
T10/04-193r4

ENDL
T E X A S

Date: 27 June 2004
To: T10 Technical Committee and SNIA OSD TWG

From: Ralph O. Weber
Subject: Rewrite of OSD Security and Policy/Storage Manager Models
Revision History

This document is being presented in a 'build up' fashion. That is r0 contains an initial amount of changes and each
revision after that contains additional details and changes.

r0 Shows only the model split between Capabilities (aka Policy/Storage Management) and Credentials (aka
Security) and provides a rudimentary description for fencing

r1 Contains the same normative text as r0, but the strikeouts are removed
r2 Example configuration figure cleaned up and used blue lines for connections that do not use the service

delivery subsystem. Moves the communications security requirements to the security manager Trust
Assumptions subclause. Updates the security threats table to cover non-secure channels. Adds prototype
CDB definition with changes resulting from the model split between Capabilities (aka Policy/Storage
Management) and Credentials (aka Security).

r3 Makes all agreed changes that the author could locate on the SNIA OSD TWG reflector and a few from
other sources. It is believe that this revision addresses all the 04-108 comments that identify a revision of
this document as detailing the response to a T10 OSD Letter Ballot comment.

r4 Contains the same normative text as r3, but with the most annoying strikeouts removed

Summary

The document shows all the changes to OSD r09 needed to:

• Separate Capability handling (aka Policy/Storage Management) from Credential handling (aka Security)
• Treat security manager communications requirements as a trust assumption
• Modify threats analysis to cover CAPKEY over a non-secure channel

Changes made by this document are shown as red text additions and red text removals.

The author believes that this revision of this document addresses the following previously unresolved OSD Letter
Ballot comments:

• ENDL 2, HP 62, IBM 42, IBM 141, Seagate 8, and Veritas 65 motivated the development of this document,
meaning the all the changes it proposes are addressed to those comments more or less

• Agilent 7 and two-thirds of EMC 8 should be resolved by moving the Partition_ID to the capability (as described
in the response to IBM 141)

• EMC 1 should be addressed by the changes in 4.9.2 (Trust assumptions)
• EMC 2 should be addressed by the paragraph added at the end of 4.9.6.2
• EMC 3 should be addressed by the content of 4.9.m
• EMC 4 should be addressed by the changes in the "Security methods and threats thwarted" table in 4.9.3.1

(Security methods … Introduction)
• EMC 5, EMC 6, HP 33, HP 35, and Lingua 19 should be resolved the completely new definition of a security

token (see 4.9.3.3)
• EMC 7, EMC 9, and part of Panasas 2 should be addressed the addition of step 5 to 4.9.5.1. The remainder of

Panasas 2 should be addressed by the changes in 4.x.2.2.
18484 Preston Road, Suite 102 PMB 178, Dallas, TX 75252 214-912-1373 972-596-2775 Fx ENDL_TX@computer.org

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
• EMC 10 should be addressed by removing discussion of far-in-the-future nonces and making 'oldest valid
nonce' and 'newest valid nonce' settable attributes (see 4.9.6.2 and 7.1.2.21)

• EMC 13 should be addressed by the changes to the SET MASTER KEY command and subclauses that it ref-
erences (see 6.20)

• END 2 and HP 62 should be addressed by the new 4.x.3 as well as by the changes in 7.1.2.21, 7.1.2.22, and
7.1.2.23

• HP 51 and Intel 21 should be addressed by the global change of 'drive key' to 'root key'
• IBM 147, Panasas 5, and Seagate 9 should be resolved by the addition of a SECURITY METHOD field to the

Capability (see 4.x.2.2 and 4.9.m)
• Seagate 18 should be resolved by the changes in 4.9.7, table 16, table 17, table 22, table 42, and table 43.

