
4 January 2006 06-034r0 SBC-3 Physical blocks

 1

To: T10 Technical Committee
From: Rob Elliott, HP (elliott@hp.com)
Date: 4 January 2006
Subject: 06-034r0 SBC-3 Physical blocks

Revision history
Revision 0 (4 January 2006) First revision

Related documents
sbc3r03 - SCSI Block Commands - 3 (SBC-3) revision 3
sat-r07 - SCSI to ATA Translation revision 7
T13/d1699r02 - AT Attachment - 8 ATA/ATAPI Command Set (ATA8-ACS)

Related web sites
Big Sector consortium - http://www.bigsector.org (Maxtor, Seagate, Western Digital, Hitachi, Intel, LSI Logic,

Microsoft)
IDEMA Symposium: HDD Dynamics--Interfaces, Electronics, Architecture and Reliability 6 December 2005:

Session 3: HDD Sector Architecture. Slides at:
http://www.idema.org/_smartsite/modules/news/show_news.php?cmd=display&news_id=1230

Overview
ATA devices are starting to support physical sectors that are larger than logical sectors (see Related web
sites). This improves error correction capability, increases capacity, and increases data rates.

The SCSI to ATA Translation (SAT) standard defines how to map an ATA device into a SCSI logical unit, but
SCSI currently defines no way to report the ATA device’s physical sector size or logical sector alignment.

ATA/ATAPI-7 and ATA8-ACS define a Long Physical Sector feature set (see 4.21) which allows an ATA device
to present a 512 byte logical sector interface for ATA media access commands while implementing
behind-the-scenes a larger physical sector size. The feature set lets the physical sector size be a 2n multiple
of the logical block size - 1, 2, 4, 8, ... 32,768 logical blocks corresponding to 512, 1024, 2048, 4096, ...
16,777,216 bytes per physical block.

If a read command accesses less than the physical sector size, the ATA device takes a bit longer to read extra
data (probably saving it into a read cache). If a write command accesses less than the physical sector size,
the ATA device performs a read-modify-write, which does have a noticeable performance impact. IDENTIFY
DEVICE data Word 106 contains the number of logical sectors per physical sector (2n where n is 0 through
15). In addition to SAT concerns, native SCSI disk drives may want to implement this feature.

ATA8-ACS also allows logical sectors to not be aligned to the physical sectors (e.g., the ATA device could be
designed such that a 1024 byte access at LBA 1 is aligned but LBA 0 is not). This was added because Master
Boot Record (MBR) partitioned disks generally contain a single partition starting at LBA 63 (not the
well-aligned LBA 64). Thus, when using a disk with 4096 byte physical sectors, performance will be better if
LBAs 7/15/23/31/39/47/55/63/... are aligned to the physical sector boundary rather than LBAs
0/8/16/24/32/40/48/56/64/.... IDENTIFY DEVICE data Word 209 defines the offset of LBA 0 within a physical
sector (14 bits, to allow up to LBA 16,383). It’s not clear why this doesn’t support the maximum value
supported by Word 106 (which would take 15 bits). In addition to SAT concerns, native SCSI disk drives may
want to implement this feature.

ATA/ATAPI-7 and ATA8-ACS also support logical sectors that are not 512 bytes. Words 117-118 contain the
logical sector size in 16-bit words (with word 106 bit 12 also set to 1). SCSI already provides the equivalent
functionality in the READ CAPACITY BLOCK LENGTH IN BYTES field and the mode parameter block descriptor
BLOCK LENGTH field.

This proposal suggests these changes to SBC-3:

1) Add a field to the READ CAPACITY (16) data to indicate the number of logical blocks per physical
block.

2) Add a field to the READ CAPACITY (16) data to indicate the offset of the logical blocks within the
physical blocks.

06-034r0 SBC-3 Physical blocks 4 January 2006

2

3) Add a field to the FORMAT UNIT parameter list to specify the number of logical blocks per physical
block (default of 0 means 1 logical block per physical block).

4) Add a field to FORMAT UNIT to specify the alignmenet of LBA 0 within a physical block (default of 0
means naturally aligned).

5) Redefine READ LONG and WRITE LONG as accessing physical blocks rather than logical blocks.
The LBA field still specifies an LBA, but all logical blocks in the physical block must be accessed for
the commands to make sense. Software that doesn’t understand this will just see an unusually large
amount of additional information in the logical block (but the format of the data and the amount of
additional information is already vendor-specific, so it shouldn’t care).

Editor’s Note 1: Most drives will have severe restrictions on supported combinations of logical
block size, logical blocks per physical block, and logical block offset. Should a VPD page be
defined to indicate which sizes/combinations can be supported rather than leave it up to
trial-and-error?

Suggested changes

0.0.1 direct-access block device: A device that is capable of containing data stored in logical blocks that
each have a unique logical block address.

0.0.2 logical block: A set of data bytes accessed and referenced as a unit by the application client. See 4.4.

0.0.3 logical block address (LBA): The value used to reference a logical block.

0.0.4 physical block: A set of logical blocks accessed as a unit by the device server. See 4.x.

4.1 Direct-access block device type model overview

SCSI devices that conform to this standard are referred to as direct-access block devices. This includes the
category of logical units commonly referred to as rigid disks and removable rigid disks. MMC-4 is typically
used by CD-ROM devices.

This standard is intended to be used in conjunction with SAM-3, SPC-3, SCC-2, SES-2, and SMC-2.

Direct-access block devices store data for later retrieval in logicalphysical blocks, which are divided into
logical blocks for most media-access commands. LogicalPhysical blocks contain user data, may contain
protection information accessible to the application client, and may contain additional information not normally
accessible to the application client (e.g., an ECC). Logical blocks contain user data and may contain
protection information accessible to the application client. The number of bytes of user data contained in each
logical block is the block length. The block length is greater than or equal to one byte and should be even.
Most direct-access block devices support a block length of 512 bytes and some support additional block
lengths (e.g., 520 or 4096 bytes). The block length does not include the length of protection information and
additional information, if any, that are associated with the logical block. The block length is the same for all
logical blocks on the medium.

Each logical block is stored at a unique logical block address (LBA), which is either four bytes (i.e., a short
LBA) or eight bytes (i.e., a long LBA) in length. The logical block addresses on a logical block shall begin with
zero and shall be contiguous up to the last logical block on the logical unit. An application client uses
commands performing write operations to store logical blocks and commands performing read operations to
retrieve logical blocks. A write operation causes one or more logical blocks to be written to the medium. A
read operation causes one or more logical blocks to be read from the medium. A verify operation confirms that
one or more logical blocks were correctly written and are able to be read without error from the medium.

Logical blocks are stored by a process that causes localized changes or transitions within a medium. The
changes made to the medium to store the logical blocks may be volatile (i.e., not retained through power
cycles) or non-volatile (i.e., retained through power cycles). The medium may contain vendor specific
information that is not addressable through an LBA. Such data may include defect management data and
other device management information.

