# VITESSE

## 1000BT 10GBT Technology Review and Application to SAS

Vitesse - Ethernet Products Division Houston SAS-2 Meeting

## Doc # 05-215r0

Nick van Bavel VP of Technology

nvb@vitesse.com

YOUR PARTNER | FOR SUCCESS

## **Outline**



- Review of 100B-T
- Review of 1000B-T
- Review of 10GB-T
- Application of 10GB-T Technology to SAS

## 100B-T System Topology

#### VITESSE

Twisted Wire Pair





- ▶ Target Media: 100m of Cat5
- ▶ Pair Usage: 2 Pairs Half-Duplex
- Line Code: MLT3
  - Tri-Level (-1,0,+1) with Redundancy for Spectrum Control
  - 1 Bit per Symbol
- Line Rate: 125 MHz
- ► Encoding: 4B/5B
  - Run-length Limiting to Aid in Timing Recovery
  - Adds 25% Time Redundancy

#### 03/16/04

## 1000B-T System Topology

#### VITESSE



Magnetic Hybrid or Resistive Bridge

#### 1000B-T System Topology

#### VITESSE

- Target Media: 100m of Cat5e
- Pair Usage: 4 Pairs Full-Duplex
- Line Code: PAM-5
  - ► Five-Level (-2,-1,0,+1,+2)
  - 2 Bits per Symbol
  - Requires Higher SNR!
- Line Rate: 125 MHz (Same)
- Encoding:

4-D Viterbi Code

(Gains 1.25x)

(Cat5e specs FEXT)

(2x Pairs, 2x Duplex)

(2x Bits/Symbol)

- No Time Redundancy = > Low Bandwidth PLL for Timing Recovery
- Takes Advantage of Amplitude Redundancy over 4 Pairs
- ▶ (5<sup>4</sup>) > 2 x (2<sup>2</sup>4) gives Coset Separation
- ► 6 dB of Coding Gain

## 1000B-T Transceiver Specifications



6

## 1000B-T System Impairments



- Cable Attenuation: 24dB @ 100MHz
- Reflections due to Impedance Mismatch (Echo)
- Near-End CrossTalk (NEXT)
- Far-End CrossTalk (FEXT)
- Noise Ingress from adjoining cabling (Alien NEXT/FEXT)

#### 1000B-T Noise Environment



#### 1000B-T Data Pump



## 10GB-T System Topology



- Target Media: 100m of Cat7
  55m 100m of Cat6 Augmented
  Pair Usage: 4 Pairs Full-Duplex (Same)
  Line Code: DSQ-128 + LDPC (1.5625x)
  Two-Dimensional 128 Points (Equiv ~11 PAM)
  3.125 Bits per Symbol per Pair
  Requires Higher SNR!
  - Line Rate: 800 MHz (6.4x)
    - Increases Signal Attenuation by >30 dB
  - Encoding: (2048,1723) Block LDPC (Same)
    - No Time Redundancy = > Low Bandwidth PLL for Timing Recovery
    - Requires THP (Tomlinson-Harashima Precoding)
    - Provides 9 dB of Coding Gain

## 10GB-T vs 1000B-T Implementation Complexity

## DSP

- 7-10x Number of Adaptive Filter Taps
- Must Have FEXT Cancellation
- Running at Equivalent of 6.4x Speed
- Necessitates Block Signal Processing
  - FFT's vs Trivial Time Domain Filters
  - Latency of LDPC Decoder plus Block Processing
  - Latency Spec'd at max 10usec

#### ► AFE

- ▶ 10B ENOB ADC at 800MHz vs. 8B at 125MHz
- 6B DAC at 800MHz vs. 2B at 125MHz
- Bandwidth of Hybrid, Analog Equalizer, AGC increased by 6.4x
- Required TX and RX Jitter is 3-5ps rms vs 100-200ps

## 10GB-T vs 1000B-T Implementation Cost

VITESSE

|                        | 100B-T   | 1000B-T    | 10GB-T     |
|------------------------|----------|------------|------------|
| Digital/DSP Gate Count | 50k (1x) | 500k (10x) | 10M (200x) |
| Digital Power (90nm)   | 20 mW    | 150 mW     | 7.0 W      |
| AFE Area               | 1x       | 2x         | 5x         |
| AFE Power              | 150 mW   | 350 mW     | 7.5 W      |
| Total Power (90nm)     | 170 mW   | 500 mW     | 14.5 W *   |

\* Note: Power numbers are typical only, and are optimistic: other vendors estimates run as high as 20W in 90nm

## SAS on UTP?

#### VITESSE

4x Infiniband Cables and Connectors are:

- Expensive (e.g., 8m is > \$200 retail)
- Bulky & Cumbersome
- Limited Reach

(10m max without integrated equalization)

#### Solution:

Define a new PHY for external SAS connections

- Leverage Cat6 Ethernet Cables and Connectors:
- Cheap (e.g., 8m is <\$10.00 retail)</p>
- Flexible & Lightweight
- Reach of 25m at 10G







03/16/04

## Problems with 10GB-T Technology for SAS

#### Problems for SAS

- 15w power dissipation probably unacceptable
- 10usec latency probably unacceptable
- Cost of 10M gates probably too high
- However 100m Reach is Overkill
- Can We Leverage 10GB-T Technology for Shorter Reach?

#### Target New Specs

- Less Than 4W Power Dissipation
- ▶ 25m reach
- Sub 500 nsec latency
- Assume still have to be spectrally compatible with 10GB-T

#### 25m CAT6 UTP results

#### VITESSE

#### Performance gain

- SNR only 4dB better than 55m CAT6 or 100m CAT6 Screened UTP due to
  - Power Back off to coexist in the same bundle as 10GB-T long reach
  - Cross talk from higher power 10GB-T 55m links
- Complexity and Cost savings
  - 4dB SNR can be used for
    - 7-bit ADC and full power LDPC decoder (from 9-bit))
    - 8 bit ADC and power/area optimized LDPC decoder
  - 10dB Power Back Off saves transmitter power
  - Overall AFE power reduced by factor of 2
  - Reduced DSP filter taps by factor of 2
- Latency
  - Latency gets reduced to 1.5us 2usec

## Conclusion



- Long Reach Power = ~14.5W (Typical, not worst-case)
- Short Reach Power = ~ 7.0W (Typical, not worst-case)
- Did not meet power target of 4W
- Latency Reduced but still above target
- Cost is still prohibitive (10x 1000B-T)

## **Other Ideas?**



- What if targeted 25m of screened Cat6?
  - ▶ Reduces Alien NEXT/FEXT, SNR margin improves by another 6.5 dB
  - Still can't get rid of the LDPC decoder (b/c of the noise averaging on four pairs)
  - ▶ But could further reduce power by ~2W; still not there
- What if the PHY architecture was optimized for 25m on UTP Cat6?
  - Constrained to be spectrally compatible with 10GB-T
  - May be able to transmit at higher baud rate
  - Definitely could further reduce power/latency; merits investigation
- What if the PHY architecture was optimized, but also targets 25m of screened Cat6?
  - Definitely opens design space to very low-power, low-latency solutions

## Conclusion



#### Conclusion:

- 10GB-T is not a PHY readily adapted for SAS applications
- The architecture is not optimized for short reach
- Other architectures optimized for short reach on UTP/STP may be able to hit cost/power/latency specifications for SAS

Comments / Questions ?