
26 April 2006  06-034r2 SBC-3 Physical blocks

 1

To: T10 Technical Committee
From: Rob Elliott, HP (elliott@hp.com)
Date: 26 April 2006
Subject: 06-034r2 SBC-3 Physical blocks

Revision history
Revision 0 (4 January 2006) First revision
Revision 1 (3 March 2006) Incorporated comments from January 2006 CAP WG.
Revision 2 (26 April 2006) Incorporated comments from March 2006 CAP WG.

Related documents
sbc3r04 - SCSI Block Commands - 3 (SBC-3) revision 4
sat-r07 - SCSI to ATA Translation (SAT) revision 7
ANSI INCITS 317-1998 ATA Atachment - 4 with Packet Interface Extension (ATA/ATAPI-4)
T13/d1699r03b - AT Attachment - 8 ATA/ATAPI Command Set (ATA8-ACS) revision 3b

Related web sites
Big Sector consortium - http://www.bigsector.org (with presentation material from Maxtor, Seagate, Western 

Digital, Hitachi GST, Intel, LSI Logic, and Microsoft)
IDEMA Symposium: HDD Dynamics--Interfaces, Electronics, Architecture and Reliability 6 December 2005:

Session 3: HDD Sector Architecture. Slides at:
http://www.idema.org/_smartsite/modules/news/show_news.php?cmd=display&news_id=1230

IDEMA Committee on Long Data Block Standards. Various presentations at: 
http://www.idema.org/_smartsite/modules/local/data_file/show_file.php?cmd=standards&cat=103

Overview
ATA devices are starting to support physical sectors that are larger than logical sectors (see the web sites 
above). For example, the ATA device may use 4096 byte physical sectors but still present 512 byte logical 
sectors to software. This has several benefits:

a) improved error correction capability (an ECC over a 4096 byte physical sector could tolerate a large 
burst error, while that same error would be unrecoverable if it occurs within one 512 byte physical 
sector)

b) increased capacity (one ECC code covering 4096 bytes is shorter than 8 ECC codes covering 512 
bytes each)

c) increased data rates (better ECC coverage allows more raw media errors).

The Long Physical Sector feature set and the Long Logical Sector feature set relate to this capability. The 
SCSI to ATA Translation (SAT) standard defines how to map an ATA device into a SCSI logical unit, but SCSI 
currently defines no way to report these features. Also, vendors may want to support the same features in 
native SCSI disk drives.

ATA Long Physical Sector feature set
The Long Physical Sector feature set (ata8acs-r03b section 4.19) allows an ATA device to present a 512 byte 
logical sector size for ATA media access commands while implementing (behind-the-scenes) a larger physical 
sector size. The feature set lets the physical sector size be a 2n multiple of the logical sector size, so 1, 2, 4, 8, 
... 32,768 logical blocks correspond to 512, 1024, 2048, 4096, ... 16,777,216 bytes per physical block. 
IDENTIFY DEVICE data word 106 contains the number of logical sectors per physical sector (2n where n is 0 
through 15).

If a read command accesses less than the physical sector size, the ATA device takes a bit longer to read extra 
data (probably saving it into a read cache). If a write command accesses less than the physical sector size, 
the ATA device performs a read-modify-write, which has a noticeable performance impact.

ATA8-ACS also allows logical sectors to not be aligned to the physical sectors (e.g., the ATA device could be 
designed such that a 1024 byte access at LBA 1 is aligned but LBA 0 is not). IDENTIFY DEVICE data Word 
209 defines the offset of LBA 0 within a physical sector (14 bits, to allow up to LBA 16,383). It’s not clear why 
this doesn’t support the maximum value supported by word 106 (which would take 15 bits). 



06-034r2 SBC-3 Physical blocks 26 April 2006

2  

This was added because:

a) Master Boot Record (MBR) partitioned disks generally contain a single partition starting at LBA 63. 
Thus, when using a disk with 4096 byte physical sectors (8 logical sectors per physical sector), 
performance will be better if LBAs 7, 15, 23, 31, 39, 47, 55, 63, etc. are aligned to the physical sector 
boundary rather than LBAs 0, 8, 16, 24, 32, 40, 48, 56, 64, etc.

a) EFI partitioned disks generally contain a first partition starting at LBA 34. Performance will be better if 
LBAs 2, 10, 18, 26, 34, etc. are aligned to the physical sector boundaries rather than LBAs 0, 8, 16, 
24, 32, 40, etc.

NOTE 1 - Unified EFI 2.0 recommends that partition tools align partitions to the physical sector boundaries 
reported by the disk drive. See http://www.uefi.org.

ATA Long Logical Sector feature set
The Long Logical Sector feature set (ata8acs-r03b section 4.20) supports logical sectors that are not 512 
bytes. Words 117-118 contain the logical sector size in 16-bit words (with word 106 bit 12 also set to 1).

SCSI already provides the equivalent functionality in the READ CAPACITY data BLOCK LENGTH IN BYTES field 
and the mode parameter block descriptor BLOCK LENGTH field.

Proposal
This proposal suggests these changes to SBC-3:

a) Add a LOGICAL BLOCKS PER PHYSICAL BLOCK field to the READ CAPACITY (16) data to indicate the 
number of logical blocks per physical block.

b) Add a LOWEST ALIGNED LOGICAL BLOCK ADDRESS field to the READ CAPACITY (16) data to indicate the 
lowest LBA that is aligned to a physical block boundary. The field size is the same as the field size of 
the ATA IDENTIFY DEVICE data’s Word 209 (the Offset field) so SAT can fully translate an ATA 
device.

c) Add a LOGICAL BLOCK ADDRESS TO ALIGN field to FORMAT UNIT to specify an LBA (probably the lowest 
LBA) that the device server shall align to a physical block boundary (default of 0 means naturally 
aligned). The field size of 6 bits only supports alignment up to LBA 63, which supports MBR 
partitioned disks. The need for this feature should dissipate if partition tools start to place partitions on 
natural boundaries. Software simply writes the starting LBA of its (only or most important) partition to 
this field (modulo the field size) - it need not perform any calculations based on the LOGICAL BLOCKS 
PER PHYSICAL BLOCK field.

d) Add a PBLOCK bit to READ LONG and WRITE LONG to access a physical block rather than a logical 
block. For legacy software compatibility, the default accesses just a logical block. This requires a 
device server supporting large physical blocks to be able to mark individual logical blocks as 
containing errors and to use a format for the long data designed that a WRITE LONG to one logical 
block has no affect on any other logical blocks. If it cannot do so, it must terminate the command.

e) Add a WR_UNCOR bit to WRITE LONG to mark the specified logical or physical block as containing an 
error. A SATL can directly translate this into the ATA8-ACS WRITE UNCORRECTABLE EXT 
command, which was added by T13 proposal e02126r6 and induces an error on either a specific 
physical block (called a “pseudo-uncorrectable error”) or a specific logical block (called a “flagged 
error”). ATA8-ACS does not define a WRITE LONG command, so it is not possible to translate the 
existing SCSI WRITE LONG semantics into anything guaranteed to have the same effect in ATA.

NOTE 2 - This feature is particularly important for copy utilities that need to replicate bad logical blocks on 
disks, or RAID controllers that need to mark an error on a failed regenerated logical block. If legacy software 
is using SCSI WRITE LONG to do this, however, SAT cannot determine whether it is trying to cause an error 
or not. It would help if ATA resurrected its WRITE LONG command (last defined in ATA/ATAPI-4) and added a 
WRITE LONG EXT to map directly to the SCSI versions. Otherwise, SCSI software will have to change to use 
this new bit.

f) Allow FORMAT UNIT to mark more than the LBA(s) specified in the defect list as defective. The 
device server may choose to mark all the logical blocks sharing the same physical block as defective 
during the format operation. This is not allowed during REASSIGN BLOCKS or WRITE LONG, 
however, since side-effects from those commands would break software compatibility. Since the 
entire disk is being formatted at once with FORMAT UNIT, it doesn’t matter for FORMAT UNIT.



26 April 2006  06-034r2 SBC-3 Physical blocks

 3

Suggested changes to chapter 3 (Definitions)

3.1.1 direct-access block device:  A device that is capable of containing data stored in logical blocks that 
each have a unique logical block address. See 4.1.

3.1.2 logical block:  A set of data bytes accessed and referenced as a unit by the application client. See 4.4.

3.1.3 logical block address (LBA):  The value used to reference a logical block (see 4.4).

3.1.4 logical block length:  The number of bytes of user data in a logical block (see 4.4).

3.1.5 physical block:  A set of data bytes accessed as a unit by the device server. See 4.x.

3.1.6 physical block length:  The number of bytes of user data in a physical block (see 4.x).

Suggested changes to chapter 4 (Model)

4.1 Direct-access block device type model overview

SCSI devices that conform to this standard are referred to as direct-access block devices. This includes the 
category of logical units commonly referred to as rigid disks and removable rigid disks. MMC-4 is typically 
used by CD-ROM devices.

This standard is intended to be used in conjunction with SAM-3, SPC-3, SCC-2, SES-2, and SMC-2.

Direct-access block devices store data for later retrieval in logical blocks. Logical blocks contain user data, 
may contain protection information accessible to the application client, and may contain additional information 
not normally accessible to the application client (e.g., an ECC). The number of bytes of user data contained in 
each logical block is the logical block length. The logical block length is greater than or equal to one byte and 
should be even. Most direct-access block devices support a logical block length of 512 bytes and some 
support additional logical block lengths (e.g., 520 or 4096 bytes). The logical block length does not include the 
length of protection information and additional information, if any, that are associated with the logical block. 
The logical block length is the same for all logical blocks on the medium.

Each logical block is stored at a unique logical block address (LBA), which is either four bytes (i.e., a short 
LBA) or eight bytes (i.e., a long LBA) in length. The logical block addressesLBAs on a logical blocklogical unit 
shall begin with zero and shall be contiguous up to the last logical block on the logical unit. An application 
client uses commands performing write operations to store logical blocks and commands performing read 
operations to retrieve logical blocks. A write operation causes one or more logical blocks to be written to the 
medium. A read operation causes one or more logical blocks to be read from the medium. A verify operation 
confirms that one or more logical blocks were correctly written and are able to be read without error from the 
medium.

Logical blocks are stored by a process that causes localized changes or transitions within a medium. The 
changes made to the medium to store the logical blocks may be volatile (i.e., not retained through power 
cycles) or non-volatile (i.e., retained through power cycles). The medium may contain vendor specific 
information that is not addressable through an LBA. Such data may include defect management data and 
other device management information.

Editor’s Note 1: Much of the material in the preceding 3 paragraphs is also stated in 4.4. The two 
sections should be compared and duplicate material removed.

4.2 Media examples

...

4.2.2 Rotating media



06-034r2 SBC-3 Physical blocks 26 April 2006

4  

The typical application of a direct-access block device is a magnetic disk device. The medium is a spinning 
disk with a magnetic material that allows flux changes to be induced and recorded. An actuator positions a 
read-write head radially across the spinning disk, allowing the device to randomly read or write the information 
at any radial position. Data is stored by using the write portion of the head to record flux changes and is read 
by using the read portion of the head to read the recorded data.