4 January 2006 06-034r0 SBC-3 Physical blocks

 3

4.2.2 Rotating media

The typical application of a direct-access block device is a magnetic disk device. The medium is a spinning
disk with a magnetic material that allows flux changes to be induced and recorded. An actuator positions a
read-write head radially across the spinning disk, allowing the device to randomly read or write the information
at any radial position. Data is stored by using the write portion of the head to record flux changes and is read
by using the read portion of the head to read the recorded data.

The circular path followed by the read-write head at a particular radius is called a track. The track is divided
into sectors each containing blocks of stored data. If there are more than one disk spinning on a single axis
and the actuator has one or more read-write heads to access the disk surfaces, the collection of tracks at a
particular radius is called a cylinder.

A logical block is stored in one or more sectors, or a sector may store more than one logical block. Sectors
may also contain information for accessing, synchronizing, and protecting the integrity of the logical blocks.

A rotating media-based direct-access block device is ready when the disks are rotating at the correct speed
and the read-write circuitry is powered and ready to access the data, and may require a START STOP UNIT
command (see 5.17) to bring the logical unit to the ready state.

Rotating media-based direct-access block device are usually non-volatile.

The defect management scheme of a disk device may not be discernible through this command set, though
some aspects (see) may be accessible to the application client with the READ LONG commands and the
WRITE LONG commands (see 5.14, 5.15, 5.33, and 5.34).

4.2.3 Memory media

Memory media is based on solid state random access memories (RAMs) (e.g., static RAM (SRAM), dynamic
RAM (DRAM), magnetoresistive RAM (MRAM), ferroelectric RAM (FeRAM), or flash memory). Memory
media-based direct-access block devices may be used for fast-access storage.

A memory media-based direct-access block device is ready after power on, and does not require a START
STOP UNIT command (see 5.17) to bring the logical unit to a ready state.

These logical units may be non-mechanical, and therefore logical blocks may be accessed with similar access
times regardless of their location on the medium. Memory media-based direct-access block devices may store
less data than disks or tapes, and may be volatile.

The defect management scheme (e.g., ECC bytes) (see) may be accessible to the application client with the
READ LONG commands and the WRITE LONG commands (see 5.14, 5.15, 5.33, and 5.34).

Memory media may be volatile (e.g., SRAM or DRAM) or non-volatile (e.g., SRAM or DRAM with battery
backup, MRAM, FeRAM, or flash memory).

4.4 Logical blocks

Logical blocks are stored on the medium along with additional information that the device server uses to
manage the storage and retrieval. The format of the additional information is defined by other standards or is
vendor-specific and is hidden from the application client during normal read, write, and verify operations. This
additional information may be used to identify the physical location of the blocks of data, the address of the
logical block, and to provide protection against the loss of user data and protection information, if any (e.g., by
containing ECC bytes).

The first logical block address is zero. The last logical block address is [n-1], where [n] is the number of logical
blocks on the medium accessible by the application client. A READ CAPACITY command should be used to
determine the value of [n-1].

Logical block addresses are no larger than 8 bytes. Some commands support only 4 byte (i.e., short) LOGICAL
BLOCK ADDRESS fields (e.g., READ CAPACITY (10), READ (10), and WRITE (10)). The READ CAPACITY (10)
command returns a capacity of FFFFFFFFh if the capacity exceeds that accessible with short LBAs, indicating
that:

a) the application client should enable descriptor format sense data (see SPC-3) in the Control mode
page (see SPC-3) and in any REQUEST SENSE commands (see SPC-3) it sends; and

06-034r0 SBC-3 Physical blocks 4 January 2006

4

b) the application client should use commands with 8-byte LOGICAL BLOCK ADDRESS fields (e.g., READ
CAPACITY (16), READ (16), and WRITE (16)).

NOTE 1 - If a command with a 4-byte LOGICAL BLOCK ADDRESS field accesses logical blocks beyond logical
block address FFFFFFFFh and fixed format sense data is used, there is no field in the sense data large
enough to report the logical block address of an error (see 4.13).

If a command is received that references or attempts to access a logical block not within the capacity of the
medium, the device server terminates the command with CHECK CONDITION status with the sense key set
to ILLEGAL REQUEST and the additional sense code set to LOGICAL BLOCK ADDRESS OUT OF RANGE.
The command may be terminated before processing or after the device server has transferred some or all of
the data.

The number of bytes of user data contained in a logical block is the block length. The parameter data returned
by the READ CAPACITY command (see 5.10) describes the block length that is used on the medium. The
mode parameter block descriptor (see 6.3.2) is used to change the block length in direct-access block devices
that support changeable block lengths. The block length does not include the length of protection information
and additional information, if any.

The location of a logical block on the medium is not required to have a relationship to the location of any other
logical block. However, in a typical direct-access block device, the time to access a logical block at address
[x+1] after accessing logical block [x] is often less than the time to access some other logical block. The time
to access the logical block at address [x] and then the logical block at address [x+1] need not be less than
time to access [x] and then [x+100]. The READ CAPACITY command issued with a PMI bit set to one may be
useful in determining where longer access times occur.

4.x Physical blocks

Physical blocks are a set of logical blocks that are accessed by the device server as a unit.

Direct-access block devices may be formatted into physical blocks that are larger than the logical block size
(e.g., a physical block size of 4 096 bytes with a logical block size of 512 bytes) to increase performance,
increase the efficiency of the ECC, and increase capacity.

Logical blocks may or may not be aligned to the physical block boundary. If the logical blocks are aligned, then
an access for the physical block size starting at a given logical block only accesses one physical block.

Editor’s Note 2: need more model text here. ATA8-ACS includes figures showing alignment
possibilities.

4.6 Initialization

Direct-access block devices may require initialization prior to write, read, and verify operations. This
initialization is performed by a FORMAT UNIT command (see 5.2). Parameters related to the format (e.g.,
block sizelength) may be set with the MODE SELECT command prior to the format operation. Some
direct-access block devices are initialized by means not specified in this standard. The time when the
initialization occurs is vendor-specific.

Direct-access block devices using a non-volatile medium may save the parameters and only need to be
initialized once. However, some mode parameters may need to be initialized after each logical unit reset. A
catastrophic failure of the direct-access block device may require the FORMAT UNIT command to be issued.

Direct-access block devices that use a volatile medium may need to be initialized after each logical unit reset
prior to the processing of write, read, or verify operations. Mode parameters may also need initialization after
logical unit resets.

NOTE 2 - Mode parameter block descriptors read with the MODE SENSE command before a FORMAT UNIT
completes return information that may not reflect the true state of the medium.

4 January 2006 06-034r0 SBC-3 Physical blocks

 5

A direct-access block device may become format corrupt after processing a MODE SELECT command that
changes parameters related to the medium format. During this time, the device server may terminate medium
access commands with CHECK CONDITION status with the sense key set to NOT READY and the
appropriate additional sense code for the condition.