This document also shows all approved changes for the clauses modified by this document, specifically: Agilent 3,
Agilent 8, Agilent 9, Agilent 10, Brocade 17, EMC 12, HP 30, HP 31, HP 32, HP 34, HP 36, HP 40, HP 42, HP 43,
HP 47, HP 48, HP 49, HP 50, HP 54, HP 55, HP 56, HP 57, HP 58, HP 59, HP 76, HP 77, HP 85, HB 115, HP 120,
HP 122, IBM 39, IBM 40, IBM 41, IBM 43, IBM 44, IBM 46, IBM 47, IBM 48, IBM 49, IBM 50, IBM 52, IBM 53,
IBM 55, IBM 56, IBM 57, IBM 58, IBM 59, IBM 91, IBM 128, IBM 129, IBM 130, IBM 131, IBM 132, IBM 133,
IBM 134, IBM 136, IBM 137, IBM 138, IBM 142, IBM 153, Lingua 20, Lingua 22, Lingua 23, Lingua 24, Lingua 25,
Lingua 26, Lingua 27, Lingua 28, Lingua 30, Lingua 31, Lingua 32, Lingua 36, Lingua 37, LSI 12, Seagate 7,
Seagate 10, Seagate 11, Seagate 13, Seagate 14, Seagate 15, Seagate 18, Seagate 19, Seagate 20, Seagate 21,
Seagate 50, Seagate 51, Veritas 45, Veritas 47, Veritas 49, Veritas 50, Veritas 51, Veritas 52, Veritas 53,
Veritas 57, Veritas 58, Veritas 59, Veritas 61, Veritas 62, Veritas 63, Veritas 64, Veritas 66, Veritas 67, Veritas 68,
Veritas 69, Veritas 70, Veritas 71, Veritas 72, Veritas 107, Veritas 108, Veritas 117, Veritas 118, Veritas 119, and
Veritas 120.

These changes are shows as blue text additions and blue text removals.

Suggested Changes:

2.4 Approved IETF References

Copies of the following approved IETF standards may be obtained through the Internet Engineering Task Force
(IETF) at www.ietf.org.

RFC 1750, Randomness Recommendations for Security

RFC 2401, Security Architecture for the Internet Protocol

RFC 2409, The Internet Key Exchange

RFC 3526, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange

3.2 Acronyms
…
DH Diffie-Hellman (see 2.4, RFC 2409 and RFC 3526)
…
IANA Internet Assigned Numbers Authority (see www.iana.org)
…
MODP Modular Exponential (see 2.4, RFC 3526)
…

2 of 2

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.4 Elements of the example configuration

The example in this subclause (see figure 1) illustrates the three mandatory and two optional constituents of an
OSD configuration:

a) Object-Based Storage Devices;
b) Service delivery subsystem;
c) Host systems (i.e., initiator devices);
d) Optionally, a security manager; and
e) Optionally, a policy/storage manager.

The OBSDs are the storage components of the system to be shared (e.g., disc drives, RAID subsystems, tape
drives, tape libraries, optical drives, jukeboxes, or other storage devices).

Application clients using multiple SCSI initiator ports share directly access an OBSD (see 3.1.26) via the service
delivery subsystem. The service delivery subsystem is used by the components in the OSD model, except possibly
the policy/storage manager and/or security manager, to intercommunicate. The OSD security model (see 4.9) does
not require the service delivery subsystem to provide security-related services (i.e., authentication and confidenti-
ality), but is designed to take advantage of whatever security-related services are provided.

The policy/storage manager (see 4.x), if present, coordinates access constraints between OSD device servers and
application clients, preparing the capabilities application clients place in CDBs to gain access to OSD objects and
command functions.

The security manager (see 4.9), if present, secures capabilities in cryptographically protected credentials for OSD
device servers and application clients.

The policy/storage manager and security manager may reside in the OBSDs, in applications clients, or as a
separate entities.

The policy/storage manager and security manager may use the service delivery subsystem and be an application
client, but they also may use another mechanism to communicate with the OSD device servers and application
clients. Security-related requirements on the communications mechanisms used by the security manager are
described in 4.9.2

Figure 1 — Example OSD Configuration

Service
Delivery

Subsystem

OBSD

OBSD

OBSD

Initiator
device

Initiator
device

Initiator
device

Policy/Storage
Manager

Security
Manager
 3

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.x Policy/storage management

4.x.1 Overview

The policy/storage manager:

a) Provides access policy controls to application clients via preparation of policy-coordinated capabilities (see
4.x.2); and

b) In concert with the OSD logical unit, prevents unsafe or temporarily undesirable utilization of OBSD
storage (see 4.x.3).

4.x.2 Capabilities

4.x.2.1 Introduction

Each CDB defined by this standard includes a capability (see 4.x.2.2) whose contents specify the command
functions (see 3.1.10) that the device server is allowed to process in response to the command.