The circular path followed by the read-write head at a particular radius is called a track. The track is divided 
into sectors each containing blocks of stored data. If there are more than one disk spinning on a single axis 
and the actuator has one or more read-write heads to access the disk surfaces, the collection of tracks at a 
particular radius is called a cylinder.

A logical block is stored in one or more sectors, or a sector may store more than one logical block. Sectors 
may also contain information for accessing, synchronizing, and protecting the integrity of the logical blocks.

A rotating media-based direct-access block device is ready when the disks are rotating at the correct speed 
and the read-write circuitry is powered and ready to access the data, and may require a START STOP UNIT 
command (see 5.17) to bring the logical unit to the ready state.

Rotating media-based direct-access block device are usually non-volatile.

The defect management scheme of a disk device may not be discernible through this command set, though 
some aspects (see ) may be accessible to the application client with the READ LONG commands and the 
WRITE LONG commands (see 5.14, 5.15, 5.33, and 5.34).

4.2.3 Memory media

Memory media is based on solid state random access memories (RAMs) (e.g., static RAM (SRAM), dynamic 
RAM (DRAM), magnetoresistive RAM (MRAM), ferroelectric RAM (FeRAM), or flash memory). Memory 
media-based direct-access block devices may be used for fast-access storage.

A memory media-based direct-access block device is ready after power on, and does not require a START 
STOP UNIT command (see 5.17) to bring the logical unit to a ready state.

These logical units may be non-mechanical, and therefore logical blocks may be accessed with similar access 
times regardless of their location on the medium. Memory media-based direct-access block devices may store 
less data than disks or tapes, and may be volatile.

The defect management scheme (e.g., ECC bytes) (see ) may be accessible to the application client with the 
READ LONG commands and the WRITE LONG commands (see 5.14, 5.15, 5.33, and 5.34).

Memory media may be volatile (e.g., SRAM or DRAM) or non-volatile (e.g., SRAM or DRAM with battery 
backup, MRAM, FeRAM, or flash memory).

4.3 Removable medium

...

4.4 Logical blocks

Logical blocks are stored on the medium along with additional information that the device server uses to 
manage the storage and retrieval. The format of the additional information is defined by other standards or is 
vendor-specific and is hidden from the application client during normal read, write, and verify operations. This 
additional information may be used to identify the physical location of the blocks of data, the address of the 
logical block, and to provide protection against the loss of user data and protection information, if any (e.g., by 
containing ECC bytes).

The first logical block addressLBA is zero. The last logical block addressLBA is [n-1], where [n] is the number 
of logical blocks on the medium accessible by the application client. A READ CAPACITY command should be 
used to determine the value of [n-1].

Logical block addressLBAes are no larger than 8 bytes. Some commands support only 4 byte (i.e., short) 
LOGICAL BLOCK ADDRESS fields (e.g., READ CAPACITY (10), READ (10), and WRITE (10)). The READ 



26 April 2006  06-034r2 SBC-3 Physical blocks

 5

CAPACITY (10) command returns a capacity of FFFFFFFFh if the capacity exceeds that accessible with short 
LBAs, indicating that:

a) the application client should enable descriptor format sense data (see SPC-3) in the Control mode 
page (see SPC-3) and in any REQUEST SENSE commands (see SPC-3) it sends; and

b) the application client should use commands with 8-byte LOGICAL BLOCK ADDRESS fields (e.g., READ 
CAPACITY (16), READ (16), and WRITE (16)).

NOTE 3 - If a command with a 4-byte LOGICAL BLOCK ADDRESS field accesses logical blocks beyond logical 
block addressLBA FFFFFFFFh and fixed format sense data is used, there is no field in the sense data large 
enough to report the logical block addressLBA of an error (see 4.13).

If a command is received that references or attempts to access a logical block not within the capacity of the 
medium, the device server terminates the command with CHECK CONDITION status with the sense key set 
to ILLEGAL REQUEST and the additional sense code set to LOGICAL BLOCK ADDRESS OUT OF RANGE. 
The command may be terminated before processing or after the device server has transferred some or all of 
the data.

The number of bytes of user data contained in a logical block is the logical block length. The parameter data 
returned by the READ CAPACITY command (see 5.10) describes the logical block length that is used on the 
medium. The mode parameter block descriptor (see 6.3.2) is used to change the logical block length in 
direct-access block devices that support changeable logical block lengths. The logical block length does not 
include the length of protection information and additional information, if any.

The location of a logical block on the medium is not required to have a relationship to the location of any other 
logical block. However, in a typical direct-access block device, the time to access a logical block at 
addressLBA [x+1] after accessing logical block at LBA [x] is often less than the time to access some other 
logical block. The time to access the logical block at addressLBA [x] and then the logical block at addressLBA 
[x+1] need not be less than time to access LBA [x] and then LBA [x+100]. The READ CAPACITY command 
issued with a PMI bit set to one may be useful in determining where longer access times occur.

4.x Physical blocks

A physical block is a set of data bytes on the medium accessed by the device server as a unit. A physical 
block may contain:

a) a portion of a logical block (i.e., there are multiple physical blocks in the logical block)(e.g., a physical 
block length of 4 096 bytes with a logical block length of 512 bytes);

b) a complete logical block; or
c) more than one logical block (i.e., there are multiple logical blocks in the physical block)(e.g., a 

physical block length of 512 bytes with a logical block length of 4 096 bytes).

Each physical block includes additional information not normally accessible to the application client (e.g., an 
ECC) that the device server uses to manage storage and retrieval. The device server shall be able to mark 
individual logical blocks as containing uncorrectable errors.



06-034r2 SBC-3 Physical blocks 26 April 2006

6  

Figure 1 shows examples of logical blocks and physical blocks.

Figure 1 — Logical blocks and physical blocks examples

Logical blocks may not be aligned to the physical block boundaries. To avoid incurring a performance penalty 
on media access commands, application clients should:

a) specify a logical block that is aligned to a physical block boundary (e.g., set the LOGICAL BLOCK 
ADDRESS field to an integral multiple of the LBA indicated by the LOWEST ALIGNED LOGICAL BLOCK 
ADDRESS field in the READ CAPACITY (16) parameter data (see 5.11.2)); and

b) access an integral number of physical blocks (e.g., set the TRANSFER LENGTH field to an integral 
multiple of the number of logical blocks indicated by the LOGICAL BLOCKS PER PHYSICAL BLOCK field in 
the READ CAPACITY (16) parameter data (see 5.11.2)).

LB
x

LB
x+1

LB
x+2

LB
x+3

2 physical blocks per logical block:

1 logical block per physical block:

2 logical blocks per physical block:

n logical blocks per physical block:

LB
x

PB
p

PB
p+1

PB
p+n-2

PB
p+n-1

n physical blocks per logical block:

...

Key:
LB = logical block (followed by its LBA)
PB = physical block

LB
x+1

PB
p+n

PB
p+n+1 ... PB

p+2n-2
PB

p+2n-1

...

LB
x

PB
p

PB
p+1

PB
p+2

PB
p+3

LB
x+1

PB
p+4

PB
p+5

PB
p+6

PB
p+7

PB
p+11

LB
x+2

PB
p+8

PB
p+9

PB
p+10

...

...

...

PB
p

PB
p+1

PB
p+2

PB
p+3

PB
p+4

PB
p+5

PB
p+6

PB
p+7

PB
p+11

PB
p+8

PB
p+9

PB
p+10

LB
x+4

LB
x+5

LB
x+6

LB
x+7

LB
x+8

LB
x+9

LB
x+10

LB
x+11

LB
x

LB
x+1

LB
x+2

LB
x+3

PB
p

PB
p+1

PB
p+2

PB
p+3

PB
p+4

PB
p+5

LB
x+4

LB
x+5

LB
x+6

LB
x+7

LB
x+8

LB
x+9

LB
x+10

LB
x+11

...

...

...

...

LB
x

LB
x+1

LB
x+n-2

PB
p

PB
p+1

LB
x+n-1

LB
x+n

LB
x+n+1

LB
x+2n-2

LB
x+2n-1...... ...

...



26 April 2006  06-034r2 SBC-3 Physical blocks

 7

Figure 2 shows examples of logical blocks with different alignments to physical blocks.

Figure 2 — Logical block alignment examples

4.6 Initialization

Direct-access block devices may require initialization prior to write, read, and verify operations. This 
initialization is performed by a FORMAT UNIT command (see 5.2). Parameters related to the format (e.g., 

LOGICAL BLOCKS PER PHYSICAL BLOCK field set to 2, LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 0:

...LB
x

PB
p

LB
x+1

LB
x+2

PB
p+1

LB
x+3

LB
x+4

PB
p+2

LB
x+5

LB
x+6

PB
p+3

LB
x+7

LB
x+8

PB
p+4

LB
x+9

LB
x+10

PB
p+5

LB
x+11

PB
p

PB
p+1

PB
p+2

PB
p+3

PB
p+4

PB
p+5

LB
x

LB
x+1

LB
x+2

LB
x+3

LB
x+4

LB
x+5

LB
x+6

LB
x+7

LB
x+8

LB
x+9

LB
x+10

LB
x

PB
p

LB
x+1

LB
x+2

PB
p+1

LB
x+3

LB
x+4

LB
x+5

LB
x+6

PB
p+3

LB
x+7

LB
x+8

LB
x+9

LB
x+10

LB
x+11

PB
p

PB
p+1

PB
p+3

LB
x

LB
x+1

LB
x+2

LB
x+3

LB
x+4

LB
x+5

LB
x+6

LB
x+7

LB
x+8

Key:
LB = logical block
PB = physical block
The LOGICAL BLOCKS PER PHYSICAL BLOCK field and LOWEST ALIGNED LOGICAL BLOCK ADDRESS field are in 
the READ CAPACITY (16) data.

...

...

...

...

...

...

...

LOGICAL BLOCKS PER PHYSICAL BLOCK field set to 2, LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 1:

LOGICAL BLOCKS PER PHYSICAL BLOCK field set to 4, LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 0:

LOGICAL BLOCKS PER PHYSICAL BLOCK field set to 4, LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 1:

LB
x-1

LB
x-2

LB
x-1

LB
x-3

Note:
If x is LBA 0, then the logical blocks labeled x-1, x-2, and x-3 do not exist. The device server may use 
that portion of the physical block for:
a) nothing; or 
b) the last logical blocks on the medium.

PB
p

PB
p+1

PB
p+3

LB
x

LB
x+1

LB
x+2

LB
x+3

LB
x+4

LB
x+5

LB
x+6

LB
x+7

LB
x+8

LB
x+9 ...

...

LOGICAL BLOCKS PER PHYSICAL BLOCK field set to 4, LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 2:
LB
x-2

LB
x-1

LB
x

PB
p

LB
x+1

LB
x+2

PB
p+1

LB
x+3

LB
x+4

LB
x+5

LB
x+6

PB
p+3

LB
x+7

LB
x+8

LB
x+9

LB
x+10 ...

...

LOGICAL BLOCKS PER PHYSICAL BLOCK field set to 4, LOWEST ALIGNED LOGICAL BLOCK ADDRESS field set to 3:
LB
x-1



06-034r2 SBC-3 Physical blocks 26 April 2006

8  

logical block sizelength) may be set with the MODE SELECT command prior to the format operation. Some 
direct-access block devices are initialized by means not specified in this standard. The time when the 
initialization occurs is vendor-specific.