Any time the parameter data returned by the READ CAPACITY (10) command (see 5.10) or the READ
CAPACITY (16) command (see 5.11) changes (e.g., when a FORMAT UNIT command or a MODE SELECT
command completes changing the number of logical blocks, logical block size, protection information, or
reference tag ownership values, or when a vendor-specific mechanism causes a change), the device server
should establish a unit attention condition for the initiator port associated with each I_T nexus except the I_T
nexus on which the command causing the change was received with an additional sense code of CAPACITY
DATA HAS CHANGED.

NOTE 3 - Logical units compliant with previous versions of this standard did not establish a unit attention
condition.

4.8 Medium defects

Any medium has the potential for defects that cause data to be lost. Therefore, each logical block may contain
additional information that allows the detection of changes to the user data and protection information, if any,
caused by defects in the medium or other phenomena, and may also allow the data to be reconstructed
following the detection of such a change (e.g., ECC bytes). Some direct-access block devices allow the
application client to examine and modify the additional information by using the READ LONG commands and
the WRITE LONG commands (see 5.14, 5.15, 5.33, and 5.34). The application client may use the WRITE
LONG commands to induce a defect to test the defect detection logic of the direct-access block device or to
emulate an unrecoverable logical block when generating a mirror copy.

Defects may also be detected and managed during processing of the FORMAT UNIT command (see 5.2). The
FORMAT UNIT command defines four sources of defect information: the PLIST, CLIST, DLIST, and GLIST.
These defects may be reassigned or avoided during the initialization process so that they do not affect any
logical blocks. The sources of defect location information (i.e., defects) are defined as follows:

a) Primary defect list (PLIST). This is the list of defects, which may be supplied by the original manufac-
turer of the device or medium, that are considered permanent defects. The PLIST is located outside of
the application client accessible logical block space. The PLIST is accessible by the device server for
reference during the format operation, but it is not accessible by the application client except through
the READ DEFECT DATA commands (see 5.10 and 5.13). Once created, the original PLIST shall not
change;

b) Logical unit certification list (CLIST). This list includes defects detected by the device server during an
optional certification process performed during the FORMAT UNIT command. This list shall be added
to the GLIST;

c) Data defect list (DLIST). This list of defects may be supplied by the application client to the device
server during the FORMAT UNIT command. This list shall be added to the GLIST; and

d) Grown defect list (GLIST). The GLIST includes all defects sent by the application client (i.e., the
DLIST) or detected by the device server (i.e., the CLIST). The GLIST does not include the PLIST. If
the CMPLST bit is set to zero, the GLIST shall include DLISTs provided to the device server during the
previous and the current FORMAT UNIT commands. The GLIST shall also include:
A) defects detected by the format operation during medium certification;
B) defects previously identified with a REASSIGN BLOCKS command (see 5.16); and
C) defects previously detected by the device server and automatically reallocated.

The direct-access block device may automatically reassign defects if allowed by the Read-Write Error
Recovery mode page (see 6.3.4).

Defects may also occur after initialization. The application client issues a REASSIGN BLOCKS command
(see 5.16) to request that the specified logical block address be reassigned to a different part of the medium.
This operation may be repeated if a new defect appears at a later time. The total number of defects that may
be handled in this manner is vendor-specific.

Defect management on direct-access block devices is vendor-specific. Direct-access block devices not using
a removable medium may optimize the defect management for capacity or performance or both. Some

06-034r0 SBC-3 Physical blocks 4 January 2006

6

direct-access block devices that use a removable medium do not support defect management or use defect
management that does not impede the ability to interchange the medium.

5.2 FORMAT UNIT command

5.2.1 FORMAT UNIT command overview

The FORMAT UNIT command (see table 1) requests that the device server format the medium into
application client accessible logical blocks as specified in the number of blocks and block length values
received in the last mode parameter block descriptor (see 6.3.2) in a MODE SELECT command (see SPC-3).
In addition, the device server may certify the medium and create control structures for the management of the
medium and defects. The degree that the medium is altered by this command is vendor-specific.

If a device server receives a FORMAT UNIT command before receiving a MODE SELECT command with a
mode parameter block descriptor the device server shall use the number of blocks and block length at which
the logical unit is currently formatted (i.e., no change is made to the number of blocks and the block length of
the logical unit during the format operation).

The simplest form of the FORMAT UNIT command (i.e., a FORMAT UNIT command with no parameter data)
accomplishes medium formatting with little application client control over defect management. The device
server implementation determines the degree of defect management that is to be performed. Additional forms
of this command increase the application client's control over defect management. The application client may
specify:

a) defect list(s) to be used;
b) defect locations;
c) that logical unit certification be enabled; and
d) exception handling in the event that defect lists are not accessible.

While performing a format operation, the device server shall respond to commands attempting to enter into
the task set except INQUIRY commands, REPORT LUNS commands, and REQUEST SENSE commands
with CHECK CONDITION status with the sense key set to NOT READY and the additional sense code set to
LOGICAL UNIT NOT READY, FORMAT IN PROGRESS. Handling of commands already in the task set is
vendor-specific.

The PROGRESS INDICATION field in parameter data returned in response to a REQUEST SENSE command
(see SPC-3) may be used by the application client at any time during a format operation to poll the logical
unit’s progress. While a format operation is in progress unless an error has occurred, a device server shall
respond to a REQUEST SENSE command by returning parameter data containing sense data with the sense
key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, FORMAT IN
PROGRESS with the sense key specific bytes set for progress indication (see SPC-3).

A format protection information (FMTPINFO) bit set to zero specifies that the device server shall disable the use
of protection information (see 4.16) and format the medium to the block length specified in the mode
parameter block descriptor of the mode parameter header (see SPC-3). A FMTPINFO bit set to one specifies
that the device server shall enable the use of protection information (see 4.16) and format the medium to the

Table 1 — FORMAT UNIT command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (04h)

1 FMTPINFO RTO_REQ LONGLIST FMTDATA CMPLIST DEFECT LIST FORMAT

2 Vendor specific

3
Obsolete

4

5 CONTROL

4 January 2006 06-034r0 SBC-3 Physical blocks

 7

block length specified in the mode parameter block descriptor of the mode parameter header plus eight (e.g.,
if the block length is 512, then the formatted block length is 520). Following a successful format, the PROT_EN
bit in the READ CAPACITY (16) parameter data (see 5.11) indicates whether protection information (see 4.16)
is enabled.