The device server validates that the requested command functions are allowed by the capability based on:

a) The type of functions (e.g., read, write, attributes setting, attributes retrieval); and
b) The OSD object on which the command functions are to be processed.

The policies that determine which capabilities are provided to which application clients are outside the scope of this
standard.

The policy/storage manager shall coordinate the delivery of capabilities to application clients with the security
manager (see 4.9) as follows:

a) If the security method for all partitions in the OSD logical unit is NOSEC (see 4.9.3.2), then the
policy/storage manager may:
A) Allow application clients to prepare their own capabilities;
B) Coordinate the preparation of capabilities for multiple application clients in response to requests, the

format and transport mechanisms for which are outside the scope of this standard; or
C) Coordinate the preparation of capabilities with the security manager as described in item b);
or

b) If a security method other than NOSEC is in use by any partition in the OSD logical unit, then the
policy/storage manager shall coordinate the preparation of capabilities with the security manager by:
A) Requiring application clients to request credentials and capabilities from the security manager; and
B) Preparing capabilities only is response to requests from the security manager.
4

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.x.2.2 Capability format

4.x.2.2.1 Introduction

A capability (see table 1) is included in a CDB to enable the device server to verify that the sender is allowed to
perform the command functions (see 3.1.10) specified by the CDB .

The CAPABILITY FORMAT field (see table 2) specifies the format of the capability. If capabilities are coordinated with
the security manager, the capability format also is the credential format. The policy/storage manager shall set the
CAPABILITY FORMAT field to 1h (i.e., the format defined by this standard).

If the CAPABILITY FORMAT field contains 1h, the device server shall verify that the command functions requested by
a CDB are permitted by the capability as described in this subclause. The device server may verify that a command
function is permitted after other command functions are completed. The device server shall verify that a command

Table 1 — Capability format

Bit
Byte

7 6 5 4 3 2 1 0

0 Reserved CAPABILITY FORMAT (1h)

1 KEY VERSION INTEGRITY CHECK VALUE ALGORITHM

2 SECURITY METHOD

3 Reserved

4 (MSB)
CAPABILITY EXPIRATION TIME

9 (LSB)

10
AUDIT

29

30 (MSB)
CAPABILITY DISCRIMINATOR

41 (LSB)

42 (MSB)
OBJECT CREATED TIME

47 (LSB)

48 OBJECT TYPE

49
PERMISSIONS BIT MASK

53

54 Reserved

55 OBJECT DESCRIPTOR TYPE Reserved

56
OBJECT DESCRIPTOR

79

Table 2 — Capability format values

Value Description

0h No capability

1h The format defined by this standard

2h - Fh Reserved
 5

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
function is permitted before any part of the command function is performed. (E.g., the device server may delay
verifying that the set attributes command functions specified by a set attributes list are allowed until the requested
read command function is completed, but all the capability permissions concerning the setting attributes are to be
verified before any attribute values are changed.)

The KEY VERSION field, INTEGRITY CHECK VALUE ALGORITHM field, and SECURITY METHOD field are used by the security
manager. If capabilities are not coordinated with the security manager, the KEY VERSION field, INTEGRITY CHECK

VALUE ALGORITHM field, and SECURITY METHOD field are reserved.

If CDB contains a non-zero value in the SECURITY METHOD field, the integrity of the CDB shall be validated (see
4.9.5.1) before any other command processing actions are undertaken (i.e., before verifying that command
functions requested in the CDB are permitted by the capability).

The command shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST, and the additional sense code set to INVALID FIELD IN CDB, if the CDB SECURITY METHOD field or
CAPABILITY FORMAT field contains zero and one of the following is true:

a) The command is SET KEY (see 6.23) or SET MASTER KEY (see 6.24); or
b) The security method attribute in the Partition Policy/Security attributes page (see 7.1.2.21) specifies a

security method other than NOSEC for the partition identified as follows:
A) For the CREATE PARTITION command (see 6.7), FLUSH OSD command (see 6.y), FORMAT OSD

command (see 6.9), the identified partition is partition zero (see 3.1.31);
B) For any command that is not one of those already listed, the partition is identified by the contents of the

CDB PARTITION_ID field.