Direct-access block devices using a non-volatile medium may save the parameters and only need to be 
initialized once. However, some mode parameters may need to be initialized after each logical unit reset. A 
catastrophic failure of the direct-access block device may require the FORMAT UNIT command to be issued.

Direct-access block devices that use a volatile medium may need to be initialized after each logical unit reset 
prior to the processing of write, read, or verify operations. Mode parameters may also need initialization after 
logical unit resets.

NOTE 4 - Mode parameter block descriptors read with the MODE SENSE command before a FORMAT UNIT 
completes return information that may not reflect the true state of the medium.

A direct-access block device may become format corrupt after processing a MODE SELECT command that 
changes parameters related to the medium format. During this time, the device server may terminate medium 
access commands with CHECK CONDITION status with the sense key set to NOT READY and the 
appropriate additional sense code for the condition.

Any time the parameter data returned by the READ CAPACITY (10) command (see 5.10) or the READ 
CAPACITY (16) command (see 5.11) changes (e.g., when a FORMAT UNIT command or a MODE SELECT 
command completes changing the number of logical blocks, logical block sizelength, protection information, 
or reference tag ownership values, or when a vendor-specific mechanism causes a change), the device 
server should establish a unit attention condition for the initiator port associated with each I_T nexus except 
the I_T nexus on which the command causing the change was received with an additional sense code of 
CAPACITY DATA HAS CHANGED.

NOTE 5 - Logical units compliant with previous versions of this standard did not establish a unit attention 
condition.

4.8 Medium defects

Any medium has the potential for defects that cause data to be lost. Therefore, each logical block may contain 
additional information that allows the detection of changes to the user data and protection information, if any, 
caused by defects in the medium or other phenomena, and may also allow the data to be reconstructed 
following the detection of such a change (e.g., ECC bytes). Some direct-access block devices allow the 
application client to examine and modify the additional information by using the READ LONG commands and 
the WRITE LONG commands (see 5.14, 5.15, 5.33, and 5.34). The application client may use the WRITE 
LONG commands to induce a defect to test the defect detection logic of the direct-access block device or to 
emulate an unrecoverable logical block when generating a mirror copy.

Defects may also be detected and managed during processing of the FORMAT UNIT command (see 5.2). The 
FORMAT UNIT command defines four sources of defect information: the PLIST, CLIST, DLIST, and GLIST. 
These defects may be reassigned or avoided during the initialization process so that they do not affect any 
logical blocks. The sources of defect location information (i.e., defects) are defined as follows:

a) Primary defect list (PLIST). This is the list of defects, which may be supplied by the original manufac-
turer of the device or medium, that are considered permanent defects. The PLIST is located outside of 
the application client accessible logical block space. The PLIST is accessible by the device server for 
reference during the format operation, but it is not accessible by the application client except through 
the READ DEFECT DATA commands (see 5.10 and 5.13). Once created, the original PLIST shall not 
change;

b) Logical unit certification list (CLIST). This list includes defects detected by the device server during an 
optional certification process performed during the FORMAT UNIT command. This list shall be added 
to the GLIST;

c) Data defect list (DLIST). This list of defects may be supplied by the application client to the device 
server during the FORMAT UNIT command. This list shall be added to the GLIST; and

d) Grown defect list (GLIST). The GLIST includes all defects sent by the application client (i.e., the 
DLIST) or detected by the device server (i.e., the CLIST). The GLIST does not include the PLIST. If 



26 April 2006  06-034r2 SBC-3 Physical blocks

 9

the CMPLST bit is set to zero, the GLIST shall include DLISTs provided to the device server during the 
previous and the current FORMAT UNIT commands. The GLIST shall also include:
A) defects detected by the format operation during medium certification;
B) defects previously identified with a REASSIGN BLOCKS command (see 5.16); and
C) defects previously detected by the device server and automatically reallocated.

The direct-access block device may automatically reassign defects if allowed by the Read-Write Error 
Recovery mode page (see 6.3.4).

Defects may also occur after initialization. The application client issues a REASSIGN BLOCKS command 
(see 5.16) to request that the specified logical block addressLBA be reassigned to a different part of the 
medium. This operation may be repeated if a new defect appears at a later time. The total number of defects 
that may be handled in this manner is vendor-specific.

Defect management on direct-access block devices is vendor-specific. Direct-access block devices not using 
a removable medium may optimize the defect management for capacity or performance or both. Some 
direct-access block devices that use a removable medium do not support defect management or use defect 
management that does not impede the ability to interchange the medium.

Suggested changes to chapter 5 (Commands)

5.2 FORMAT UNIT command

5.2.1 FORMAT UNIT command overview

The FORMAT UNIT command (see table 14) requests that the device server format the medium into 
application client accessible logical blocks as specified in the number of logical blocks and logical block length 
values received in the last mode parameter block descriptor (see 6.3.2) in a MODE SELECT command (see 
SPC-3). In addition, the device server may certify the medium and create control structures for the 
management of the medium and defects. The degree that the medium is altered by this command is 
vendor-specific.

If a device server receives a FORMAT UNIT command before receiving a MODE SELECT command with a 
mode parameter block descriptor, the device server shall use the number of logical blocks and logical block 
length at which the logical unit is currently formatted (i.e., no change is made to the number of logical blocks 
and the logical block length of the logical unit during the format operation).

If any deferred downloaded code has been received as a result of a WRITE BUFFER command (see SPC-4), 
then that deferred downloaded code shall replace the current operational code.

The simplest form of the FORMAT UNIT command (i.e., a FORMAT UNIT command with no parameter data) 
accomplishes medium formatting with little application client control over defect management. The device 
server implementation determines the degree of defect management that is to be performed. Additional forms 
of this command increase the application client's control over defect management. The application client may 
specify:

a) defect list(s) to be used;

Table 14 — FORMAT UNIT command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (04h)

1 FMTPINFO RTO_REQ LONGLIST FMTDATA CMPLIST DEFECT LIST FORMAT

2 Vendor specific

3
Obsolete

4

5 CONTROL



06-034r2 SBC-3 Physical blocks 26 April 2006

10  

b) defect locations;
c) that logical unit certification be enabled; and
d) exception handling in the event that defect lists are not accessible.

While performing a format operation, the device server shall respond to commands attempting to enter into 
the task set except INQUIRY commands, REPORT LUNS commands, and REQUEST SENSE commands 
with CHECK CONDITION status with the sense key set to NOT READY and the additional sense code set to 
LOGICAL UNIT NOT READY, FORMAT IN PROGRESS. Handling of commands already in the task set is 
vendor-specific.

The PROGRESS INDICATION field in parameter data returned in response to a REQUEST SENSE command 
(see SPC-3) may be used by the application client at any time during a format operation to poll the logical 
unit’s progress. While a format operation is in progress unless an error has occurred, a device server shall 
respond to a REQUEST SENSE command by returning parameter data containing sense data with the sense 
key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, FORMAT IN 
PROGRESS with the sense key specific bytes set for progress indication (see SPC-3).

A format protection information (FMTPINFO) bit (see table 19) specifies if the device server enables or disables 
the use of protection information.

The reference tag own request (RTO_REQ) bit (see table 19) specifies whether the application client or the

device server has ownership of the LOGICAL BLOCK REFERENCE TAG field in protection information (see 4.16.3).

Following a successful format, the P_TYPE field in the READ CAPACITY (16) parameter data (see 5.11.1) 
indicates the type of protection currently in effect on the logical unit.

When protection information is written during a FORMAT UNIT command (i.e., the FMTPINFO bit is set to 
one) protection information shall be written to a default value of FFFFFFFF_FFFFFFFFh.

A LONGLIST bit set to zero specifies that the parameter list, if any, contains a short parameter list header as 
defined in table 17. A LONGLIST bit set to one specifies that the parameter list, if any, contains a long parameter 
list header as defined in table 18. If the FMTDATA bit is set to zero, the LONGLIST bit shall be ignored.

A format data (FMTDATA) bit set to zero specifies that no parameter list be transferred from the data-out buffer.

A FMTDATA bit set to one specifies that the FORMAT UNIT parameter list (see table 16) shall be transferred 
from the data-out buffer. The parameter list consists of a parameter list header, followed by an optional 
initialization pattern descriptor, followed by an optional defect list.

A complete list (CMPLST) bit set to zero specifies that the defect list included in the FORMAT UNIT parameter 
list shall be used in an addition to the existing list of defects. As a result, the device server shall construct a 
new GLIST (see 4.8) that contains:

a) the existing GLIST;
b) the DLIST, if it is sent by the application client; and
c) the CLIST, if certification is enabled (i.e., the device server may add any defects it detects during the 

format operation).

A CMPLST bit set to one specifies that the defect list included in the FORMAT UNIT parameter list is a complete 
list of defects. Any existing defect list except the PLIST shall be ignored by the device server. As a result, the 
device server shall construct a new GLIST (see 4.8) that contains:

a) the DLIST, if it is sent by the application client; and
b) the CLIST, if certification is enabled (i.e., the device server may add any defects it detects during the 

format operation).

If the FMTDATA bit is set to zero, the CMPLIST bit shall be ignored.

The DEFECT LIST FORMAT field specifies the format of the address descriptors in the defect list if the FMTDATA bit 
is set to one (see table 15).



26 April 2006  06-034r2 SBC-3 Physical blocks

 11

Table 15 defines the address descriptor usage for the FORMAT UNIT command.

Table 15 — FORMAT UNIT command address descriptor usage

Field in the FORMAT UNIT CDB DEFECT LIST LENGTH 
field in the 

parameter list 
header

Type  a Comments  f
FMTDATA CMPLST

DEFECT 
LIST 

FORMAT

0 any 000b Not available M Vendor-specific defect information

1 0
000b 
(short 
block)

Zero
O See  b and  d

1 1 O See  b and  e

1 0
Nonzero

O See  c and  d

1 1 O See  b and  e

011b 
(long 
block)

Zero
O See  b and  d

O See  b and  e

1 0
Nonzero

O See  c and  d

1 1 O See  c and  e

1 0
100b 
(bytes 
from 

index)

Zero
O See  b and  d

1 1 O See  b and  e

1 0
Nonzero

O See  c and  d

1 1 O See  c and  e

1 0
101b 

(physical 
sector)

Zero
O See  b and  d

1 1 O See  b and  e

1 0
Nonzero

O See  c and  d

1 1 O See  c and  e

1 0 110b 
(vendor 
specific)

Vendor specific
O

1 1 O

All others Reserved.
a M = implementation is mandatory. O = implementation is optional.
b No DLIST is included in the parameter list.
c A DLIST is included in the parameter list. The device server shall add the DLIST defects to the new 

GLIST.
d The device server shall add existing GLIST defects to the new GLIST (i.e., use the existing GLIST).
e The device server shall not add existing GLIST defects to the new GLIST (i.e., discard the existing 

GLIST).
f All the options described in this table cause a new GLIST to be created during processing of the 

FORMAT UNIT command as described in the text.



06-034r2 SBC-3 Physical blocks 26 April 2006

12  

5.2.2 FORMAT UNIT parameter list

5.2.2.1 FORMAT UNIT parameter list overview

Table 16 defines the FORMAT UNIT parameter list.