The reference tag own request (RTO_REQ) bit specifies whether the application client or the device server has
ownership of the LOGICAL BLOCK REFERENCE TAG field in protection information (see 4.16.2). If the FMTPINFO bit
is set to zero and the RTO_REQ bit is set to one, the device server shall terminate the command with CHECK
CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to
INVALID FIELD IN CDB. If the FMTPINFO bit is set to one and the RTO_REQ bit is set to one, the device server
shall enable application client ownership of the LOGICAL BLOCK REFERENCE TAG field. If the FMTPINFO bit set to
one and the RTO_REQ bit is set to zero, the device server shall disable application client ownership (i.e.,
enable device server ownership) of the LOGICAL BLOCK REFERENCE TAG field. Following a successful format,
the RTO_EN bit in the READ CAPACITY (16) parameter data (see 5.11) indicates whether application client
ownership of the LOGICAL BLOCK REFERENCE TAG field is enabled.

When protection information is written during a FORMAT UNIT command (i.e., the FMTPINFO bit is set to one)
protection information shall be written to a default value of FFFFFFFF_FFFFFFFFh.

A LONGLIST bit set to zero specifies that the parameter list, if any, contains a short parameter list header as
defined in table 4. A LONGLIST bit set to one specifies that the parameter list, if any, contains a long parameter
list header as defined in table 5. If the FMTDATA bit is set to zero, the LONGLIST bit shall be ignored.

A format data (FMTDATA) bit set to zero specifies that no parameter list be transferred from the data-out buffer.

A FMTDATA bit set to one specifies that the FORMAT UNIT parameter list (see table 3) shall be transferred from
the data-out buffer. The parameter list consists of a parameter list header, followed by an optional initialization
pattern descriptor, followed by an optional defect list.

A complete list (CMPLST) bit set to zero specifies that the defect list included in the FORMAT UNIT parameter
list shall be used in an addition to the existing list of defects. As a result, the device server shall construct a
new GLIST (see 4.8) that contains:

a) the existing GLIST;
b) the DLIST, if it is sent by the application client; and
c) the CLIST, if certification is enabled (i.e., the device server may add any defects it detects during the

format operation).

A CMPLST bit set to one specifies that the defect list included in the FORMAT UNIT parameter list is a complete
list of defects. Any existing defect list except the PLIST shall be ignored by the device server. As a result, the
device server shall construct a new GLIST (see 4.8) that contains:

a) the DLIST, if it is sent by the application client; and
b) the CLIST, if certification is enabled (i.e., the device server may add any defects it detects during the

format operation).

If the FMTDATA bit is set to zero, the CMPLIST bit shall be ignored.

The DEFECT LIST FORMAT field specifies the format of the address descriptors in the defect list if the FMTDATA bit
is set to one (see table 2).

06-034r0 SBC-3 Physical blocks 4 January 2006

8

Table 2 defines the address descriptor usage for the FORMAT UNIT command.

Table 2 — FORMAT UNIT command address descriptor usage

Field in the FORMAT UNIT CDB DEFECT LIST LENGTH
field in the

parameter list
header

Type a Comments f
FMTDATA CMPLST

DEFECT
LIST

FORMAT

0 any 000b Not available M Vendor-specific defect information

1 0
000b
(short
block)

Zero
O See b and d

1 1 O See b and e

1 0
Nonzero

O See c and d

1 1 O See b and e

011b
(long
block)

Zero
O See b and d

O See b and e

1 0
Nonzero

O See c and d

1 1 O See c and e

1 0
100b
(bytes
from

index)

Zero
O See b and d

1 1 O See b and e

1 0
Nonzero

O See c and d

1 1 O See c and e

1 0
101b

(physical
sector)

Zero
O See b and d

1 1 O See b and e

1 0
Nonzero

O See c and d

1 1 O See c and e

1 0 110b
(vendor
specific)

Vendor specific
O

1 1 O

All others Reserved.
a M = implementation is mandatory. O = implementation is optional.
b No DLIST is included in the parameter list.
c A DLIST is included in the parameter list. The device server shall add the DLIST defects to the new

GLIST.
d The device server shall add existing GLIST defects to the new GLIST (i.e., use the existing GLIST).
e The device server shall not add existing GLIST defects to the new GLIST (i.e., discard the existing

GLIST).
f All the options described in this table cause a new GLIST to be created during processing of the

FORMAT UNIT command as described in the text.

4 January 2006 06-034r0 SBC-3 Physical blocks

 9

5.2.2 FORMAT UNIT parameter list

5.2.2.1 FORMAT UNIT parameter list overview

Table 3 defines the FORMAT UNIT parameter list.

The parameter list header is defined in 5.2.2.2.

The initialization pattern descriptor, if any, is defined in 5.2.2.3.

The defect list, if any, contains address descriptors (see 5.2.2.4) each specifying a location on the medium
that the device server shall exclude from the application client accessible part. This is called the DLIST (see
4.8)

5.2.2.2 Parameter list header

The parameter list headers (see table 4 and table 5) provide several optional format control parameters.
Device servers that implement these headers provide the application client additional control over the use of
the four defect sources, and the format operation. If the application client attempts to select any function not
implemented by the device server, the device server shall terminate the command with CHECK CONDITION
status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
PARAMETER LIST.

The short parameter list header (see table 4) is used if the LONGLIST bit is set to zero in the FORMAT UNIT
CDB.

Table 3 — FORMAT UNIT parameter list

Byte\Bit 7 6 5 4 3 2 1 0

0 to 3 or
0 to 7 Parameter list header (see table 4 or table 5 in 5.2.2.2)

Initialization pattern descriptor (if any)(see table 16 in 5.2.2.3)

Defect list (if any)

Table 4 — Short parameter list header

Byte\Bit 7 6 5 4 3 2 1 0

0 Reserved

1 FOV DPRY DCRT STPF IP Obsolete IMMED
Vendor
specific

2 (MSB)
DEFECT LIST LENGTH

3 (LSB)

06-034r0 SBC-3 Physical blocks 4 January 2006

10

The long parameter list header (see table 5) is used if the LONGLIST bit is set to one in the FORMAT UNIT
CDB.

Editor’s Note 3: The new fields could be placed in the long LBA mode parameter block descriptor,
but that subjects them to all the confusion about the state of the mode parameters before
FORMAT UNIT is run. Including them directly in the FORMAT UNIT parameter list simplifies
matters.

A format options valid (FOV) bit set to zero specifies that the device server shall use its default settings for the
DPRY, DCRT, STPF, and IP bits. If the FOV bit is set to zero, the application client shall set these bits to zero. If the
FOV bit is set to zero and any of the other bits listed in this paragraph are not set to zero, the device server
shall terminate the command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST
and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

A FOV bit set to one specifies that the device server shall examine the values of the DPRY, DCRT, STPF, and IP
bits. When the FOV bit is set to one, the DPRY, DCRT, STPF, and IP bits are defined as follows.

A disable primary (DPRY) bit set to zero specifies that the device server shall not use parts of the medium
identified as defective in the PLIST for application client accessible logical blocks. If the device server is not
able to locate the PLIST or it is not able to determine whether a PLIST exists, it shall take the action specified
by the STPF bit.

A DPRY bit set to one specifies that the device server shall not use the PLIST to identify defective areas of the
medium. The PLIST shall not be deleted.