The CAPABILITY EXPIRATION TIME field specifies the value of the clock attribute in the Root Information attributes
page (see 7.1.2.8) after which this capability is no longer valid. If a CDB CAPABILITY EXPIRATION TIME field contains a
value other than zero and the value of the clock attribute in the Root Information attributes page is greater than the
value in the CAPABILITY EXPIRATION TIME field, the command shall be terminated with a CHECK CONDITION status,
the sense key shall be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN
CDB.

Successful use of the capability expiration time requires some degree of synchronization between the clocks of the
device server, policy/storage manager, and security manager. The protocol for synchronizing the clocks is outside
the scope of this standard.

The AUDIT field is a vendor specific value that the policy/storage manager and/or security manager may use to
associate the capability with a specific application client.

The CAPABILITY DISCRIMINATOR field contains a nonce (see 3.1.23) that differentiates one capability from another.

The OBJECT CREATED TIME field specifies the contents of the created time attribute for the OSD object (see table 3)
to which the capability applies. A value of zero specifies that any object created time is allowed.

Table 3 — Created time for OSD objects by type

Object Type
(see table 4)

Attributes page containing created time attribute to which
the capability OBJECT CREATED TIME field is applies

ROOT Partition Timestamps attributes page (see 7.1.2.16) for partition zero (see 3.1.31)

PARTITION Partition Timestamps attributes page (see 7.1.2.16)

COLLECTION Collection Timestamps attributes page (see 7.1.2.17)

USER User Object Timestamps attributes page (see 7.1.2.18)
6

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
If a CDB OBJECT CREATED TIME field contains a value other than zero and the value in the OBJECT CREATED TIME

field is not identical to the value in the created time attribute from the associated timestamps attributes page (see
table 3), then the command shall be terminated with a CHECK CONDITION status, the sense key shall be set to
ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The OBJECT TYPE field (see table 4) specifies the type of OSD object to which this capability allows access . If
capabilities are coordinated with the security manager, the OBJECT TYPE field is used to select the secret key that is
used in validating the credential.

If the command functions specified by the CDB are not allowed for the OSD object type specified in the CDB
OBJECT TYPE field (see 4.x.2.2), the command shall be terminated with a CHECK CONDITION status, the sense
key shall be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The PERMISSIONS BIT MASK field (see table 5) specifies which functions are allowed by this capability. More than one
permissions bit may be set within the constraints specified in 4.x.2.3 resulting in a single capability that allows
more than one command function.

A READ bit set to one allows read access to the data in an OSD object, but not to the attributes. For the root object,
partitions, and collections the data in the OSD object is the list of other objects contained in the OSD object. A READ

bit set to zero prohibits read access to the data in an OSD object.

A WRITE bit set to one allows processing of the WRITE command (see 6.21) , but not access to user object
attributes. A WRITE bit set to zero prohibits processing of the WRITE command .

A GET_ATTR (get attributes) bit set to one allows retrieval of (i.e., read access to) the attributes associated with an
OSD object. A GET_ATTR bit set to zero prohibits retrieval of attributes except for the attributes in the Current
Command attributes page (see 7.1.2.24).

Table 4 — Object type values

Value Name

 OSD object type
to which access is

allowed

01h ROOT Root object

02h PARTITION Partition

40h COLLECTION Collection

80h USER User objects

all other values Reserved

Table 5 — Permissions bit mask format

Bit
Byte

7 6 5 4 3 2 1 0

49 READ WRITE GET_ATTR SET_ATTR CREATE REMOVE OBJ_MGMT APPEND

50 DEV_MGMT GLOBAL POL/SEC Reserved

51 Reserved

52 Reserved

53 Reserved
 7

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
A SET_ATTR (set attributes) bit set to one allows the setting of (i.e., write access to) the attributes associated with an
OSD object except for attributes located in the OSD object’s policy/security attributes page (e.g., the User Object
Policy/Security attributes page (see 7.1.2.23) if the OSD object is a user object). The setting of attributes located in
the OSD object’s policy/security attributes page is allowed only if both the SET_ATTR bit and the POL/SEC bit are set
to one. A SET_ATTR bit set to zero prohibits the setting of the attributes associated with an OSD object.

A CREATE bit set to one allows the creation of OSD objects. A CREATE bit set to zero prohibits the creation of OSD
objects.

A REMOVE bit set to one allows the removal of OSD objects. A REMOVE bit set to zero prohibits the removal of OSD
objects.