The parameter list header is defined in 5.2.2.2.

The initialization pattern descriptor, if any, is defined in 5.2.2.3.

The defect list, if any, contains address descriptors (see 5.2.2.4) each specifying a location on the medium 
that the device server shall exclude from the application client accessible part. This is called the DLIST(see 
4.8). The device server shall maintain logical block alignment for logical blocks not specified in the defect list.

5.2.2.2 Parameter list header

The parameter list headers (see table 17 and table 18) provide several optional format control parameters. 
Device servers that implement these headers provide the application client additional control over the use of 
the four defect sources, and the format operation. If the application client attempts to select any function not 
implemented by the device server, the device server shall terminate the command with CHECK CONDITION 
status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN 
PARAMETER LIST.

The short parameter list header (see table 17) is used if the LONGLIST bit is set to zero in the FORMAT UNIT 
CDB.

Table 16 — FORMAT UNIT parameter list

Byte\Bit 7 6 5 4 3 2 1 0

0 to 3 or
0 to 7 Parameter list header (see table 17 or table 18 in 5.2.2.2)

Initialization pattern descriptor (if any)(see table 20 in 5.2.2.3)

Defect list (if any)

Table 17 — Short parameter list header

Byte\Bit 7 6 5 4 3 2 1 0

0 Reserved PROTECTION FIELDS USAGE

1 FOV DPRY DCRT STPF IP Obsolete IMMED
Vendor 
specific

2 (MSB)
DEFECT LIST LENGTH

3 (LSB)



26 April 2006  06-034r2 SBC-3 Physical blocks

 13

The long parameter list header (see table 18) is used if the LONGLIST bit is set to one in the FORMAT UNIT 
CDB.

The PROTECTION FIELD USAGE field in combination with the FMTPINFO bit and the RTO_REQ bit (see table 19) 
specifies the requested protection type (see 4.16.2).

A format options valid (FOV) bit set to zero specifies that the device server shall use its default settings for the 
DPRY, DCRT, STPF, and IP bits. If the FOV bit is set to zero, the application client shall set these bits to zero. If the 
FOV bit is set to zero and any of the other bits listed in this paragraph are not set to zero, the device server 
shall terminate the command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST 
and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

A FOV bit set to one specifies that the device server shall examine the values of the DPRY, DCRT, STPF, and IP 
bits. When the FOV bit is set to one, the DPRY, DCRT, STPF, and IP bits are defined as follows. 

A disable primary (DPRY) bit set to zero specifies that the device server shall not use parts of the medium 
identified as defective in the PLIST for application client accessible logical blocks. If the device server is not 
able to locate the PLIST or it is not able to determine whether a PLIST exists, it shall take the action specified 
by the STPF bit.

Table 18 — Long parameter list header

Byte\Bit 7 6 5 4 3 2 1 0

0 Reserved PROTECTION FIELDS USAGE

1 FOV DPRY DCRT STPF IP Obsolete IMMED
Vendor 
specific

2 Reserved

3 Reserved LOGICAL BLOCK ADDRESS TO ALIGN

4 (MSB)
DEFECT LIST LENGTH

7 (LSB)

Table 19 — FMTPINFO bit, RTO_REQ bit, and PROTECTION FIELD USAGE field

Description

1 1
a See the Extended INQUIRY Data VPD page (see SPC-4) for the definition of the SPT field.
b See the standard INQUIRY data (see SPC-4) for the definition of the PROTECT bit.
c The device server shall format the medium to the logical block length specified in the mode parameter 

block descriptor of the mode parameter header (see SPC-4).
d See the READ CAPACITY command (see 5.11.1) for the definition of the P_TYPE field.
e The device server shall terminate the command with CHECK CONDITION status with the sense key 

set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER 
LIST.

f The device server shall terminate the command with CHECK CONDITION status with the sense key 
set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

g The device server shall format the medium to the logical block length specified in the mode parameter 
block descriptor of the mode parameter header plus eight (e.g., if the logical block length is 512, then 
the formatted logical block length is 520). Following a successful format, the PROT_EN bit in the READ 
CAPACITY (16) parameter data (see 5.11.1) indicates whether protection information (see 4.16) is 
enabled.



06-034r2 SBC-3 Physical blocks 26 April 2006

14  

A DPRY bit set to one specifies that the device server shall not use the PLIST to identify defective areas of the 
medium. The PLIST shall not be deleted.

A disable certification (DCRT) bit set to zero specifies that the device server shall perform a vendor-specific 
medium certification operation to generate a CLIST. A DCRT bit set to one specifies that the device server shall 
not perform any vendor-specific medium certification process or format verification operation.

The stop format (STPF) bit controls the behavior of the device server if one of the following events occurs:

a) The device server has been requested to use the PLIST (i.e., the DPRY bit is set to zero) or the GLIST 
(i.e., the CMPLST bit is set to zero) and the device server is not able to locate the list or determine 
whether the list exists; or

b) The device server has been requested to use the PLIST (i.e., the DPRY bit is set to zero) or the GLIST 
(i.e., the CMPLST bit is set to zero), and the device server encounters an error while accessing the 
defect list.

A STPF bit set to zero specifies that, if one or both of these events occurs, the device server shall continue to 
process the FORMAT UNIT command. The device server shall return CHECK CONDITION status at the 
completion of the FORMAT UNIT command with the sense key set to RECOVERED ERROR and the 
additional sense code set to either DEFECT LIST NOT FOUND if the condition described in item a) occurred, 
or DEFECT LIST ERROR if the condition described in item b) occurred.

A STPF bit set to one specifies that, if one or both of these events occurs, the device server shall terminate the 
FORMAT UNIT command with CHECK CONDITION status and the sense key shall be set to MEDIUM 
ERROR with the additional sense code set to either DEFECT LIST NOT FOUND if the condition described in 
item a) occurred, or DEFECT LIST ERROR if the condition described in item b) occurred.

NOTE 6 - The use of the FMTDATA bit, the CMPLST bit, and the parameter list header allow the application 
client to control the source of the defect lists used by the FORMAT UNIT command. Setting the DEFECT LIST 
LENGTH field to zero allows the application client to control the use of PLIST and CLIST without having to 
specify a DLIST.

An initialization pattern (IP) bit set to zero specifies that an initialization pattern descriptor is not included and 
that the device server shall use its default initialization pattern. An IP bit set to one specifies that an 
initialization pattern descriptor (see 5.2.2.3) is included in the FORMAT UNIT parameter list following the 
parameter list header.

An immediate (IMMED) bit set to zero specifies that the device server shall return status after the format 
operation has completed. An IMMED bit value set to one specifies that the device server shall return status 
after the entire parameter list has been transferred.

The DEFECT LIST LENGTH field specifies the total length in bytes of the defect list (i.e., the address descriptors) 
that follows and does not include the initialization pattern descriptor, if any. The formats for the address 
descriptor(s) are shown in 5.2.2.4.

The LOGICAL BLOCK ADDRESS TO ALIGN field specifies the LBA of a logical block that the device server should 
locate at the beginning of a physical block. Each logical block with an LBA that is an integral multiple of this 
LBA should be located at the beginning of a physical block.

NOTE 7 - The device server reports the lowest LBA it was able to align in the LOWEST ALIGNED LOGICAL BLOCK 
ADDRESS field in the READ CAPACITY (16) data (see 5.11.2).

Short block format address descriptors and long block format address descriptors should be in ascending 
order. Bytes from index format address descriptors and physical sector format address descriptors shall be in 
ascending order. More than one physical or logical block may be affected by each address descriptor. If the 
address descriptors are not in the required order, the device server shall terminate the command with CHECK 
CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to 
INVALID FIELD IN PARAMETER LIST.



26 April 2006  06-034r2 SBC-3 Physical blocks

 15

5.2.2.3 Initialization pattern descriptor

The initialization pattern descriptor specifies that the device server initialize logical blocks to a specified 
pattern. The initialization pattern descriptor (see table 20) is sent to the device server as part of the FORMAT 
UNIT parameter list.

The initialization pattern modifier (IP MODIFIER) field (see table 21) specifies the type and location of a header 
that modifies the initialization pattern.

A security initialize (SI) bit set to one specifies that the device server shall attempt to write the initialization 
pattern to all areas of the medium including those that may have been reassigned (i.e., are in a defect list). An 
SI bit set to one shall take precedence over any other FORMAT UNIT CDB field. The initialization pattern shall 
be written using a security erasure write technique. Application clients may choose to use this command 
multiple times to fully erase the previous data. Such security erasure write technique procedures are outside 
the scope of this standard. The exact requirements placed on the security erasure write technique are 
vendor-specific. The intent of the security erasure write is to render any previous user data unrecoverable by 
any analog or digital technique.

An SI bit set to zero specifies that the device server shall initialize the application client accessible part of the 
medium. The device server is not required to initialize other areas of the medium. However, the device server 
shall format the medium as defined in the FORMAT UNIT command.

When the SI bit is set to one, the device server need not write the initialization pattern over the header and 
other header and other parts of the medium not previously accessible to the application client. If the device 
server is unable to write over any part of the medium that is currently accessible to the application client or 
may be made accessible to the application client in the future (e.g., by clearing the defect list), it shall 
terminate the command with CHECK CONDITION status with the sense key set to MEDIUM ERROR and the 

Table 20 — Initialization pattern descriptor

Byte\Bit 7 6 5 4 3 2 1 0

0 IP MODIFIER SI Reserved

1 INITIALIZATION PATTERN TYPE

2 (MSB)
INITIALIZATION PATTERN LENGTH (n - 3)

3 (LSB)

4
INITIALIZATION PATTERN

n

Table 21 — Initialization pattern modifier (IP MODIFIER) field

Code Description

00b No header. The device server shall not modify the initialization pattern.

01b

The device server shall overwrite the initialization pattern to write the LBA in the first four bytes 
of each logical block. The LBA shall be written with the most significant byte first. If the LBA is 
larger than four bytes, the least significant four bytes shall be written ending with the least 
significant byte.

10b

The device server shall overwrite the initialization pattern to write the LBA in the first four bytes 
of each physical block contained within the logical block. The lowest numbered logical block or 
part thereof that occurs within the physical block is used. The LBA shall be written with the 
most significant byte first. If the LBA is larger than four bytes the least significant four bytes 
shall be written ending with the least significant byte.

11b Reserved.



06-034r2 SBC-3 Physical blocks 26 April 2006

16  

additional sense code set to the appropriate value for the condition. The device server shall attempt to rewrite 
all remaining parts of the medium even if some parts are not able to be rewritten.

The INITIALIZATION PATTERN TYPE field (see table 22) specifies the type of pattern the device server shall use to 
initialize each logical block within the application client accessible part of the medium. All bytes within a logical 
block shall be written with the initialization pattern. The initialization pattern is modified by the IP MODIFIER field 
as described in table 21.

The INITIALIZATION PATTERN LENGTH field specifies the number of bytes contained in the INITIALIZATION PATTERN 
field. If the initialization pattern length exceeds the current logical block length the device server shall 
terminate the command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and 
the additional sense code set to INVALID FIELD IN PARAMETER LIST.