A disable certification (DCRT) bit set to zero specifies that the device server shall perform a vendor-specific
medium certification operation to generate a CLIST. A DCRT bit set to one specifies that the device server shall
not perform any vendor-specific medium certification process or format verification operation.

The stop format (STPF) bit controls the behavior of the device server if one of the following events occurs:

a) The device server has been requested to use the PLIST (i.e., the DPRY bit is set to zero) or the GLIST
(i.e., the CMPLST bit is set to zero) and the device server is not able to locate the list or determine
whether the list exists; or

b) The device server has been requested to use the PLIST (i.e., the DPRY bit is set to zero) or the GLIST
(i.e., the CMPLST bit is set to zero), and the device server encounters an error while accessing the
defect list.

A STPF bit set to zero specifies that, if one or both of these events occurs, the device server shall continue to
process the FORMAT UNIT command. The device server shall return CHECK CONDITION status at the
completion of the FORMAT UNIT command with the sense key set to RECOVERED ERROR and the
additional sense code set to either DEFECT LIST NOT FOUND if the condition described in item a) occurred,
or DEFECT LIST ERROR if the condition described in item b) occurred.

Table 5 — Long parameter list header

Byte\Bit 7 6 5 4 3 2 1 0

0 Reserved LOGICAL BLOCKS PER PHYSICAL BLOCK

1 FOV DPRY DCRT STPF IP Obsolete IMMED
Vendor
specific

2 Reserved (MSB)
LOGICAL BLOCK OFFSET

3 (LSB)

4 (MSB)
DEFECT LIST LENGTH

7 (LSB)

4 January 2006 06-034r0 SBC-3 Physical blocks

 11

A STPF bit set to one specifies that, if one or both of these events occurs, the device server shall terminate the
FORMAT UNIT command with CHECK CONDITION status and the sense key shall be set to MEDIUM
ERROR with the additional sense code set to either DEFECT LIST NOT FOUND if the condition described in
item a) occurred, or DEFECT LIST ERROR if the condition described in item b) occurred.

NOTE 4 - The use of the FMTDATA bit, the CMPLST bit, and the parameter list header allow the application
client to control the source of the defect lists used by the FORMAT UNIT command. Setting the DEFECT LIST
LENGTH field to zero allows the application client to control the use of PLIST and CLIST without having to
specify a DLIST.

An initialization pattern (IP) bit set to zero specifies that an initialization pattern descriptor is not included and
that the device server shall use its default initialization pattern. An IP bit set to one specifies that an
initialization pattern descriptor (see 5.2.2.3) is included in the FORMAT UNIT parameter list following the
parameter list header.

An immediate (IMMED) bit set to zero specifies that the device server shall return status after the format
operation has completed. An IMMED bit value set to one specifies that the device server shall return status
after the entire parameter list has been transferred.

The DEFECT LIST LENGTH field specifies the total length in bytes of the defect list (i.e., the address descriptors)
that follows and does not include the initialization pattern descriptor, if any. The formats for the address
descriptor(s) are shown in 5.2.2.4.

The LOGICAL BLOCKS PER PHYSICAL BLOCK field specifies the power of two exponent of the number of logical
blocks per physical block as defined in table 9..

The LOGICAL BLOCK OFFSET field specifies the offset of logical block 0 within the physical block as defined in
table 9..

Short block format address descriptors and long block format address descriptors should be in ascending
order. Bytes from index format address descriptors and physical sector format address descriptors shall be in
ascending order. More than one physical or logical block may be affected by each address descriptor. If the
address descriptors are not in the required order, the device server shall terminate the command with CHECK
CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set to
INVALID FIELD IN PARAMETER LIST.

5.11.2 READ CAPACITY (16) parameter data

Table 6 — LOGICAL BLOCKS PER PHYSICAL BLOCK field

Code Description

0 1 logical block per physical block

1 2 logical blocks per physical block

n 2n logical blocks per physical block

Table 7 — LOGICAL BLOCK OFFSET field

Code Description

0 LBA 0 is located at the beginning of a physical block

1 LBA 1 is located at the beginning of a physical block

m LBA m is located at the beginning of a physical block

06-034r0 SBC-3 Physical blocks 4 January 2006

12

The READ CAPACITY (16) parameter data is defined in table 8. Any time the READ CAPACITY (16)
parameter data changes, the device server should establish a unit attention condition as described in 4.6.

The RETURNED LOGICAL BLOCK ADDRESS field and BLOCK LENGTH IN BYTES field of the READ CAPACITY (16)
parameter data are the same as the in the READ CAPACITY (10) parameter data (see 5.10). The maximum
value that shall be returned in the RETURNED LOGICAL BLOCK ADDRESS field is FFFFFFFF_FFFFFFFEh.

A reference tag own enable (RTO_EN) bit set to one indicates that application client ownership of the LOGICAL
BLOCK REFERENCE TAG field in protection information is enabled (i.e., the medium was formatted with
protection information (see 4.16) enabled and the RTO_REQ bit was set to one). An RTO_EN bit set to zero
indicates that application client ownership of the LOGICAL BLOCK REFERENCE TAG field in protection information
is disabled.

A PROT_EN bit set to one indicates that the medium was formatted with protection information (see 4.16)
enabled. A PROT_EN bit set to zero indicates that the medium was not formatted with protection information
enabled.

The LOGICAL BLOCKS PER PHYSICAL BLOCK field indicates the power of two exponent of the number of logical
blocks per physical block as defined in table 9.

The LOGICAL BLOCK OFFSET field indicates the offset of the logical blocks within the physical block in units of
logical blocks as defined in table 10.

Table 8 — READ CAPACITY (16) parameter data

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
RETURNED LOGICAL BLOCK ADDRESS

7 (LSB)

8 (MSB)
BLOCK LENGTH IN BYTES

11 (LSB)

12 Reserved RTO_EN PROT_EN

13 Reserved LOGICAL BLOCKS PER PHYSICAL BLOCK

14 Reserved (MSB)
LOGICAL BLOCK OFFSET

15 (LSB)

16
Reserved

31

Table 9 — LOGICAL BLOCKS PER PHYSICAL BLOCK field

Code Description

0 1 logical blocks per physical block

1 2 logical blocks per physical block

n 2n logical blocks per physical block

Table 10 — LOGICAL BLOCKS OFFSET field

Code Description

0 LBA 0 is located at the beginning of a physical block

1 LBA 1 is located at the beginning of a physical block

m LBA m is located at the beginning of a physical block

4 January 2006 06-034r0 SBC-3 Physical blocks

 13

5.3 PRE-FETCH

...

The LOGICAL BLOCK ADDRESS field specifies the first logical block accessed by this command. If the logical
block address exceeds the capacity of the medium the device server shall terminate the command with
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set
to LOGICAL BLOCK ADDRESS OUT OF RANGE.