An OBJ_MGMT (object management) bit set to one allows command functions that may change how the OSD logical
unit handles an OSD object without affecting the stored data, stored attributes, commands in the task set, policies,
or security for the OSD object. A OBJ_MGMT bit set to zero prohibits such command functions.

An APPEND bit set to one allows processing of the APPEND command (see 6.2), but not access to user object
attributes. A APPEND bit set to zero prohibits processing of the APPEND command.

A DEV_MGMT (device management) bit set to one allows command functions that affect the OSD logical unit. A
DEV_MGMT bit set to zero prohibits command functions that affect the OSD logical unit.

A GLOBAL bit set to one allows command functions that may affect all the OSD objects in the OSD logical unit. A
GLOBAL bit set to zero prohibits command functions that may affect all the OSD objects in the OSD logical unit.

A POL/SEC bit set to one allows command functions that affect the policy/security functions performed for one or
more OSD objects. A POL/SEC bit set to zero prohibits command functions that affect the policy/security functions
performed for one or more OSD objects.

If the command functions specified by the CDB are not allowed by the CDB PERMISSIONS BIT MASK field (see
4.x.2.2), the command shall be terminated with a CHECK CONDITION status, the sense key shall be set to
ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The OBJECT DESCRIPTOR TYPE field (see table 6) specifies the format of information that appears in the OBJECT

DESCRIPTOR field.

Table 6 — Object descriptor types

Object
Descriptor

Type Name Description Reference

0h NONE The OBJECT DESCRIPTOR field shall be ignored

1h U/C A single collection or user object 4.x.2.2.2

2h PAR A single partition, including partition zero 4.x.2.2.3

3h - Fh Reserved
8

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.x.2.2.2 U/C capability object descriptor

If the object descriptor type is U/C (i.e., 1h), the OBJECT DESCRIPTOR field shall have the format shown in table 7,
specifying a single collection or user object to which the capability allows access.

If the POLICY ACCESS TAG field contains a value other than zero, the policy access tag attribute identified by the
command and object type field (see table 8) is compared to the POLICY ACCESS TAG field contents as part of
verifying the capability. If the POLICY ACCESS TAG field contains zero, then no comparison is made to any policy
access tag attribute. The policy/storage manager or OSD logical unit changes the policy access tag to prevent
unsafe or temporarily undesirable accesses to an OSD object (see 4.x.3).

If the non-zero value in the CDB POLICY ACCESS TAG field is not identical to the value in the policy access tag
attribute from the associated security attributes page (see table 8), then the command shall be terminated with a
CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the additional sense code
shall be set to INVALID FIELD IN CDB.

Table 7 — User object/collection object descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

56 (MSB)
 POLICY ACCESS TAG

59 (LSB)

60 (MSB)
ALLOWED PARTITION_ID

67 (LSB)

68 (MSB)
 ALLOWED OBJECT_ID

75 (LSB)

76
Reserved

79

Table 8 — Policy access tag OSD objects

Command
Object Type
(see table 4)

Attributes page containing policy access tag attribute
to which credential POLICY ACCESS TAG field is compared

CREATE PARTITION PARTITION Partition Policy/Security attributes page (see 7.1.2.21)
for partition zero (see 3.1.31)

CREATE COLLECTION COLLECTION Partition Policy/Security attributes page (see 7.1.2.21)

CREATE or
CREATE AND WRITE

USER Partition Policy/Security attributes page (see 7.1.2.21)

All other
commands

ROOT Partition Policy/Security attributes page (see 7.1.2.21)
for partition zero

PARTITION Partition Policy/Security attributes page (see 7.1.2.21)

COLLECTION Collection Policy/Security attributes page (see 7.1.2.22)

USER User Object Policy/Security attributes page (see 7.1.2.23)
 9

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The ALLOWED PARTITION_ID field specifies the partition to which access is allowed. The command shall be termi-
nated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense
code set to INVALID FIELD IN CDB, if:

a) The ALLOWED PARTITION_ID field contains zero in a CDB; or
b) The ALLOWED PARTITION_ID field contents do not match the contents of the PARTITION_ID field in the CDB.