The INITIALIZATION PATTERN field specifies the initialization pattern. The initialization pattern is modified by the 
IP MODIFIER field.

5.2.2.4 Address descriptor formats

5.2.2.4.1 Address descriptor formats overview

This subclause describes the address descriptor formats used in the FORMAT UNIT command, the READ 
DEFECT DATA commands (see 5.12 and 5.13), and the Translate Address diagnostic pages (see 6.1.2 and 
6.1.3) of the SEND DIAGNOSTIC command and the RECEIVE DIAGNOSTIC RESULTS command.

The format type of an address descriptor is specified with:

a) the DEFECT LIST FORMAT field in the CDB, for the FORMAT UNIT command and the READ DEFECT 
DATA commands;

b) the SUPPLIED FORMAT field, for the Translate Address diagnostic pages; or
c) the TRANSLATE FORMAT field, for the Translate Address diagnostic pages.

Table 22 — INITIALIZATION PATTERN TYPE field

Code Description

00h Use a default initialization pattern  a

01h Repeat the pattern specified in the INITIALIZATION PATTERN field as required to fill the logical 
block  b

02h - 7Fh Reserved

80h - FFh Vendor-specific
a If the INITIALIZATION PATTERN LENGTH field is not set to zero, the device server shall terminate the 

command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the 
additional sense code set to INVALID FIELD IN PARAMETER LIST.

b If the INITIALIZATION PATTERN LENGTH field is set to zero, the device server shall terminate the command 
with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional 
sense code set to INVALID FIELD IN PARAMETER LIST.



26 April 2006  06-034r2 SBC-3 Physical blocks

 17

Table 23 defines the types of address descriptors.

5.2.2.4.2 Short block format address descriptor

A format type of 000b specifies the short block format address descriptor defined in table 24. 

For the FORMAT UNIT command, the SHORT BLOCK ADDRESS field contains the four-byte LBA of a defect. The 
device server may consider logical blocks in addition to the one specified by this descriptor as containing 
defects (e.g., if multiple logical blocks are contained within a physical block).

For the READ DEFECT DATA commands, the SHORT BLOCK ADDRESS field contains a vendor-specific 
four-byte value.

For the Translate Address diagnostic pages, the SHORT BLOCK ADDRESS field contains a four-byte LBA or a 
vendor-specific four-byte value that is greater than the capacity of the medium.

Editor’s Note 2: Above used to be 1 paragraph; propose breaking it into 3 paragraphs as shown

5.2.2.4.3 Long block format address descriptor

A format type of 011b specifies the long block format address descriptor defined in table 25.

For the FORMAT UNIT command, the LONG BLOCK ADDRESS field contains the eight-byte logical block 
addressLBA of a defect. The device server may consider logical blocks in addition to the one specified by this 
descriptor as containing defects (e.g., if multiple logical blocks are contained within a physical block).

For the READ DEFECT DATA commands, the LONG BLOCK ADDRESS field contains a vendor-specific 
eight-byte value.

Table 23 — Address descriptor formats

Format type Description Reference

000b Short block format address descriptor 5.2.2.4.2

011b Long block format address descriptor 5.2.2.4.3

100b Bytes from index format address descriptor 5.2.2.4.4

101b Physical sector format address descriptor 5.2.2.4.5

110b Vendor-specific

All others Reserved

Table 24 — Short block format address descriptor (000b)

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
SHORT BLOCK ADDRESS

3 (LSB)

Table 25 — Long block format address descriptor (011b)

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
LONG BLOCK ADDRESS

7 (LSB)



06-034r2 SBC-3 Physical blocks 26 April 2006

18  

For the Translate Address diagnostic pages, the LONG BLOCK ADDRESS field contains a foureight-byte LBA or a 
vendor-specific four eight-byte value that is greater than the capacity of the medium.

Editor’s Note 3: Above used to be 1 paragraph; propose breaking it into 3 paragraphs as shown

5.2.2.4.4 Bytes from index format address descriptor

A format type of 100b specifies the bytes from index address descriptor defined in table 26. For the FORMAT 
UNIT command and the READ DEFECT DATA commands, this descriptor specifies the location of a defect 
that is either the length of one track or is no more than eight bytes long. For the Translate Address diagnostic 
pages, this descriptor specifies the location of a track or the first byte or last byte of an area.

The CYLINDER NUMBER field contains the cylinder number.

The HEAD NUMBER field contains the head number.

The BYTES FROM INDEX field contains the number of bytes from the index (e.g., from the start of the track) to 
the location being described. A BYTES FROM INDEX field set to FFFFFFFFh specifies that the entire track is 
being described.

For sorting bytes from index format address descriptors, the cylinder number is the most significant part of the 
address and the bytes from index is the least significant part of the address. More than one logical block may 
be described by this descriptor.

5.2.2.4.5 Physical sector format address descriptor

A format type of 101b specifies the physical sector address descriptor defined in table 27. For the FORMAT 
UNIT command and the READ DEFECT DATA commands, this descriptor specifies the location of a defect 
that is either the length of one track or the length of one sector. For the Translate Address diagnostic pages, 
this descriptor specifies the location of a track or a sector.

The CYLINDER NUMBER field contains the cylinder number.

Table 26 — Bytes from index format address descriptor (100b)

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
CYLINDER NUMBER

2 (LSB)

3 HEAD NUMBER

4 (MSB)
BYTES FROM INDEX

7 (LSB)

Table 27 — Physical sector format address descriptor (101b)

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
CYLINDER NUMBER

2 (LSB)

3 HEAD NUMBER

4 (MSB)
SECTOR NUMBER

7 (LSB)



26 April 2006  06-034r2 SBC-3 Physical blocks

 19

The HEAD NUMBER field contains the head number.

The SECTOR NUMBER field contains the sector number. A SECTOR NUMBER field set to FFFFFFFFh specifies 
that the entire track is being described.

For sorting physical sector format address descriptors, the cylinder number is the most significant part of the 
address and the sector number is the least significant part of the address. More than one logical block may be 
described by this descriptor.

5.5 READ (6) command

...

NOTE 10 - Although the READ (6) command is limited to addressing logical blocks up to a capacity of 1 GiB, 
for logical block lengths of 512 bytes, this command has been maintained as mandatory since some system 
initialization routines require that the READ (6) command be used. System initialization routines should 
migrate from the READ (6) command to the READ (10) command, which is capable of addressing 2 TiB with 
logical block lengths of 512 bytes, or the READ (16) command to address more than 2 TiB.

...

5.10 READ CAPACITY (10) command

...

5.10.2 READ CAPACITY (10) parameter data

The READ CAPACITY (10) parameter data is defined in table 39. Any time the READ CAPACITY (10) 
parameter data changes, the device server should establish a unit attention condition as described in 4.6.

...

The LOGICAL BLOCK LENGTH IN BYTES field contains the number of bytes of user data in the logical block 
indicated by the RETURNED LOGICAL BLOCK ADDRESS field. This value does not include protection information or 
additional information (e.g., ECC bytes) recorded on the medium.

5.11 READ CAPACITY (16) command

...

5.11.2 READ CAPACITY (16) parameter data

Table 28 — READ CAPACITY (10) parameter data

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
RETURNED LOGICAL BLOCK ADDRESS

3 (LSB)

4 (MSB)
LOGICAL BLOCK LENGTH IN BYTES

7 (LSB)



06-034r2 SBC-3 Physical blocks 26 April 2006

20  

The READ CAPACITY (16) parameter data is defined in table 29. Any time the READ CAPACITY (16) 
parameter data changes, the device server should establish a unit attention condition as described in 4.6.

The RETURNED LOGICAL BLOCK ADDRESS field and LOGICAL BLOCK LENGTH IN BYTES field of the READ 
CAPACITY (16) parameter data are the same as the in the READ CAPACITY (10) parameter data (see 5.10). 
The maximum value that shall be returned in the RETURNED LOGICAL BLOCK ADDRESS field is 
FFFFFFFF_FFFFFFFEh.

A reference tag own enable (RTO_EN) bit set to one indicates that application client ownership of the LOGICAL 
BLOCK REFERENCE TAG field in protection information is enabled (i.e., the medium was formatted with 
protection information (see 4.16) enabled and the RTO_REQ bit was set to one). An RTO_EN bit set to zero 
indicates that application client ownership of the LOGICAL BLOCK REFERENCE TAG field in protection information 
is disabled.

A PROT_EN bit set to one indicates that the medium was formatted with protection information (see 4.16) 
enabled. A PROT_EN bit set to zero indicates that the medium was not formatted with protection information 
enabled.

The LOGICAL BLOCKS PER PHYSICAL BLOCK field is defined in table 30. If the LOGICAL BLOCKS PER PHYSICAL 
BLOCK field is set to a non-zero value and the device server supports a WRITE LONG command (see 5.33 and 
5.34), it shall support the WR_UNCOR bit and the PBLOCK bit in the WRITE LONG CDB. If the LOGICAL BLOCKS 
PER PHYSICAL BLOCK field is set to a non-zero value and the device server supports a READ LONG command 
(see 5.14 and 5.15), it shall support the PBLOCK bit in the READ LONG CDB.

The LOWEST ALIGNED LOGICAL BLOCK ADDRESS field indicates the lowest LBA of a logical block that is located at 
the beginning of a physical block (see 4.x). Each logical block with an LBA that is an integral multiple of this 
LBA is located at the beginning of a physical block.

5.3 PRE-FETCH

...

Table 29 — READ CAPACITY (16) parameter data

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
RETURNED LOGICAL BLOCK ADDRESS

7 (LSB)

8 (MSB)
LOGICAL BLOCK LENGTH IN BYTES

11 (LSB)

12 Reserved RTO_EN PROT_EN

13 Reserved LOGICAL BLOCKS PER PHYSICAL BLOCK

14 Reserved (MSB)
LOWEST ALIGNED LOGICAL BLOCK ADDRESS

15 (LSB)

16
Reserved

31

Table 30 — LOGICAL BLOCKS PER PHYSICAL BLOCK field

Code Description

0 20 (i.e., 1) logical block per physical block (see 4.x), or more than one physical block 
per logical block

n > 0 2n logical blocks per physical block



26 April 2006  06-034r2 SBC-3 Physical blocks

 21

The LOGICAL BLOCK ADDRESS field specifies the first logical block accessed by this command. If the logical 
block addressspecified LBA exceeds the capacity of the medium the device server shall terminate the 
command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional 
sense code set to LOGICAL BLOCK ADDRESS OUT OF RANGE.

Editor’s Note 4: above paragraph included to show that the standard LOGICAL BLOCK ADDRESS field 
definition is not 100% suitable for READ LONG/WRITE LONG (“first” is misleading)

5.14 READ LONG (10) command

The READ LONG (10) command (see table 31) requests that the device server transfer data from a single 
logical or physical block to the data-in buffer. The data transferred during the READ LONG (10) command is 
vendor-specific, but shall include the following items recorded on the medium:

a) if a physical block is being transferred:
A) user data or transformed user data for all the logical blocks in the physical block;
B) protection information or transformed protection information, if any, for all the logical blocks in the 

physical block; and
C) any additional information (e.g., ECC bytes);.

and

b) if a logical block is being transferred:
A) user data or transformed user data for the logical block;
B) protection information or transformed protection information, if any, for the logical block; and
C) any additional information (e.g., ECC bytes) for all the physical blocks in the logical block.

