As presented at Euro DesignCon 2004 Channel Compliance Testing Utilizing Novel Statistical Eye Methodology

Anthony Sanders Infineon Technologies

Mike Resso Agilent Technologies John D'Ambrosia Tyco Electronics

Presented by Harvey Newman Infineon Technologies To SAS-2 6Gbps physical WG May 25, 2005

A Simple System Perspective

Receiver

Current Methods

The Real Problem

How to Measure The Channel

Measuring the whole Channel

Differential Measurements

			Differen	Differential Signal		Common Signal	
	<mark>a</mark>	-	Port 1	Port 2	Port 1	Port 2	
Response	Differential Sign	Port	S _{DD11}	S_{DD12}	S _{DC11}	S_{DC12}	
		Port 2	S _{DD21}	S_{DD22}	S_{DC21}	S_{DC22}	
	Common Signal	Port 1	S _{CD11}	S _{CD12}	S _{CC11}	S _{CC12}	
		ort 2	S _{CD21}	S_{CD22}	S_{CC21}	S _{CC22}	
		–					

Frequency Response

Analysing Channels

Must include all channel effects

- Mode conversions
- Channel and device return loss
- Crosstalk
- Magnitude and phase
- Return Loss
- Influence of the pattern/coding
- Must include all jitter and statistical effects

What is the real problem?

- Correlated and uncorrelated transmitters
- Various Channels incl. FEXT and NEXT
- Various jittered signalling types with common mode noise and return loss

Introducing Stateye

- Following slides introduce the basic theory of stateye based on alpha c++ code and gnuplot running under Linux
- I would suggest that if there are questions, ask while I am presenting. It is important to understand each step

Simple Transfer Function

Impulse Response

Pulse Response

Symbols

ISI

Worst case patterns

Worst Case Sampling Jitter

Worst Case Eye Opening

Cursor Extraction

Conditional pdf

Conditional pdf

Conditional pdf

Sampling Jitter

Average pdf over transmit jitter

Pdf -> cdf

Conditional Average cdfs

Stateye

Taking more cursors

Taking more cursors

Simple Crosstalk

Pulse Response of Crosstalk

Effect of crosstalk on pdf

time (UI)

Effect of crosstalk on stateye

Multiple Crosstalk Aggressors

Multiple Crosstalk Aggressors

Real Probability

Pause for Breathe (mine)

A Channel Example

	Market I	_
	 Description 	•
	Πψψγγλ_JEFE βμαβατοπο	
	MLSUBSTRATE/	
	· · Subst4· · · · · · · · · · · · · · · · · · ·	•
	• Er[1]=4.5 • Er[4]=4.5 • T[7]=1.4 mil • • • • • • • • • • • • • • • • • • •	•
	TanD[1]=0.018TanD[4]=0.018LayerType[1]=signal	
	TI11=1.4 mil TI41=1.4 mil LaverTvpeI21=ground	
	Cond(1)=6e7 Cond(4)=6e7 LaverType[3]=signal	•
	Pri21=4.5 Fri21=4.5 LayerTynel4 l=ground	
	HD = 6 mil HD = 6 mil LayerType [] = ground	
P 11one		
	Tip_1 / mil Tip_1 / mil LoverType/7 around	•
· · · · · · · · · · · · · · · · · · ·	1/21-1/4 min 1/21-1/4 min cayer/yhe/r -ground	•
i P_1Tone i i i i i i i i	- H[3]=6 mil: - H[6]=6 mil: P_1Tohe	
· · · PORT2· · · · · · · · ·	- IanD[3]=0.0181anD[6]=0.018 PORT8 PORT8	•
	. I [3]=1.4 mil . I [6]=1.4 mil	
	Cond[3]=6e7 . Cond[6]=6e7	
P 1Tone C2		
рартз 📥 С=400 fF		
· · · · · · · · · · · · · · · · · · ·		•
D 1Topo		
		•
POR14		•
P_1Tone Control to		
		•
		•
i P_1Tone	ML6CTL V P_1Tone	
PORT6 · · · · · · · · · · ·	Cling	•
	Subst="Subst41 aver[3]=3	
	bength=15 in dayer[4]=3 · · · · bength=5 in · dayer[4]=3 · · · · · ·	
🛓	Will-6 mil Laver/51-3 Will-6 mil Laver/51-3	
	Still-6 mil Laver/61-3	• •
1 1 1 🖓 1 SIPARAMETERS 1		•
	WIZES MIL REGUINES WIZES MIL REGUINES	
· · · S.Param · · · · · · ·		
SP1		
Start=10 MHz		
Ston=20.0 GHz	· vv(4)=5 mil. · · · · · · · · · · · · · · · · · · ·	•
Step=20.0 OT12	3[4]=15 mil.	
	S[5]=6 mil S[5]=6 mil	
	VV[6]=5 mil	
	 Layer[1]=3 Layer[1]=3 Layer[1]=3 	•
	· Layer[2]=3 · · · · · · · · · · Layer[2]=3 · · · · · · · · · · · · · · · · · · ·	

Short Channel no via

Short Channel no via

Amplitude

Short Channel no via

Short Channel with via

Short Channel with via

Amplitude

Short Channel with via

Longer Channel

Longer Channel

Amplitude

-Frequency (CHz)-

Longer Channel

Longer Channel + deemphasis

Longer Channel + deemphasis

Long Channel with close rx via

Long Channel with close rx via

Amplitude

Frequency (GHz) --

Long Channel with close rx via

Longer Channel + DFE

Longer Channel + DFE

Dealing with Correlated Data

DCD or Pulse Shrinkage

Amplitude

Frequency (CHz)

PAM

Return Loss, Boosting and FIRs

Transmitter n port s-parameter

Channel n port s-parameter

Linear Equaliser Receiver n port s-parameter

Convert to T-matrix, multiply and convert back to S-matrix

Calculate pulse response

Push pulse response through any FIR

Dealing with common mode

- Calculate common mode transfer function
- Create the pulse response seen at the receiver
- Extract the cursors
- Additional use the cursors in the calculation of the conditional pdf, as for crosstalk

Stateye

- Stateye is a non-profit, open source, developers forum under <u>www.stateye.org</u>
- Currently stateye is being re-developed
- Stateye is being rewritten currently under c++ to allow easier contribution and exploration of differing technical opinions
 - The initial c++ class structure and initial functions will be made available at the above website.

Stateye

- Lab results concerning validation of this technique are also available from the website
- Stateye is under continuous development and improvement and encourages contribution
- This presentation is available from the T10 website. T10/05-198r0