The ALLOWED OBJECT_ID field specifies the Collection_Object_ID (see 4.6.6) or User_Object_ID (see 4.6.5) of the
OSD object to which the capability allows access. The command shall be terminated with a CHECK CONDITION
status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN
CDB, if:

a) The command is not CREATE, CREATE AND WRITE, or CREATE COLLECTION and the ALLOWED

OBJECT_ID field contains zero;
b) The OBJECT TYPE field contains 40h (i.e., COLLECTION) and the ALLOWED OBJECT_ID field contents do not

match the contents of the CDB COLLECTION_OBJECT_ID field or REQUESTED COLLECTION_OBJECT_ID field; or
c) The OBJECT TYPE field contains 80h (i.e., USER) and the ALLOWED OBJECT_ID field contents do not match

the contents of the CDB USER_OBJECT_ID field or REQUESTED USER_OBJECT_ID field.

4.x.2.2.3 PAR capability object descriptor

If the object descriptor type is PAR (i.e., 2h), the OBJECT DESCRIPTOR field shall have the format shown in table 9,
specifying a single partition, including partition zero (see 3.1.31), to which the capability allows access.

The POLICY ACCESS TAG field is described in 4.x.2.2.2.

The ALLOWED PARTITION_ID field specifies the partition to which access is allowed. The command shall be termi-
nated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense
code set to INVALID FIELD IN CDB, if:

a) The CDB USER_OBJECT_ID field, REQUESTED USER_OBJECT_ID field, COLLECTION_OBJECT_ID field or
REQUESTED COLLECTION_OBJECT_ID field, if any, contains a value other than zero;

b) The OBJECT TYPE field contains 02h (i.e., PARTITION) and one of the following is true:
A) The command is not CREATE PARTITION and the ALLOWED PARTITION_ID field contains zero;
B) The ALLOWED PARTITION_ID field contents do not match the contents of the CDB PARTITION_ID field;
or

c) The OBJECT TYPE field contains 01h (i.e., ROOT) and one of the following is true:
A) The ALLOWED PARTITION_ID field contains a value other than zero; or
B) The CDB PARTITION_ID field, if any, contains a value other than zero.

Table 9 — Partition descriptor format

Bit
Byte

7 6 5 4 3 2 1 0

56 (MSB)
POLICY ACCESS TAG

59 (LSB)

60 (MSB)
ALLOWED PARTITION_ID

67 (LSB)

68
Reserved

79
10

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.x.2.3 Capabilities and commands allowed

The validity of a specific command and some of the command function (see 3.1.10) related fields in that command
is determined by the presence of specific combinations of values in capability fields as shown in table 10. A
command function is allowed if at least one row in table 10 allows it, even if a different row that applies does not
allow it.

Any command may retrieve or set attributes. The combinations of capability fields that allow those functions are
shown in table 11. Retrieving or setting attributes is allowed if at least one row in table 11 allows it, even if a
different row that applies does not allow it.

A single capability for a single object type may allow processing of multiple command functions (e.g., read and
write) as well as retrieving and setting attributes by combining the permission bits values described in multiple
rows of table 10 and table 11.

Table 10 — Commands allowed by specific capability field values (Sheet 1 of 2)

Commands allowed
and
CDB fields whose contents are restricted by capability field
contents, if any

Capability Field values
that allow a command

Object Type
Name

Permission
Bits That

Are Set To
One

Object
Descriptor

Name

An APPEND command USER APPEND U/C

A CREATE command USER CREATE U/C

A CREATE AND WRITE command USER CREATE

and
WRITE

U/C

A CREATE COLLECTION command COLLECTION CREATE U/C

A CREATE PARTITION command PARTITION CREATE PAR

A FLUSH command USER OBJ_MGMT U/C

A FLUSH COLLECTION command COLLECTION OBJ_MGMT U/C

A FLUSH PARTITION command PARTITION OBJ_MGMT PAR

A FLUSH OSD command ROOT OBJ_MGMT PAR

A FORMAT OSD command ROOT OBJ_MGMT

and
GLOBAL

PAR

A GET ATTRIBUTES command addressed to a user object USER see table 11 U/C

A GET ATTRIBUTES command addressed to a collection COLLECTION see table 11 U/C

A GET ATTRIBUTES command addressed to a partition PARTITION see table 11 PAR

A GET ATTRIBUTES command addressed to the root object ROOT see table 11 PAR

A LIST command addressed to a partition PARTITION READ PAR

Combinations of OBJECT TYPE field, PERMISSION BITS field, and OBJECT DESCRIPTOR TYPE field values not shown in
this table and table 11 are reserved.
The capability fields not shown in this table may place additional limits on the objects that are allowed to be
accessed.
 11