If a cache contains a more recent version of athe specified logical or physical block, the device server shall 
write the logical or physical block to the medium before reading it. The values in the Read-Write Error 
Recovery mode page (see 6.3.4) do not apply to this command. The device server may perform retries while 
processing this command.

See the PRE-FETCH (10) command (see 5.3) for the definition of the LOGICAL BLOCK ADDRESS field.

The LOGICAL BLOCK ADDRESS field specifies a logical block. If the specified LBA exceeds the capacity of the 
medium the device server shall terminate the command with CHECK CONDITION status with the sense key 
set to ILLEGAL REQUEST and the additional sense code set to LOGICAL BLOCK ADDRESS OUT OF 
RANGE.

If the additional information contain an ECC, any other additional bytes that are correctable by ECC should be 
included (e.g., a data synchronization mark within the area covered by ECC). It is not required for the ECC 

Table 31 — READ LONG (10) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (3Eh)

1 Reserved PBLOCK CORRCT Obsolete

2 (MSB)
LOGICAL BLOCK ADDRESS

5 (LSB)

6 Reserved

7 (MSB)
BYTE TRANSFER LENGTH

8 (LSB)

9 CONTROL



06-034r2 SBC-3 Physical blocks 26 April 2006

22  

bytes to be at the end of the user data or protection information, if any; however, the ECC bytes should be in 
the same order as they are on the medium.

A physical block (PBLOCK) bit set to one specifies that the device server shall return the entire physical block 
containing the specified logical block. A PBLOCK bit set to zero specifies that the device server shall return 
bytes representing only the specified logical block.

A correct (CORRCT) bit set to zero specifies that a logical block be read without any correction made by the 
device server. A CORRCT bit set to zero should result in GOOD status unless data is not transferred for some 
reason other than that the data is non-correctable. In this case the appropriate status and sense data shall be 
returned. A CORRCT bit set to one specifies that the data be corrected by ECC before being transferred to the 
data-in buffer.

The BYTE TRANSFER LENGTH field specifies the number of bytes of data that shall be read from the specified 
logical or physical block and transferred to the data-in buffer. If the BYTE TRANSFER LENGTH field is not set to 
zero and does not match the available data length, the device server shall terminate the command with 
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set 
to INVALID FIELD IN CDB. In the sense data (see 4.13 and SPC-3), the VALID and ILI bits shall each be set to 
one and the INFORMATION field shall be set to the difference (i.e., residue) of the requested byte transfer length 
minus the actual available data length in bytes. Negative values shall be indicated by two's complement 
notation.

A BYTE TRANSFER LENGTH field set to zero specifies that no bytes shall be read. This condition shall not be 
considered an error.

5.15 READ LONG (16) command

The READ LONG (16) command (see table 32) requests that the device server transfer data from a single 
logical or physical block to the data-in buffer. The data transferred during the READ LONG (16) command is 
vendor-specific, but shall include the following items recorded on the medium:

a) if a physical block is being transferred:
A) user data or transformed user data for all the logical blocks in the physical block;
B) protection information or transformed protection information, if any, for all the logical blocks in the 

physical block; and
C) any additional information (e.g., ECC bytes).

and

b) if a logical block is being transferred:
A) user data or transformed user data for the logical block;
B) protection information or transformed protection information, if any, for the logical block; and
C) any additional information (e.g., ECC bytes) for all the physical blocks in the logical block.

If a cache contains a more recent version of athe specified logical or physical block, the device server shall 
write the logical or physical block to the medium before reading it. The values in the Read-Write Error 
Recovery mode page (see 6.3.4) do not apply to this command. The device server may perform retries while 



26 April 2006  06-034r2 SBC-3 Physical blocks

 23

processing this command. This command is implemented as a service action of the SERVICE ACTION IN 
operation code (see A.2).

See the READ LONG (10) command (see ) for the definitions of the fields in this command.

5.16 REASSIGN BLOCKS command

5.16.1 REASSIGN BLOCKS command overview

The REASSIGN BLOCKS command (see table 33) requests that the device server reassign defective logical 
blocks to another area on the medium set aside for this purpose. The device server should also record the 
location of the defective logical blocks in the GLIST, if supported. This command shall not alter the contents of 
the PLIST (see 4.8).

The parameter list provided in the data-out buffer contains a defective LBA list that contains the LBAs of the 
logical blocks to be reassigned. The device server shall reassign the parts of the medium used for each logical 
block in the defective LBA list. More than one physical block may be relocated by each LBA. If the device 
server is able to recover user data and protection information, if any, from the original logical block, it shall 
write the recovered user data and any protection information to the reassigned logical block. If the device 
server is unable to recover user data and protection information, if any, it shall write vendor-specific data as 
the user data and shall write a default value of FFFFFFFF_FFFFFFFFh as the protection information, if 
enabled. The data in all other logical blocks on the medium shall be preserved.

NOTE 11 - The effect of specifying a logical block to be reassigned that previously has been reassigned is to 
reassign the logical block again. Although not likely, over the life of the medium, a logical block may be 
assigned to multiple physical block addresses until no more spare locations remain on the medium.

Table 32 — READ LONG (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (9Eh)

1 Reserved SERVICE ACTION (11h)

2 (MSB)
LOGICAL BLOCK ADDRESS

9 (LSB)

10
Reserved

11

12 (MSB)
BYTE TRANSFER LENGTH

13 (LSB)

14 Reserved PBLOCK CORRCT

15 CONTROL

Table 33 — REASSIGN BLOCKS command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (07h)

1 Reserved LONGLBA LONGLIST

2
Reserved

4

5 CONTROL



06-034r2 SBC-3 Physical blocks 26 April 2006

24  

A long LBA (LONGLBA) bit set to zero specifies that the REASSIGN BLOCKS defective LBA list contains four 
byte LBAs. A LONGLBA bit set to one specifies that the REASSIGN BLOCKS defective LBA list contains eight 
byte LBAs.

5.16.2 REASSIGN BLOCKS parameter list

The REASSIGN BLOCKS parameter list (see table 34) contains a four-byte parameter list header followed by 
a defective LBA list containing one or more LBAs.

If LONGLIST is set to zero, the parameter list header is defined in table 35.

If LONGLIST is set to one, the parameter list header is defined in table 36.

The DEFECT LIST LENGTH field indicates the total length in bytes of the DEFECTIVE LBA LIST field. The DEFECT LIST 
LENGTH field does not include the parameter list header length and is equal to either:

a) four times the number of LBAs, if the LONGLBA bit is set to zero; or
b) eight times the number of LBAs, if the LONGLBA bit is set to one.

The DEFECTIVE LBA LIST field contains a list of defective LBAs. Each LBA is a four-byte field if the LONGLBA bit is 
set to zero or an eight-byte field if the LONGLBA bit is set to one. The LBAs shall be in ascending order.

If the direct-access block device has insufficient capacity to reassign all of the specified logical blocks, the 
device server shall terminate the command with CHECK CONDITION status with the sense key set to 
HARDWARE ERROR and the additional sense code set to NO DEFECT SPARE LOCATION AVAILABLE.

If the direct-access block device is unable to successfully complete a REASSIGN BLOCKS command, the 
device server shall terminate the command with CHECK CONDITION status with the appropriate sense data 
(see 4.13 and SPC-3). The first LBA not reassigned shall be returned in the COMMAND-SPECIFIC INFORMATION 
field of the sense data. If information about the first LBA not reassigned is not available, or if all the defects 
have been reassigned, the COMMAND-SPECIFIC INFORMATION field shall be set to FFFFFFFFh if fixed format 
sense data is being used or FFFFFFFF_FFFFFFFFh if descriptor format sense data is being used.

Table 34 — REASSIGN BLOCKS parameter list

Byte\Bit 7 6 5 4 3 2 1 0

0
Parameter list header (see table 35 or table 36)

3

4
DEFECTIVE LBA LIST (if any)

n

Table 35 — REASSIGN BLOCKS short parameter list header

Byte\Bit 7 6 5 4 3 2 1 0

0
Reserved

1

2 (MSB)
DEFECT LIST LENGTH

3 (LSB)

Table 36 — REASSIGN BLOCKS long parameter list header

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
DEFECT LIST LENGTH

3 (LSB)



26 April 2006  06-034r2 SBC-3 Physical blocks

 25

If the REASSIGN BLOCKS command failed due to an unexpected unrecoverable read error that would cause 
the loss of data in a logical block not specified in the defective LBA list, the LBA of the unrecoverable logical 
block shall be returned in the INFORMATION field of the sense data and the VALID bit shall be set to one.

NOTE 12 - If the REASSIGN BLOCKS command returns CHECK CONDITION status and the sense data 
COMMAND-SPECIFIC INFORMATION field contains a valid LBA, the application client should remove all LBAs 
from the defective LBA list prior to the one returned in the COMMAND-SPECIFIC INFORMATION field. If the 
sense key is MEDIUM ERROR and the INFORMATION field contains the valid LBA, the application client 
should insert that new defective LBA into the defective LBA list and reissue the REASSIGN BLOCKS 
command with the new defective LBA list. Otherwise, the application client should perform any corrective 
action indicated by the sense data and then reissue the REASSIGN BLOCKS command with the new 
defective LBA list.

5.17 START STOP UNIT command

The START STOP UNIT command (see table 53) requests that the device server change the power condition 
of the logical unit (see 4.15) or load or eject the medium. This includes specifying that the device server 
enable or disable the direct-access block device for medium access operations by controlling power 
conditions and timers.

Logical units that contain cache shall write all cached logical blocks to the medium (e.g., as they would do in 
response to a SYNCHRONIZE CACHE command (see 5.18 and 5.19) with the SYNC_NV bit set to zero, the 
LOGICAL BLOCK ADDRESS field set to zero, and the NUMBER OF LOGICAL BLOCKS field set to zero) prior to entering 
into any power condition that prevents accessing the medium (e.g., before the rotating media spindle motor is 
stopped during transition to the stopped power condition).

...

5.18 SYNCHRONIZE CACHE (10) command

...

...

The NUMBER OF LOGICAL BLOCKS field specifies the number of logical blocks that shall be synchronized, 
starting with the logical block specified by the LOGICAL BLOCK ADDRESS field. A NUMBER OF LOGICAL BLOCKS field 
set to zero specifies that all logical blocks starting with the one specified in the LOGICAL BLOCK ADDRESS field to 
the last logical block on the medium shall be synchronized. If the logical block address plus the number of 
logical blocks exceeds the capacity of the medium, the device server shall terminate the command with 
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set 
to LOGICAL BLOCK ADDRESS OUT OF RANGE.

A logical block within the range that is not in cache is not considered an error.

5.19 SYNCHRONIZE CACHE (16) command

Table 37 — SYNCHRONIZE CACHE (10) command

Byte\Bit 7 6 5 4 3 2 1 0

0 - 6 ...

7 (MSB)
NUMBER OF LOGICAL BLOCKS

8 (LSB)

9 CONTROL



06-034r2 SBC-3 Physical blocks 26 April 2006

26  

......

...

5.20 VERIFY (10) command

...