Editor’s Note 4: above paragraph included to show that the standard LOGICAL BLOCK ADDRESS field
definition is not adequate for READ LONG/WRITE LONG

5.14 READ LONG (10) command

The READ LONG (10) command (see table 11) requests that the device server transfer data from a single
logical physical block to the data-in buffer. The data transferred during the READ LONG (10) command is
vendor-specific, but shall include the following items recorded on the medium:

a) user data or transformed user data for all the logical blocks in the physical block;
b) protection information or transformed protection information, if any, for all the logical blocks in the

physical block; and
c) any additional information (e.g., ECC bytes).

If a cache contains a more recent version of a logical physical block, the device server shall write the logical
physical block to the medium before reading it. The values in the Read-Write Error Recovery mode page (see
6.3.4) do not apply to this command. The device server may perform retries while processing this command.

See the PRE-FETCH (10) command (see 5.3) for the definition of the LOGICAL BLOCK ADDRESS field.

The LOGICAL BLOCK ADDRESS field specifies any logical block in the physical block accessed by this command.
If the logical block address exceeds the capacity of the medium the device server shall terminate the
command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional
sense code set to LOGICAL BLOCK ADDRESS OUT OF RANGE.

If the additional information contain an ECC, any other additional bytes that are correctable by ECC should be
included (e.g., a data synchronization mark within the area covered by ECC). It is not required for the ECC
bytes to be at the end of the user data or protection information, if any; however, the ECC bytes should be in
the same order as they are on the medium.

A correct (CORRCT) bit set to zero specifies that a logical block be read without any correction made by the
device server. A CORRCT bit set to zero should result in GOOD status unless data is not transferred for some
reason other than that the data is non-correctable. In this case the appropriate status and sense data shall be

Table 11 — READ LONG (10) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (3Eh)

1 Reserved CORRCT Obsolete

2 (MSB)
LOGICAL BLOCK ADDRESS

5 (LSB)

6 Reserved

7 (MSB)
BYTE TRANSFER LENGTH

8 (LSB)

9 CONTROL

06-034r0 SBC-3 Physical blocks 4 January 2006

14

returned. A CORRCT bit set to one specifies that the data be corrected by ECC before being transferred to the
data-in buffer.

The BYTE TRANSFER LENGTH field specifies the number of bytes of data that shall be read from the specified
logical block and transferred to the data-in buffer. If the BYTE TRANSFER LENGTH field is not set to zero and does
not match the available data length, the device server shall terminate the command with CHECK CONDITION
status with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
CDB. In the sense data (see 4.13 and SPC-3), the VALID and ILI bits shall each be set to one and the
INFORMATION field shall be set to the difference (i.e., residue) of the requested byte transfer length minus the
actual available data length in bytes. Negative values shall be indicated by two's complement notation.

A BYTE TRANSFER LENGTH field set to zero specifies that no bytes shall be read. This condition shall not be
considered an error.

5.15 READ LONG (16) command

The READ LONG (16) command (see table 12) requests that the device server transfer data from a single
logical physical block to the data-in buffer. The data transferred during the READ LONG (16) command is
vendor-specific, but shall include the following items recorded on the medium:

a) user data or transformed user data for all the logical blocks in the physical block;
b) protection information or transformed protection information, if any, for all the logical blocks in the

physical block; and
c) any additional information (e.g., ECC bytes).

If a cache contains a more recent version of a logical physical block, the device server shall write the logical
physical block to the medium before reading it. The values in the Read-Write Error Recovery mode page (see
6.3.4) do not apply to this command. The device server may perform retries while processing this command.
This command is implemented as a service action of the SERVICE ACTION IN operation code (see A.2).

See the READ LONG (10) command (see) for the definitions of the fields in this command.

5.33 WRITE LONG (10) command

The WRITE LONG (10) command (see table 13) requests that the device server transfer data for a single
logical physical block from the data-out buffer and write it to the medium. The data written shall be the same
length and shall be in the same order as the data returned by the READ LONG (10) command (see). The

Table 12 — READ LONG (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (9Eh)

1 Reserved SERVICE ACTION (11h)

2 (MSB)
LOGICAL BLOCK ADDRESS

9 (LSB)

10
Reserved

11

12 (MSB)
BYTE TRANSFER LENGTH

13 (LSB)

14 Reserved CORRCT

15 CONTROL

4 January 2006 06-034r0 SBC-3 Physical blocks

 15

device server shall write the logical physical block to the medium, and shall not return GOOD status until the
logical block has actually been written on the medium.

See the PRE-FETCH (10) command (see 5.3) for the definition of the LOGICAL BLOCK ADDRESS field.

The LOGICAL BLOCK ADDRESS field specifies any logical block in the physical block accessed by this command.
If the logical block address exceeds the capacity of the medium the device server shall terminate the
command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the additional
sense code set to LOGICAL BLOCK ADDRESS OUT OF RANGE.

The BYTE TRANSFER LENGTH field specifies the number of bytes of data that the device server shall transfer
from the data-out buffer and write to the specified logical physical block. If the BYTE TRANSFER LENGTH field is
not set to zero and does not match the data length that the device server returns for a READ LONG
command, then the device server shall terminate the command with CHECK CONDITION status with the
sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB. In the
sense data (see 4.13 and SPC-3), the ILI and VALID bits shall be set to one and the INFORMATION field shall be
set to the difference (i.e., residue) of the requested length minus the actual length in bytes. Negative values
shall be indicated by two's complement notation. A BYTE TRANSFER LENGTH field set to zero specifies that no
bytes shall be written. This condition shall not be considered an error.

5.34 WRITE LONG (16) command

The WRITE LONG (16) command (see table 14) requests that the device server transfer data for a single
logical physical block from the data-out buffer and write it to the medium. The data written shall be the same
length and shall be in the same order as the data returned by the READ LONG (16) command (see). The
device server shall write the logical physical block to the medium, and shall not return GOOD status until the

Table 13 — WRITE LONG (10) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (3Fh)

1 Reserved Obsolete

2 (MSB)
LOGICAL BLOCK ADDRESS

5 (LSB)

6 Reserved

7 (MSB)
BYTE TRANSFER LENGTH

8 (LSB)

9 CONTROL

06-034r0 SBC-3 Physical blocks 4 January 2006

16

logical block has actually been written on the medium. This command is implemented as a service action of
the SERVICE ACTION OUT operation code (see A.2).

See the WRITE LONG (10) command (see) for the definitions of the fields in this command.

5.35 WRITE SAME (10) command

...

Table 14 — WRITE LONG (16) command

Byte\Bit 7 6 5 4 3 2 1 0

0 OPERATION CODE (9Fh)

1 Reserved SERVICE ACTION (11h)

2 (MSB)
LOGICAL BLOCK ADDRESS

9 (LSB)

10
Reserved

11

12 (MSB)
BYTE TRANSFER LENGTH

13 (LSB)

14 Reserved CORRCT

15 CONTROL

4 January 2006 06-034r0 SBC-3 Physical blocks

 17

Table 15 describes the LBDATA bit and the PBDATA bit.

