SAS 6 Gbps Proposal Based on OIF CEI 6G

Mike Jenkins Joe Caroselli LSI Logic Corp. Q: Why not simply adjust the 3Gb/s spec values to create the 6Gb/s specification?

A: Because the virtually closed eye at 6G requires a fundamentally different approach

Objectives

- To propose a framework based on the structure of the OIF CEI
- To begin to identify elements common between OIF CEI and SAS 1.0
- To begin to identify elements *not* common

 To justify these differences as desirable or
 necessary due to the higher speed

Introduction (1 of 3)

- Where it's going: OIF CEI is becoming the basis for a number of standards
- Where it's from: OIF CEI appears to have evolved from a number of existing standards
 - As witness, the snippet of OIF CEI "genetic code" to the right obviously came from Fibre Channel or SAS

2.A	Masks	46
2.71	2.A.1 Total Wander Mask	
	2.A.2 Relative Wander Mask	
	2.A.3 Random Jitter Mask	
2.B	Pulse Response Channel Modelling	
2.0	2.B.1 Generating a Pulse Response	
	2.B.2 Basic Pulse Response Definitions	
	2.B.3 Transmitter Pulse Definition	
	2.B.4 Receiver Pulse Response	
	2.B.5 Crosstalk Pulse Response	
	2.B.6 Decision Feedback Equalizer	
	2.B.7 Time Continuous Transverse Filter	
	2.B.7.1 Annex - Time Continuous Zero-Pole Equalizer adaption	
	2.B.8 Time Continuous Zero/Pole	
	2.B.9 Degrees of Freedom	
	2.B.9.1 Receiver Sample Point	54
	2.B.9.2 Transmit Emphasis	54
2.C	Jitter Modelling	55
	2.C.1 High Frequency Jitter vs. Wander	
	2.C.2 Total Wander vs. Relative Wander	
	2.C.3 Correlated vs. Uncorrelated Jitter	
	2.C.4 Jitter Distributions	
	2.C.4.1 Unbounded and Bounded Gaussian Distribution	
	2.C.4.2 Bounded Gaussian Distribution	
	2.C.4.3 High Probability Jitter	
	2.C.4.4 Total Jitter	
	2.C.4.5 Probability Distribution Function vs. Cumulative Distribution	
	2.C.4.6 BathTub	
	2.C.4.7 Specification of GJ and HPJ	
	2.C.4.8 Example of Bounded Gaussian 2.C.5 Statistical Eye Methodology	02
	2.C.5 Statistical Eye Methodology	
	2.C.5.2 Inclusion of Sampling Jitter	
<u> </u>	2.C.5.3 Generation of Statistical Eye	
2.D	Lab Setups	
	2.D.1 High Frequency Transmit Jitter Measurement	
	2.D.1.1 BERT Implementation	
	2.D.1.2 Spectrum analyzer and Oscilloscope Methodology	
	2.D.2 Total Transmit Wander Measurement	74
	2.D.3 Relative Transmit Wander Measurement	
	2.D.4 Jitter Tolerance	
	2.D.4.1 Jitter Tolerance with Relative Wander Lab Setup	76
	2.D.4.2 Jitter Tolerance with no Relative Wander Lab Setup	78
	2.D.4.3 Jitter Tolerance with Defined ISI and no Relative Wander	79
	2.D.5 Jitter Transfer	79
	2.D.6 Network Analysis Measurement	80
	2.D.7 Eye Mask Measurement Setup	82
2.E	BER Adjustment Methodology	
	2.E.1 Extrapolation of Correlated Bounded Gaussian Jitter to low BERs	
	2.E.2 Confidence Level of Errors Measurement	
	2.E.3 Eye Mask Adjustment for Sampling Oscilloscopes	
	2.E.3.1 Theory	
	2.E.3.2 Usage	

Introduction (2 of 3)

OIF CEI 2.0 has an impressive (to me anyway) collection of theoretical and practical appendices

Trans	mission Line Theory and Channel Information	. 94
3.A.1	Transmission Lines Theory	. 94
	3.A.1.1 Impedance Matching	
	3.A.1.2 Impedance Definition Details	. 95
3.A.2	Density considerations	. 97
3.A.3	Common-Mode Impedance and Return Loss	. 98
3.A.4	Crosstalk Considerations.	. 98
3.A.5	Equation based Channel Loss by curve fit	100
	3.A.1 3.A.2 3.A.3 3.A.4	1 5

Introduction (3 of 3)

- OIF CEI 6G-SR (short reach) is a chip-tochip spec which is insufficient for 6G SAS (up to 8")
- OIF CEI 6G-LR (long reach) is meant to include legacy backplanes (up to 1 meter)
 – Requires 5-tap DFE in reference RX
- This proposal will be a framework compromising between these two specs
 - All values are, of course, TBD

OIF CEI Reference Model

- Ingress/Egress distinction may be useful in specifying SAS ↔ SATA links
- "Component Edge" will likely be equated to "Separable Connector"

Transmitter

- 800-1200 mVppd (?)
- 1 tap (at least) of emphasis
 - Pre- or post-cursor
- Return Loss (SDD11):
 - "The differential return loss shall be better than A0 from f0 to f1 and better than A0 + Slope*log10(f/f1) where f is the frequency from f1 to f2."
- Compliant TX: required eye after reference channel + reference RX

Receiver

- Return Loss (SDD11):
 - "The differential return loss shall be better than A0 from f0 to f1 and better than A0 + Slope*log10(f/f1) where f is the frequency from f1 to f2."
- Compliant RX: required eye after reference TX + reference channel
- "Reference receiver" offers an architecture known to work... but CEI does not require use of that architecture.

Some CEI-vs-SAS Issues (1 of 2)

- No framework for OOB specs
 - If OOB data rate does not increase, can keep same/similar electrical specs as SAS1
- Presently, no consideration for 8B10B coding in simulators (including StatEye)

- Causes too-pessimistic eye closure

Question about "worst case" RX return loss
 – Should it be minimum (vs. max) resistance?

Some CEI-vs-SAS Issues (2 of 2)

- TX compliance should make use of TCTF (aka "compliance channel")
 - Allows testing specific to cable or PCB
 - TCTF definition could be expanded to include NEXT & FEXT (near-end & far-end cross talk)
 - Avoids difficulties of near end TX measurements (resonance, fixture effects,...)

Summary

- Methodology of OIF CEI fits the needs (mostly) of 6G SAS
 - Accommodates closed eyes at RX input
 - StatEye (publicly available) & similar proprietary tools support this methodology
- Likely need to interpolate 6G SAS spec between 6G-SR & 6G-LR (short & long reach)