_RN bit shall be set to zero if the initialization vector used by the encryption algorithm
is not in part or wholly a random number.

Table E5 describes the values in the NONCE_C field.

Table E5 - NONCE_C field values

Code Description

0 This algorithm does not require a nonce value.

1 The device server generates the nonce value.

2 The device server requires all or part of the nonce value to be
provided by the application client.

3 The device server supports all or part of the nonce value provided by
the application client. If the Set Data Encryption page that enables
encryption does not include a nonce value descriptor, the device
server generates the nonce value.

The MAXIMUM UNAUTHENTICATED KEY-ASSOCIATED DATA BYTES field indicates the
maximum size of the unauthenticated key-associated data (see 4.2.19.10) that the device
server can support for this algorithm.

The MAXIMUM AUTHENTICATED KEY-ASSOCIATED DATA BYTES field indicates the
maximum size of the authenticated key-associated data (see 4.2.19.10) that the device
server can support for this algorithm.

The KEY SIZE field indicates the size in bytes of the encryption key required by the
algorithm.

The ENCRYPTION ALGORITHM IDENTIFIER field contains an Encryption Algorithm
Identifier (see SPC-4).

8.5.3.2 Set Data Encryption page
Table Y1 shows the parameter list format of the Set Data Encryption page.

Table Y1 – Set Data Encryption page

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
PAGE CODE (0010h)

(LSB)

2 (MSB)

3
PAGE LENGTH (m-3)

(LSB)

4 SCOPE Reserved LOCK

5 Reserved SDK CKOD CKORP CKORL

6 ENCRYPTION MODE

7 DECRYPTION MODE

8 ALGORITHM INDEX

9 KEY FORMAT

10

17
Reserved

18 (MSB)

19
KEY LENGTH (n-19)

(LSB)

20

n
KEY

N+1

m
KEY-ASSOCIATED DATA DESCRIPTORS LIST

The PAGE LENGTH field indicates the number of bytes of parameter data to follow. If the
page length value results in the truncation of any field, the device server shall terminate
the command with CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER
LIST.

The SCOPE field (see table Y2) indicates the scope of the data encryption parameters.
Support for scope values of PUBLIC and ALL I_T NEXUS are mandatory for device
servers that support the Set Data Encryption page.

Table Y2 – SCOPE field values

Code Name Description

0 PUBLIC All fields other than the SCOPE field and lock bit shall be
ignored. The I_T nexus shall use data encryption parameters
that are shared by other I_T nexuses. If no I_T nexuses are
sharing data encryption parameters, the device server shall use
default data encryption parameters.

1 LOCAL The data encryption parameters are unique to the I_T nexus
associated with the SECURITY PROTOCOL OUT command
and shall not be shared with other I_T nexuses.

2 ALL I_T
NEXUS

The data encryption parameters shall be shared with all I_T
nexuses.

3 – 7 Reserved

See 4.2.19.9 for a description of the LOCK bit.

If the supplemental decryption key (SDK) bit is set to one, the key sent in this page shall
be added to the set of data encryption parameters used by the device server for the
selected scope. The KEY INSTANCE COUNTER shall not be incremented for
supplemental decryption keys. The ENCRYPTION MODE and LOCK fields shall be
ignored and the DECRYPTION MODE shall match the current setting for this scope. If
the DECRYPTION MODE does not match the current settings for this scope the device
server shall terminate the command with CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD
IN PARAMETER LIST.

If the device server does not currently have a saved set of data encryption parameters
associated with the I_T Nexus that sent the Set Data Encryption page or the scope or
decryption mode values do not match the values in that set of saved data encryption
parameters, the device server shall terminate the command with CHECK CONDITION
status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set
to INVALID FIELD IN PARAMETER LIST.

If the SDK bit is set to one and the SDK_C field is set to zero in the Data Encryption
Algorithm descriptor field that matches the ALGORITHM INDEX in the Data Encryption
capabilities page, the device server shall terminate the command with CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional
sense code set to INVALID FIELD IN PARAMETER LIST.

If the device server is processing a Set Data Encryption page with the SDK bit set to one
and does not have the resource available to store this key the device server shall terminate
the command with CHECK CONDITION status, with the sense key set to ILLEGAL

REQUEST, and the additional sense code set to MAXIMUM NUMBER OF
SUPPLEMENTAL DECRYPTION KEYS EXCEEDED. Any previously saved
supplemental decryption keys shall not be affected by this error.

Editors Note: MAXIMUM NUMBER OF SUPPLEMENTAL DECRYPTION KEYS
EXCEEDED is a new ASC.

If the supplemental decryption key (SDK) bit is set to zero, the key sent in this page shall
be the key used for both encryption and decryption. Any keys that have been previously
stored by the device server shall be removed from memory, See 4.2.19.5.

If the clear key on de-mount (CKOD) bit is set to one the device server shall set the data
encryption parameters to default values upon completion of a volume de-mount. If the
CKOD bit is set to zero, the de-mounting of a volume shall not affect the data encryption
parameters. If the CKOD bit is set to one and there is no volume mounted in the device,
the device server shall terminate the command with CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID
FIELD IN PARAMETER DATA.

If the clear key on reservation preempt (CKORP) bit is set to one the device server shall set
the data encryption parameters to default values when a persistent reservation is
preempted (i.e., a PERSISTENT RESERVE OUT command specifying a service action
of PREEMPT or PREEMPT AND ABORT is processed). If the CKORP bit is set to zero,
a preemption of a persistent reservation shall not affect the data encryption parameters. If
the CKORP bit is set to one and there is no persistent reservation in effect for the I_T
nexus associated with the SECURITY PROTOCOL OUT command, the device server
shall terminate the command with CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER DATA.

If the clear key on reservation loss (CKORL) bit is set to one the device server shall set the
data encryption parameters to default values on a reservation loss (see 3.1.B). If the
CKORL bit is set to zero, a reservation loss shall not affect the data encryption parameters.
If the CKORL bit is set to one and there is no reservation in effect for the I_T nexus
associated with the SECURITY PROTOCOL OUT command, the device server shall
terminate the command with CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
PARAMETER DATA.