5.2.3 6.3.2 Mode parameter block descriptors

5.2.3.1 Mode parameter block descriptors overview

If the device server returns a mode parameter block descriptor, it shall return a short LBA mode parameter
block descriptor (see 5.2.3.2) in the mode parameter data in response to:

a) a MODE SENSE (6) command; or
b) a MODE SENSE (10) command with the LLBAA bit set to zero.

If the device server returns a mode parameter block descriptor and the number of logical blocks is greater
than FFFFFFFFh, it may return a long LBA mode parameter block descriptor (see 5.2.3.3) in the mode
parameter data in response to a MODE SENSE (10) command with the LLBAA bit set to one.

If the application client sends a mode parameter block descriptor in the mode parameter list, it shall send a
short LBA mode parameter block descriptor (see 5.2.3.2) for a MODE SELECT (6) command.

If the application client sends a mode parameter block descriptor in the mode parameter list, it may send a
long LBA mode parameter block descriptor (see 5.2.3.3) for a MODE SELECT (10) command.

Table 15 — LBDATA bit and PBDATA bit

LBDATA PBDATA Description

0 0

The device server shall write the single block of user data received from the
data-out buffer to each logical block without modification.

If the medium is formatted with protection information:
a) the value in the LOGICAL BLOCK REFERENCE TAG field received in the single

block of data from the data-out buffer shall be placed into the LOGICAL
BLOCK REFERENCE TAG field of the first logical block written to the medium.
Into each of the subsequent logical blocks, the device server shall place
into the LOGICAL BLOCK REFERENCE TAG field the value of the previous
logical block’s LOGICAL BLOCK REFERENCE TAG field plus one;

b) If the ATO bit is set to one in the Control mode page (see SPC-3), the
logical block application tag received in the single block of data shall be
placed in the LOGICAL BLOCK APPLICATION TAG field of each logical block. If
the ATO bit is set to zero, the device server may write any value into the
LOGICAL BLOCK APPLICATION TAG field of each logical block; and

c) The value in the DATA BLOCK GUARD field received in the single block of
data from the data-out buffer shall be placed in the DATA BLOCK GUARD field
of each logical block.

0 1 a
The device server shall replace the first eight bytes of the block received from the
data-out buffer to each physical sector with the physical address of the sector
being written using the physical sector format (see 5.2.2.4.5).

1 a 0

The device server shall replace the first four bytes of the block received from the
data-out buffer with the least significant four bytes of the LBA of the block being
written, ending with the least significant byte (e.g., if the LBA is
77665544_33221100h, 33221100h is written with 33h written first and 00h
written last).

1 1
The device server shall terminate the command with CHECK CONDITION status
with the sense key set to ILLEGAL REQUEST and the additional sense code set
to INVALID FIELD IN CDB.

a If the medium is formatted with protection information then the protection information shall be written to
a default value of FFFFFFFF_FFFFFFFFh in each of the written logical blocks.

06-034r0 SBC-3 Physical blocks 4 January 2006

18

Support for the mode parameter block descriptors is optional. The device server shall establish a unit attention
condition with the additional sense code of MODE PARAMETERS CHANGED (see SPC-3 and SAM-3) when
the block descriptor values are changed.

5.2.3.2 Short LBA mode parameter block descriptor

Table 16 defines the block descriptor for direct-access block devices used:

a) with the MODE SELECT (6) and MODE SENSE (6) commands; and
b) with the MODE SELECT (10) and MODE SENSE (10) commands when the LONGLBA bit is set to zero

in the mode parameter header (see SPC-3).

Editor’s Note 5: Could rename these fields (and all references to them) to NUMBER OF LOGICAL
BLOCKS and LOGICAL BLOCK LENGTH for consistency

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the number of logical
blocks specified in the NUMBER OF BLOCKS field sent in the last MODE SELECT command that contained a
mode parameter block descriptor. If no MODE SELECT command with a mode parameter block descriptor
has been received then the current number of logical blocks shall be returned. To determine the number of
logical blocks at which the logical unit is currently formatted, the application client shall use the READ
CAPACITY command (see 5.11) rather than the MODE SELECT command.

On a MODE SENSE command, the device server may return a value of zero indicating that it does not report
the number of logical blocks in the short LBA mode parameter block descriptor.

On a MODE SENSE command, if the number of logical blocks on the medium exceeds the maximum value
that is able to be specified in the NUMBER OF BLOCKS field, the device server shall return a value of
FFFFFFFFh.

If the logical unit does not support changing its capacity by changing the NUMBER OF BLOCKS field using the
MODE SELECT command (see SPC-3), the value in the NUMBER OF BLOCKS field is ignored. If the device
supports changing its capacity by changing the NUMBER OF BLOCKS field, then the NUMBER OF BLOCKS field is
interpreted as follows:

a) If the NUMBER OF BLOCKS field is set to zero, the logical unit shall retain its current capacity if the block
length has not changed. If the NUMBER OF BLOCKS field is set to zero and the content of the BLOCK
LENGTH field (i.e., new block length) is different than the current block length, the logical unit shall be
set to its maximum capacity when the new block length takes effect (i.e., after a successful FORMAT
UNIT command);

b) If the NUMBER OF BLOCKS field is greater than zero and less than or equal to its maximum capacity, the
logical unit shall be set to that number of logical blocks. If the content of the BLOCK LENGTH field is the
same as the current block length, the logical unit shall not become format corrupt. This capacity
setting shall be retained through power cycles, hard resets, logical unit resets, and I_T nexus losses.
If the content of the BLOCK LENGTH field is the same as the current block length this capacity setting
shall take effect on successful completion of the MODE SELECT command. If the content of the
BLOCK LENGTH field (i.e., new block length) is different than the current block length this capacity

Table 16 — Short LBA mode parameter block descriptor

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
NUMBER OF BLOCKS

3 (LSB)

4 Reserved

5 (MSB)
BLOCK LENGTH

7 (LSB)

4 January 2006 06-034r0 SBC-3 Physical blocks

 19

setting shall take effect when the new block length takes effect (i.e., after a successful FORMAT UNIT
command);

c) If the NUMBER OF BLOCKS field is set to a value greater than the maximum capacity of the device and
less than FFFFFFFFh, then the MODE SELECT command shall be terminated with CHECK
CONDITION status with the sense key set to ILLEGAL REQUEST and the additional sense code set
to INVALID FIELD IN PARAMETER LIST. The logical unit shall retain its previous block descriptor
settings; or

d) If the NUMBER OF BLOCKS field is set to FFFFFFFFh, the logical unit shall be set to its maximum
capacity. If the content of the BLOCK LENGTH field is the same as the current block length, the logical
unit shall not become format corrupt. This capacity setting shall be retained through power cycles,
hard resets, logical unit resets, and I_T nexus losses. If the content of the BLOCK LENGTH field is the
same as the current block length this capacity setting shall take effect on successful completion of the
MODE SELECT command. If the content of the BLOCK LENGTH field (i.e., new block length) is different
than the current block length this capacity setting shall take effect when the new block length takes
effect (i.e., after a successful FORMAT UNIT command).