Logical units that contain cache shall write referenced cached logical blocks to the medium for the logical unit 
(e.g., as they would do in response to a SYNCHRONIZE CACHE command (see 5.18 and 5.19) with the 
SYNC_NV bit set to zero, the LOGICAL BLOCK ADDRESS field set to the value of the VERIFY command’s LOGICAL 
BLOCK ADDRESS field, and the NUMBER OF LOGICAL BLOCKS field set to the value of the VERIFY command’s 
VERIFICATION LENGTH field).

...

5.33 WRITE LONG (10) command

The WRITE LONG (10) command (see table 39) requests that the device server mark a logical or physical 
block as containing an error, or transfer data for a single logical or physical block from the data-out buffer and 
write it to the medium. The data written shall be the same length and shall be in the same order as the data 
returned by the READ LONG (10) command (see ). The device server shall write the logical or physical block 
to the medium, and shall not return GOOD status until the logical block has actually been written on the 
medium.

See the PRE-FETCH (10) command (see 5.3) for the definition of the LOGICAL BLOCK ADDRESS field.

A correction disabled (COR_DIS) bit set to zero specifies that, when the specified logical block is read, the 
device server shall perform normal error recovery on that logical block. A COR_DIS bit set to one specifies 
specifies that, when the specified logical block is read, the device server shall:

a) perform no error recovery on that logical block including any read error recovery enabled by the 
Read-Write Error Recovery mode page (see 6.3.5);

Table 38 — SYNCHRONIZE CACHE (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 - 9 ...

10 (MSB)
NUMBER OF LOGICAL BLOCKS

13 (LSB)

14 - 15 ...

Table 39 — WRITE LONG (10) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (3Fh)

1 COR_DIS WR_UNCOR PBLOCK Reserved Obsolete

2 (MSB)
LOGICAL BLOCK ADDRESS

5 (LSB)

6 Reserved

7 (MSB)
BYTE TRANSFER LENGTH

8 (LSB)

9 CONTROL



26 April 2006  06-034r2 SBC-3 Physical blocks

 27

b) perform no automatic reallocation of that logical block including any automatic reallocation enabled by 
the Read-Write Error Recovery mode page;

c) not consider errors on logical blocks to be informational exception conditions as defined in the 
Information Exceptions Control mode page (see SPC-4):; and

d) return CHECK CONDITION status with the sense key set to MEDIUM ERROR and the additional 
sense code set to READ ERROR - LBA MARKED BAD BY APPLICATION CLIENT.

The condition established by the COR_DIS bit being set to one shall remain in effect until the logical block is 
written by any means (e.g., any WRITE command, WRITE SAME command, FORMAT command, or another 
WRITE LONG command specifying the same logical block with the COR_DIS bit set to zero).

The write uncorrectable error (WR_UNCOR) bit and physical block (PBLOCK) bit are defined in table 40.

The LOGICAL BLOCK ADDRESS field specifies a logical block. If the specified LBA exceeds the capacity of the 
medium the device server shall terminate the command with CHECK CONDITION status with the sense key 
set to ILLEGAL REQUEST and the additional sense code set to LOGICAL BLOCK ADDRESS OUT OF 
RANGE.

The BYTE TRANSFER LENGTH field specifies the number of bytes of data that the device server shall transfer 
from the data-out buffer and write to the specified logical or physical block, provided that the WR_UNCOR bit is 
set to zero. If the BYTE TRANSFER LENGTH field is not set to zero and does not match the data length that the 
device server returns for a READ LONG command, then the device server shall terminate the command with 
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set 
to INVALID FIELD IN CDB. In the sense data (see 4.13 and SPC-3), the ILI and VALID bits shall be set to one 
and the INFORMATION field shall be set to the difference (i.e., residue) of the requested length minus the actual 
length in bytes. Negative values shall be indicated by two's complement notation. A BYTE TRANSFER LENGTH 
field set to zero specifies that no bytes shall be written. This condition shall not be considered an error.

5.34 WRITE LONG (16) command

The WRITE LONG (16) command (see table 41) requests that the device server mark a logical or physical 
block as containing an error, or transfer data for a single logical or physical block from the data-out buffer and 
write it to the medium. The data written shall be the same length and shall be in the same order as the data 
returned by the READ LONG (16) command (see ). The device server shall write the logical or physical block 
to the medium, and shall not return GOOD status until the logical block has actually been written on the 
medium. This command is implemented as a service action of the SERVICE ACTION OUT operation code 
(see A.2).

Table 40 — WR_UNCOR bit and PBLOCK bit

WR_UNCOR PBLOCK Description

0 0 Write the specified logical block

0 1 Write the physical block containing the specified logical block

1 0 Mark the specified logical block as containing an uncorrectable error, ignore the 
BYTE TRANSFER LENGTH field, and shall transfer no data

1 1
Mark the physical block containing the specified logical block as containing an 
uncorrectable error, ignore the BYTE TRANSFER LENGTH field, and shall transfer 
no data



06-034r2 SBC-3 Physical blocks 26 April 2006

28  

See the WRITE LONG (10) command (see ) for the definitions of the fields in this command.

5.35 WRITE SAME (10) command

...

Table 41 — WRITE LONG (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (9Fh)

1 COR_DIS WR_UNCOR PBLOCK SERVICE ACTION (11h)

2 (MSB)
LOGICAL BLOCK ADDRESS

9 (LSB)

10
Reserved

11

12 (MSB)
BYTE TRANSFER LENGTH

13 (LSB)

14 Reserved

15 CONTROL

Table 79 — WRITE SAME (10) command

Byte\Bit 7 6 5 4 3 2 1 0

0 - 6 ...

7 (MSB)
NUMBER OF LOGICAL BLOCKS

8 (LSB)

9 ...



26 April 2006  06-034r2 SBC-3 Physical blocks

 29

Table 80 describes the LBDATA bit and the PBDATA bit.

The NUMBER OF LOGICAL BLOCKS field specifies the number of contiguous logical blocks to be written, starting 
with the logical block specified by the LOGICAL BLOCK ADDRESS field. A NUMBER OF LOGICAL BLOCKS field set to 
zero specifies that the device server write all the logical blocks starting with the one specified in the LOGICAL 
BLOCK ADDRESS field to the last logical block on the medium. If the logical block address plus the number of 
logical blocks exceeds the capacity of the medium, the device server shall terminate the command with 
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set 
to LOGICAL BLOCK ADDRESS OUT OF RANGE.

5.36 WRITE SAME (16) command

Table 80 — LBDATA bit and PBDATA bit

LBDATA PBDATA Description

0 0

The device server shall write the single block of user data received from the 
data-out buffer to each logical block without modification.

If the medium is formatted with protection information:
a) the value in the LOGICAL BLOCK REFERENCE TAG field received in the single 

block of data from the data-out buffer shall be placed into the LOGICAL 
BLOCK REFERENCE TAG field of the first logical block written to the medium. 
Into each of the subsequent logical blocks, the device server shall place 
into the LOGICAL BLOCK REFERENCE TAG field the value of the previous 
logical block’s LOGICAL BLOCK REFERENCE TAG field plus one;

b) If the ATO bit is set to one in the Control mode page (see SPC-3), the 
logical block application tag received in the single block of data shall be 
placed in the LOGICAL BLOCK APPLICATION TAG field of each logical block. If 
the ATO bit is set to zero, the device server may write any value into the 
LOGICAL BLOCK APPLICATION TAG field of each logical block; and

c) The value in the LOGICAL BLOCK GUARD field received in the single block of 
data from the data-out buffer shall be placed in the LOGICAL BLOCK GUARD 
field of each logical block.

0 1  a
The device server shall replace the first eight bytes of the block received from the 
data-out buffer to each physical sector with the physical address of the sector 
being written using the physical sector format (see 5.2.2.4.5).

1  a 0

The device server shall replace the first four bytes of the block received from the 
data-out buffer with the least significant four bytes of the LBA of the block being 
written, ending with the least significant byte (e.g., if the LBA is 
77665544_33221100h, 33221100h is written with 33h written first and 00h 
written last).

1 1
The device server shall terminate the command with CHECK CONDITION status 
with the sense key set to ILLEGAL REQUEST and the additional sense code set 
to INVALID FIELD IN CDB.

a  If the medium is formatted with protection information then the protection information shall be written to 
a default value of FFFFFFFF_FFFFFFFFh in each of the written logical blocks.



06-034r2 SBC-3 Physical blocks 26 April 2006

30  

...

5.36 WRITE SAME (32) command

...

See the WRITE SAME (10) command (see 5.35) for the definitions of the GROUP NUMBER field, the WRPROTECT 
field, the PBDATA bit, the LBDATA bit, the LOGICAL BLOCK ADDRESS field, and the NUMBER OF LOGICAL BLOCKS 
field.

Suggested changes to chapter 6 (Parameters)

6.3.2 Mode parameter block descriptors

6.3.2.1 Mode parameter block descriptors overview

If the device server returns a mode parameter block descriptor, it shall return a short LBA mode parameter 
block descriptor (see 6.3.2.2) in the mode parameter data in response to:

a) a MODE SENSE (6) command; or
b) a MODE SENSE (10) command with the LLBAA bit set to zero.

If the device server returns a mode parameter block descriptor and the number of logical blocks is greater 
than FFFFFFFFh, it may return a long LBA mode parameter block descriptor (see 6.3.2.3) in the mode 
parameter data in response to a MODE SENSE (10) command with the LLBAA bit set to one.

If the application client sends a mode parameter block descriptor in the mode parameter list, it shall send a 
short LBA mode parameter block descriptor (see 6.3.2.2) for a MODE SELECT (6) command.

If the application client sends a mode parameter block descriptor in the mode parameter list, it may send a 
long LBA mode parameter block descriptor (see 6.3.2.3) for a MODE SELECT (10) command.

Support for the mode parameter block descriptors is optional. The device server shall establish a unit attention 
condition with the additional sense code of MODE PARAMETERS CHANGED (see SPC-3 and SAM-3) when 
the block descriptor values are changed.

6.3.2.2 Short LBA mode parameter block descriptor

Table 112 defines the block descriptor for direct-access block devices used:

a) with the MODE SELECT (6) and MODE SENSE (6) commands; and

Table 79 — WRITE SAME (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 - 9 ...

10 (MSB)
NUMBER OF LOGICAL BLOCKS

13 (LSB)

14 - 15 ...

Table 79 — WRITE SAME (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 - 27 ...

28 (MSB)
NUMBER OF LOGICAL BLOCKS

31 (LSB)



26 April 2006  06-034r2 SBC-3 Physical blocks

 31

b) with the MODE SELECT (10) and MODE SENSE (10) commands when the LONGLBA bit is set to zero 
in the mode parameter header (see SPC-3).

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the number of logical 
blocks specified in the NUMBER OF LOGICAL BLOCKS field sent in the last MODE SELECT command that 
contained a mode parameter block descriptor. If no MODE SELECT command with a mode parameter block 
descriptor has been received then the current number of logical blocks shall be returned. To determine the 
number of logical blocks at which the logical unit is currently formatted, the application client shall use the 
READ CAPACITY command (see 5.11) rather than the MODE SELECT command.

On a MODE SENSE command, the device server may return a value of zero indicating that it does not report 
the number of logical blocks in the short LBA mode parameter block descriptor.

