Comparison of Equalization Schemes for 6Gbps SAS Channels

Joe Caroselli, Amaresh V. Malipatil
High Speed Interface Systems Engineering
LSI Logic
Introduction

• Review of simulator and parameters
• Overview of channels
• Presentation of results
Simulator Review
Three System Model Approach

Analytic Simulator
 (Architecture Determination)

Semi-Analytic Simulator
 (BER, Statistical Eye)

Bit By Bit Simulator
 (Eye Diagrams, Jitter Tolerance, Frequency Offset, Timing, Loop Convergence)

Ease of Modification

Complexity

Speed
Analytic Model

- **Includes**
 - Intersymbol Interference
 - Tx Jitter
 - Electronics (White) Noise
 - Crosstalk

- **Does Not Include**
 - Receiver Sensitivity
 - Duty Cycle Distortion
 - Other Sources of DJ
Required SNR

SNR Required at Slicer for 10^{-15} BER

$$SNR = \frac{d^2_{\text{min}}}{\sigma^2}$$

$$Pr_{err} \approx \frac{1}{2} \text{erfc}\left(\frac{\sqrt{SNR}}{2\sqrt{2}}\right)$$

- Approximately 24dB is required for an error rate of 10^{-15}
Overview of Simulations

- Equalization architectures with a linear FIR feedforward (FF) filter in the TX, and a decision feedback (FB) equalizer in the Rx are compared.
- The number of taps in the feedforward and feedback equalizers are varied.
- The effect of one near-end crosstalk aggressor is considered.
- A simple RC model with pole at 0.75*baud rate is used for the transmitter.
- Mellitz capacitor-like package model included on both transmitter and receiver.
Parameters Used

- Only DJ is from ISI
 - No DCD, PJ included
- $0.010\text{UI} \sigma$ RJ added
- Signal-To-Electronics Noise Ratio 45dB
- Crosstalk added as noted
- Ideal receiver sensitivity assumed
Description of Results

- SNR at optimal sampling point is shown. No measurement of horizontal eye opening is presented.
- x-axis shows number of DFE taps used
- Each line represents a different number of feed-forward (FF) equalizer taps used in the TX
- Crosstalk is assumed to occur at the same frequency as the signal. The worst case crosstalk phase at the ideal sampling point is selected.
- All tap values are ideal.
TCTF Backplanes
Comparison to T10/05-428r0 Vertical Eye Opening

<table>
<thead>
<tr>
<th></th>
<th>6dB FFE No DFE</th>
<th>0dB FFE 5-tap DFE</th>
<th># DFE taps/ dB de-emph</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP01</td>
<td>0.10</td>
<td>0.20</td>
<td>0 / 7.0 dB</td>
</tr>
<tr>
<td>HP02</td>
<td>0.10</td>
<td>0.22</td>
<td>0 / 6.4 dB</td>
</tr>
<tr>
<td>HP03</td>
<td>0.12</td>
<td>0.25</td>
<td>0 / 6.6 dB</td>
</tr>
<tr>
<td>HP04</td>
<td>0.13</td>
<td>0.25</td>
<td>0 / 5.4 dB</td>
</tr>
<tr>
<td>HP05</td>
<td>0.11</td>
<td>0.22</td>
<td>0 / 6.5 dB</td>
</tr>
<tr>
<td>HP06</td>
<td>0.09</td>
<td>0.18</td>
<td>0 / 8.3 dB</td>
</tr>
<tr>
<td>HP07</td>
<td>0.11</td>
<td>0.21</td>
<td>0 / 6.8 dB</td>
</tr>
<tr>
<td>HP08</td>
<td>0.11</td>
<td>0.19</td>
<td>0 / 8.1 dB</td>
</tr>
<tr>
<td>HP09</td>
<td>0.03</td>
<td>0.12</td>
<td>0 / 8.7 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP10</td>
<td>Closed</td>
<td>0.11</td>
<td>1 / 5.7 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP11</td>
<td>0.01</td>
<td>0.11</td>
<td>1 / 6.2 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP12</td>
<td>0.13</td>
<td>0.22</td>
<td></td>
<td>0 / 6.1 dB*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP13</td>
<td>0.12</td>
<td>0.24</td>
<td></td>
<td></td>
<td>0 / 4.1 dB**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP14</td>
<td>0.09</td>
<td>0.21</td>
<td>0 / 2.9 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* HP12 with HP20 or HP22 as aggressor.
** HP13 with HP21 or HP23 as aggressor.
Conclusions

• Dell, Molex and TCTF require no DFE or 1-tap DFE

• HP Channels require more DFE compensation and the DFE requirements vary significantly depending on the victim and the aggressor. (See following detailed results)

• A reasonable compromise between chip area & power and the number of channels that can be supported is:
 • Reference TX: 1post-cursor FFE tap (plus possibly one pre-cursor FFE tap)
 • Reference RX: 1 (or possibly 2) DFE taps
Summary of Results
HP Backplanes
Victim-HP03 Aggressor-HP19

SNR at Slicer(dB) vs Number of Feedback Taps

SNR = 24 dB → BER 10^{-15}
SNR = 23 dB → BER 10^{-12}
Victim-HP26 No Xtalk

SNR at Slicer (dB)

Number of Feedback Taps

SNR=24 dB → BER 10^{-15}
SNR=23 dB → BER 10^{-12}
Dell Backplanes