Comparison of Equalization Schemes for 6Gbps SAS Channels

Joe Caroselli, Amaresh V. Malipatil
High Speed Interface Systems Engineering
LSI Logic
Introduction

- Review of simulator and parameters
- Overview of channels
- Presentation of results
Simulator Review
Three System Model Approach

Analytic Simulator
(Architecture Determination)

Semi-Analytic Simulator
(BER, Statistical Eye)

Bit By Bit Simulator
(Eye Diagrams, Jitter Tolerance, Frequency Offset, Timing, Loop Convergence)

Ease of Modification

Complexity

Speed
Analytic Model

• Includes
 – Intersymbol Interference
 – Tx Jitter
 – Electronics (White) Noise
 – Crosstalk

• Does Not Include
 – Receiver Sensitivity
 – Duty Cycle Distortion
 – Other Sources of DJ
Required SNR

SNR Required at Slicer for 10^{-15} BER

\[\text{SNR} = \frac{d^2_{\text{min}}}{\sigma^2} \]

\[\text{Pr}_{\text{err}} \approx \frac{1}{2} \text{erfc} \left(\frac{\sqrt{\text{SNR}}}{2\sqrt{2}} \right) \]

- Approximately 24dB is required for an error rate of 10^{-15}
Overview of Simulations

- Equalization architectures with a linear FIR feedforward (FF) filter in the TX, and a decision feedback (FB) equalizer in the Rx are compared.
- The number of taps in the feedforward and feedback equalizers are varied.
- The effect of one near-end crosstalk aggressor is considered.
- A simple RC model with pole at 0.75*baud rate is used for the transmitter.
- Mellitz capacitor-like package model included on both transmitter and receiver.
Parameters Used

• Only DJ is from ISI
 – No DCD, PJ included
• 0.010UI σ RJ added
• Signal-To-Electronics Noise Ratio 45dB
• Crosstalk added as noted
• Ideal receiver sensitivity assumed
Description of Results

- SNR at optimal sampling point is shown. No measurement of horizontal eye opening is presented.
- x-axis shows number of DFE taps used
- Each line represents a different number of feed-forward (FF) equalizer taps used in the TX
- Crosstalk is assumed to occur at the same frequency as the signal. The worst case crosstalk phase at the ideal sampling point is selected.
- All tap values are ideal.
TCTF Backplanes
Comparison to T10/05-428r0 Vertical Eye Opening

<table>
<thead>
<tr>
<th>Channel</th>
<th>6dB FFE No DFE</th>
<th>0dB FFE 5-tap DFE</th>
<th># of taps for 1e-15 No xtalk</th>
<th># of taps for 1e-15 HP15</th>
<th># of taps for 1e-15 HP16</th>
<th># of taps for 1e-15 HP17</th>
<th># of taps for 1e-15 HP18</th>
<th># of taps for 1e-15 HP19</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP01</td>
<td>0.10</td>
<td>0.20</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>HP02</td>
<td>0.10</td>
<td>0.22</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>HP03</td>
<td>0.12</td>
<td>0.25</td>
<td>5*</td>
<td>5*</td>
<td>5*</td>
<td>5*</td>
<td>8*</td>
<td>20*</td>
</tr>
<tr>
<td>HP04</td>
<td>0.13</td>
<td>0.25</td>
<td>4*</td>
<td>4*</td>
<td>4*</td>
<td>4*</td>
<td>6*</td>
<td>10*</td>
</tr>
<tr>
<td>HP05</td>
<td>0.11</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>HP06</td>
<td>0.09</td>
<td>0.18</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>HP07</td>
<td>0.11</td>
<td>0.21</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>HP08</td>
<td>0.11</td>
<td>0.19</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>HP09</td>
<td>0.03</td>
<td>0.12</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP10</td>
<td>Closed</td>
<td>0.11</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP11</td>
<td>0.01</td>
<td>0.11</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP12</td>
<td>0.13</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP13</td>
<td>0.12</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP14</td>
<td>0.09</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* These channels were simulated at 6.25 Gb/s to cause worst case performance due to anti-resonance at ~3.125GHz. Simulated at 6.00 Gb/s, the required # of taps reduced to 2 for HP03 and 1 for HP04.
Conclusions

• Dell, Molex and TCTF require no DFE or 1-tap DFE

• HP Channels require more DFE compensation and the DFE requirements vary significantly depending on the victim and the aggressor. (See following detailed results)

• A reasonable compromise between chip area & power and the number of channels that can be supported is:

 • Reference TX: 1post-cursor FFE tap (plus possibly one pre-cursor FFE tap)

 • Reference RX: 2 (or possibly 1) DFE taps

• Performance of channels is strongly a function of the frequency of significant anti-resonances