On a MODE SENSE command, if the number of logical blocks on the medium exceeds the maximum value 
that is able to be specified in the NUMBER OF LOGICAL BLOCKS field, the device server shall return a value of 
FFFFFFFFh.

If the logical unit does not support changing its capacity by changing the NUMBER OF LOGICAL BLOCKS field 
using the MODE SELECT command (see SPC-3), the value in the NUMBER OF LOGICAL BLOCKS field is ignored. 
If the device supports changing its capacity by changing the NUMBER OF LOGICAL BLOCKS field, then the 
NUMBER OF LOGICAL BLOCKS field is interpreted as follows:

a) If the NUMBER OF LOGICAL BLOCKS field is set to zero, the logical unit shall retain its current capacity if 
the logical block length has not changed. If the NUMBER OF LOGICAL BLOCKS field is set to zero and the 
content of the LOGICAL BLOCK LENGTH field (i.e., new logical block length) is different than the current 
logical block length, the logical unit shall be set to its maximum capacity when the new logical block 
length takes effect (i.e., after a successful FORMAT UNIT command);

b) If the NUMBER OF LOGICAL BLOCKS field is greater than zero and less than or equal to its maximum 
capacity, the logical unit shall be set to that number of logical blocks. If the content of the LOGICAL 
BLOCK LENGTH field is the same as the current logical block length, the logical unit shall not become 
format corrupt. This capacity setting shall be retained through power cycles, hard resets, logical unit 
resets, and I_T nexus losses. If the content of the LOGICAL BLOCK LENGTH field is the same as the 
current logical block length this capacity setting shall take effect on successful completion of the 
MODE SELECT command. If the content of the LOGICAL BLOCK LENGTH field (i.e., new logical block 
length) is different than the current logical block length this capacity setting shall take effect when the 
new logical block length takes effect (i.e., after a successful FORMAT UNIT command);

c) If the NUMBER OF LOGICAL BLOCKS field is set to a value greater than the maximum capacity of the 
device and less than FFFFFFFFh, then the MODE SELECT command shall be terminated with 
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense 
code set to INVALID FIELD IN PARAMETER LIST. The logical unit shall retain its previous block 
descriptor settings; or

d) If the NUMBER OF LOGICAL BLOCKS field is set to FFFFFFFFh, the logical unit shall be set to its 
maximum capacity. If the content of the LOGICAL BLOCK LENGTH field is the same as the current logical 
block length, the logical unit shall not become format corrupt. This capacity setting shall be retained 
through power cycles, hard resets, logical unit resets, and I_T nexus losses. If the content of the 
LOGICAL BLOCK LENGTH field is the same as the current logical block length this capacity setting shall 
take effect on successful completion of the MODE SELECT command. If the content of the LOGICAL 

Table 112 — Short LBA mode parameter block descriptor

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
NUMBER OF LOGICAL BLOCKS

3 (LSB)

4 Reserved

5 (MSB)
LOGICAL BLOCK LENGTH

7 (LSB)



06-034r2 SBC-3 Physical blocks 26 April 2006

32  

BLOCK LENGTH field (i.e., new logical block length) is different than the current logical block length this 
capacity setting shall take effect when the new logical block length takes effect (i.e., after a successful 
FORMAT UNIT command).

The LOGICAL BLOCK LENGTH field specifies the length in bytes of each logical block. No change shall be made 
to any logical blocks on the medium until a format operation (see 5.2) is initiated by an application client.

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the length of the logical 
blocks as specified in the LOGICAL BLOCK LENGTH field sent in the last MODE SELECT command that 
contained a mode parameter block descriptor. If no MODE SELECT command with a block descriptor has 
been received then the current logical block length shall be returned (e.g., if the logical block length is 512 
bytes and a MODE SELECT command occurs with the LOGICAL BLOCK LENGTH field set to 520 bytes, any 
MODE SENSE commands would return 520 in the LOGICAL BLOCK LENGTH field). To determine the logical 
block length at which the logical unit is currently formatted, the application client shall use the READ 
CAPACITY command (see 5.11) rather than the MODE SELECT command.

6.3.2.3 Long LBA mode parameter block descriptor

Table 113 defines the block descriptor for direct-access block devices used with the MODE SELECT (10) 
command and MODE SENSE (10) command when the LONGLBA bit is set to one in the mode parameter 
header (see SPC-3).

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the number of logical 
blocks specified in the NUMBER OF LOGICAL BLOCKS field sent in the last MODE SELECT command that 
contained a mode parameter block descriptor. If no MODE SELECT command with a mode parameter block 
descriptor has been received then the current number of logical blocks shall be returned. To determine the 
number of logical blocks at which the logical unit is currently formatted, the application client shall use the 
READ CAPACITY command (see 5.11) rather than the MODE SELECT command.

On a MODE SENSE command, the device server may return a value of zero indicating that it does not report 
the number of logical blocks in the long LBA mode parameter block descriptor.

If the logical unit does not support changing its capacity by changing the NUMBER OF LOGICAL BLOCKS field 
using the MODE SELECT command (see SPC-3), the value in the NUMBER OF LOGICAL BLOCKS field is ignored. 
If the device supports changing its capacity by changing the NUMBER OF LOGICAL BLOCKS field, then the 
NUMBER OF LOGICAL BLOCKS field is interpreted as follows:

a) If the NUMBER OF LOGICAL BLOCKS field is set to zero, the logical unit shall retain its current capacity if 
the logical block length has not changed. If the NUMBER OF LOGICAL BLOCKS field is set to zero and the 
content of the LOGICAL BLOCK LENGTH field (i.e., new logical block length) is different than the current 
logical block length, the logical unit shall be set to its maximum capacity when the new logical block 
length takes effect (i.e., after a successful FORMAT UNIT command);

b) If the NUMBER OF LOGICAL BLOCKS field is greater than zero and less than or equal to its maximum 
capacity, the logical unit shall be set to that number of logical blocks. If the content of the LOGICAL 
BLOCK LENGTH field is the same as the current logical block length, the logical unit shall not become 
format corrupt. This capacity setting shall be retained through power cycles, hard resets, logical unit 
resets, and I_T nexus losses. If the content of the LOGICAL BLOCK LENGTH field is the same as the 

Table 113 — Long LBA mode parameter block descriptor

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
NUMBER OF LOGICAL BLOCKS

7 (LSB)

8
Reserved

11

12 (MSB)
LOGICAL BLOCK LENGTH

15 (LSB)



26 April 2006  06-034r2 SBC-3 Physical blocks

 33

current logical block length this capacity setting shall take effect on successful completion of the 
MODE SELECT command. If the content of the LOGICAL BLOCK LENGTH field (i.e., new logical block 
length) is different than the current logical block length this capacity setting shall take effect when the 
new logical block length takes effect (i.e., after a successful FORMAT UNIT command);

c) If the NUMBER OF LOGICAL BLOCKS field is set to a value greater than the maximum capacity of the 
device and less than FFFFFFFF FFFFFFFFh, then the device server shall terminate the MODE 
SELECT command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST 
and the additional sense code set to INVALID FIELD IN PARAMETER LIST. The logical unit shall 
retain its previous block descriptor settings; or

d) If the NUMBER OF LOGICAL BLOCKS field is set to FFFFFFFF FFFFFFFFh, the logical unit shall be set to 
its maximum capacity. If the content of the LOGICAL BLOCK LENGTH field is the same as the current 
logical block length, the logical unit shall not become format corrupt. This capacity setting shall be 
retained through power cycles, hard resets, logical unit resets, and I_T nexus losses. If the content of 
the LOGICAL BLOCK LENGTH field is the same as the current logical block length this capacity setting 
shall take effect on successful completion of the MODE SELECT command. If the content of the 
LOGICAL BLOCK LENGTH field (i.e., new logical block length) is different than the current logical block 
length this capacity setting shall take effect when the new logical block length takes effect (i.e., after a 
successful FORMAT UNIT command).

The LOGICAL BLOCK LENGTH field specifies the length in bytes of each logical block. No change shall be made 
to any logical blocks on the medium until a format operation (see 5.2) is initiated by an application client.

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the length of the logical 
blocks as specified in the LOGICAL BLOCK LENGTH field sent in the last MODE SELECT command that 
contained a mode parameter block descriptor. If no MODE SELECT command with a block descriptor has 
been received then the current logical block length shall be returned (e.g., if the logical block length is 512 
bytes and a MODE SELECT command occurs with the LOGICAL BLOCK LENGTH field set to 520 bytes, any 
MODE SENSE commands would return 520 in the LOGICAL BLOCK LENGTH field). To determine the logical 
block length at which the logical unit is currently formatted, the application client shall use the READ 
CAPACITY command (see 5.11) rather than the MODE SELECT command.

6.3.3 Caching mode page

...

The MINIMUM PRE-FETCH field specifies the number of logical blocks to pre-fetch regardless of the delays it 
might cause in processing subsequent commands. The field contains either:

a) a number of logical blocks, if the MF bit is set to zero; or
b) a scalar multiplier of the value in the TRANSFER LENGTH field, if the MF bit is set to one.

...

The MAXIMUM PRE-FETCH field specifies the number of logical blocks to pre-fetch if the pre-fetch does not delay 
processing of subsequent commands. The field contains either:

a) a number of logical blocks, if the MF bit is set to zero; or
b) a scalar multiplier of the value in the TRANSFER LENGTH field, if the MF bit is set to one.

The MAXIMUM PRE-FETCH field contains the maximum amount of data to pre-fetch as a result of one READ 
command. It is used in conjunction with the DISABLE PRE-FETCH TRANSFER LENGTH field and MAXIMUM PRE- 
FETCH CEILING field to trade off pre-fetching new data with displacing old data already stored in the cache.

The MAXIMUM PRE-FETCH CEILING field specifies an upper limit on the number of logical blocks computed as the 
maximum pre-fetch. If this number of logical blocks is greater than the value in the MAXIMUM PRE-FETCH field, 
then the number of logical blocks to pre-fetch shall be truncated to the value stored in the MAXIMUM PRE-FETCH 
CEILING field.


	Revision history
	Related documents
	Related web sites
	Overview
	ATA Long Physical Sector feature set
	ATA Long Logical Sector feature set
	Proposal
	Suggested changes to chapter 3 (Definitions)
	Suggested changes to chapter 4 (Model)
	Suggested changes to chapter 5 (Commands)
	5.2 FORMAT UNIT command
	5.2.1 FORMAT UNIT command overview
	5.2.2 FORMAT UNIT parameter list
	5.2.2.1 FORMAT UNIT parameter list overview
	5.2.2.2 Parameter list header
	5.2.2.3 Initialization pattern descriptor
	5.2.2.4 Address descriptor formats
	5.2.2.4.1 Address descriptor formats overview
	5.2.2.4.2 Short block format address descriptor
	5.2.2.4.3 Long block format address descriptor
	5.2.2.4.4 Bytes from index format address descriptor
	5.2.2.4.5 Physical sector format address descriptor




	Suggested changes to chapter 6 (Parameters)
	6.3.2 Mode parameter block descriptors
	6.3.2.1 Mode parameter block descriptors overview
	6.3.2.2 Short LBA mode parameter block descriptor
	6.3.2.3 Long LBA mode parameter block descriptor