The BLOCK LENGTH field specifies the length in bytes of each logical block. No change shall be made to any
logical blocks on the medium until a format operation (see 5.2) is initiated by an application client.

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the length of the logical
blocks as specified in the BLOCK LENGTH field sent in the last MODE SELECT command that contained a mode
parameter block descriptor. If no MODE SELECT command with a block descriptor has been received then
the current block length shall be returned (e.g., if the block length is 512 bytes and a MODE SELECT
command occurs with the BLOCK LENGTH field set to 520 bytes, any MODE SENSE commands would return
520 in the BLOCK LENGTH field). To determine the block length at which the logical unit is currently formatted,
the application client shall use the READ CAPACITY command (see 5.11) rather than the MODE SELECT
command.

5.2.3.3 Long LBA mode parameter block descriptor

Table 17 defines the block descriptor for direct-access block devices used with the MODE SELECT (10)
command and MODE SENSE (10) command when the LONGLBA bit is set to one in the mode parameter
header (see SPC-3).

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the number of logical
blocks specified in the NUMBER OF BLOCKS field sent in the last MODE SELECT command that contained a
mode parameter block descriptor. If no MODE SELECT command with a mode parameter block descriptor
has been received then the current number of logical blocks shall be returned. To determine the number of
logical blocks at which the logical unit is currently formatted, the application client shall use the READ
CAPACITY command (see 5.11) rather than the MODE SELECT command.

On a MODE SENSE command, the device server may return a value of zero indicating that it does not report
the number of logical blocks in the long LBA mode parameter block descriptor.

If the logical unit does not support changing its capacity by changing the NUMBER OF BLOCKS field using the
MODE SELECT command (see SPC-3), the value in the NUMBER OF BLOCKS field is ignored. If the device

Table 17 — Long LBA mode parameter block descriptor

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
NUMBER OF BLOCKS

7 (LSB)

8
Reserved

11

12 (MSB)
BLOCK LENGTH

15 (LSB)

06-034r0 SBC-3 Physical blocks 4 January 2006

20

supports changing its capacity by changing the NUMBER OF BLOCKS field, then the NUMBER OF BLOCKS field is
interpreted as follows:

a) If the NUMBER OF BLOCKS field is set to zero, the logical unit shall retain its current capacity if the block
length has not changed. If the NUMBER OF BLOCKS field is set to zero and the content of the BLOCK
LENGTH field (i.e., new block length) is different than the current block length, the logical unit shall be
set to its maximum capacity when the new block length takes effect (i.e., after a successful FORMAT
UNIT command);

b) If the NUMBER OF BLOCKS field is greater than zero and less than or equal to its maximum capacity, the
logical unit shall be set to that number of logical blocks. If the content of the BLOCK LENGTH field is the
same as the current block length, the logical unit shall not become format corrupt. This capacity
setting shall be retained through power cycles, hard resets, logical unit resets, and I_T nexus losses.
If the content of the BLOCK LENGTH field is the same as the current block length this capacity setting
shall take effect on successful completion of the MODE SELECT command. If the content of the
BLOCK LENGTH field (i.e., new block length) is different than the current block length this capacity
setting shall take effect when the new block length takes effect (i.e., after a successful FORMAT UNIT
command);

c) If the NUMBER OF BLOCKS field is set to a value greater than the maximum capacity of the device and
less than FFFFFFFF FFFFFFFFh, then the device server shall terminate the MODE SELECT
command with CHECK CONDITION status with the sense key set to ILLEGAL REQUEST and the
additional sense code set to INVALID FIELD IN PARAMETER LIST. The logical unit shall retain its
previous block descriptor settings; or

d) If the NUMBER OF BLOCKS field is set to FFFFFFFF FFFFFFFFh, the logical unit shall be set to its
maximum capacity. If the content of the BLOCK LENGTH field is the same as the current block length,
the logical unit shall not become format corrupt. This capacity setting shall be retained through power
cycles, hard resets, logical unit resets, and I_T nexus losses. If the content of the BLOCK LENGTH field
is the same as the current block length this capacity setting shall take effect on successful completion
of the MODE SELECT command. If the content of the BLOCK LENGTH field (i.e., new block length) is
different than the current block length this capacity setting shall take effect when the new block length
takes effect (i.e., after a successful FORMAT UNIT command).

The BLOCK LENGTH field specifies the length in bytes of each logical block. No change shall be made to any
logical blocks on the medium until a format operation (see 5.2) is initiated by an application client.

A device server shall respond to a MODE SENSE command (see SPC-3) by reporting the length of the logical
blocks as specified in the BLOCK LENGTH field sent in the last MODE SELECT command that contained a mode
parameter block descriptor. If no MODE SELECT command with a block descriptor has been received then
the current block length shall be returned (e.g., if the block length is 512 bytes and a MODE SELECT
command occurs with the BLOCK LENGTH field set to 520 bytes, any MODE SENSE commands would return
520 in the BLOCK LENGTH field). To determine the block length at which the logical unit is currently formatted,
the application client shall use the READ CAPACITY command (see 5.11) rather than the MODE SELECT
command.

6.3.3 Caching mode page

...

The MINIMUM PRE-FETCH field specifies the number of logical blocks to pre-fetch regardless of the delays it
might cause in processing subsequent commands. The field contains either:

a) a number of logical blocks, if the MF bit is set to zero; or
b) a scalar multiplier of the value in the TRANSFER LENGTH field, if the MF bit is set to one.

...

The MAXIMUM PRE-FETCH field specifies the number of logical blocks to pre-fetch if the pre-fetch does not delay
processing of subsequent commands. The field contains either:

a) a number of logical blocks, if the MF bit is set to zero; or
b) a scalar multiplier of the value in the TRANSFER LENGTH field, if the MF bit is set to one.

4 January 2006 06-034r0 SBC-3 Physical blocks

 21

The MAXIMUM PRE-FETCH field contains the maximum amount of data to pre-fetch as a result of one READ
command. It is used in conjunction with the DISABLE PRE-FETCH TRANSFER LENGTH field and MAXIMUM PRE-
FETCH CEILING field to trade off pre-fetching new data with displacing old data already stored in the cache.

The MAXIMUM PRE-FETCH CEILING field specifies an upper limit on the number of logical blocks computed as the
maximum pre-fetch. If this number of logical blocks is greater than the value in the MAXIMUM PRE-FETCH field,
then the number of logical blocks to pre-fetch shall be truncated to the value stored in the MAXIMUM PRE-FETCH
CEILING field.

