Electrical Models
(Based on Empirical Measurements)

i-Pass 26-circuit
for SAS

Document Revision 1.00
Published: 10/27/2005

By Galen Fromm
Electrical Project Engineer
galen.fromm@molex.com
ph: (630) 718-5270
fx: (630) 512-8620

Disclaimer: Molex does not guarantee the performance of the final product to the information provided in this document.
I. Model Description

Model Type: Touchstone (S-Parameter)

Bandwidth: 50MHz to 20GHz

Rise-time: 25ps (20-80%) is the maximum recommended rise time for sources when using these models in time-domain simulations

Ports: (Motherboard) Port 1 through to Port 2 (Motherboard)
(Motherboard) Port 3 through to Port 4 (Motherboard)

Model Basis: Empirical Measurements

Equipment: Agilent E8364B PNA series network analyzer
Agilent N4421B s-parameter test set

Calibration: SOLT 50MHz to 20GHz, 10 MHz step

Data acquisition: Agilent Physical Layer Test System (PLTS) version 3.01
Molex 26-circuit External iPass™ Test Fixture (PCB 73931-2540)

Model Description:

The models provide for simulating pairs A5-A6 to B5-B6, with the crosstalk combinations to the adjacent pair, A2-A3. These models are of corresponding terminals on the Molex iPass™ connector and associated cable conductors.

Data representing cable assemblies of length one-half, one, three and six meters, with four inches of printed circuit board trace, is included.

The reference plane for the models is located at the SMA connectors.

Filenames:

*(cablelength)_A5A6B5B6.s4p* (through measurement)
*(cablelength)_A5A6A2A3NE.s4p* (near-end crosstalk)
*(cablelength)_A5A6A2A3FE.s4p* (far-end crosstalk)
Figure 1. Agilent 8364B/4122 PNA and iPass cable assembly test fixtures

Figure 2. Single-ended cable insertion losses