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
A LIST command addressed to the root object ROOT READ PAR

A LIST COLLECTION command addressed to a collection COLLECTION READ U/C

A LIST COLLECTION command addressed to a partition PARTITION READ PAR

A PERFORM TASK MANAGEMENT command with function code
of ABORT TASK or QUERY TASK addressed to a user object

USER DEV_MGMT U/C

A PERFORM TASK MANAGEMENT command with function code
of ABORT TASK or QUERY TASK addressed to a collection

COLLECTION DEV_MGMT U/C

A PERFORM TASK MANAGEMENT command with function code
of ABORT TASK or QUERY TASK addressed to a partition

PARTITION DEV_MGMT PAR

A PERFORM TASK MANAGEMENT command with function code
of ABORT TASK or QUERY TASK addressed to the root object

ROOT DEV_MGMT PAR

A PERFORM TASK MANAGEMENT command or
a PERFORM SCSI COMMAND command

ROOT DEV_MGMT
and

GLOBAL

PAR

A READ command USER READ U/C

A REMOVE command USER REMOVE U/C

A REMOVE COLLECTION command COLLECTION REMOVE U/C

A REMOVE PARTITION PARTITION REMOVE PAR

A SET ATTRIBUTES command addressed to a user object USER see table 11 U/C

A SET ATTRIBUTES command addressed to a collection COLLECTION see table 11 U/C

A SET ATTRIBUTES command addressed to a partition PARTITION see table 11 PAR

A SET ATTRIBUTES command addressed to the root object ROOT see table 11 PAR

A SET KEY command with KEY TO SET field equal to 10b or 11b PARTITION DEV_MGMT
and

POL/SEC

PAR

A SET KEY command with KEY TO SET field equal to 01b ROOT DEV_MGMT
and

POL/SEC

PAR

A SET MASTER KEY command ROOT DEV_MGMT
and

POL/SEC

PAR

A WRITE command USER WRITE U/C

Table 10 — Commands allowed by specific capability field values (Sheet 2 of 2)

Commands allowed
and
CDB fields whose contents are restricted by capability field
contents, if any

Capability Field values
that allow a command

Object Type
Name

Permission
Bits That

Are Set To
One

Object
Descriptor

Name

Combinations of OBJECT TYPE field, PERMISSION BITS field, and OBJECT DESCRIPTOR TYPE field values not shown in
this table and table 11 are reserved.
The capability fields not shown in this table may place additional limits on the objects that are allowed to be
accessed.
12

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
Table 11 — Attribute retrieval and setting functions allowed by specific capability field values (Sheet 1 of 3)

Attribute-Related Functions Allowed

Capability Field values
that allow attribute-related functions

Object Type
Name

Permission
Bits That

Are Set To
One

Object
Descriptor

Name

Retrieval of attributes from the Current Command attributes page USER or
COLLECTION

none U/C

Retrieval of attributes from the Current Command attributes page PARTITION
or ROOT

none PAR

Retrieval of attributes from any attributes page associated with
the addressed user object

USER GET_ATTR U/C

As part of a CREATE command or CREATE AND WRITE
command, retrieval of attributes from any attributes page

associated with any user object created by the command.

USER GET_ATTR U/C

Retrieval of attributes from any attributes page associated with
the addressed collection

COLLECTION GET_ATTR U/C

As part of a CREATE COLLECTION command, retrieval of
attributes from any attributes page associated with the collection

created by the command

COLLECTION GET_ATTR U/C

Retrieval of attributes from any attributes page associated with
the addressed partition

PARTITION GET_ATTR PAR

As part of a CREATE PARTITION command, the retrieval of
attributes from any attributes page associated with the created
partition

PARTITION GET_ATTR PAR

 Retrieval of attributes from any attributes page associated with
the root object or in any attributes page associated with partition
zero (see 3.1.31)

ROOT GET_ATTR PAR

Setting attributes in any attributes page associated with the
addressed user object, except attributes in a User Object
Policy/Security attributes page

USER SET_ATTR U/C

As part of a CREATE command or CREATE AND WRITE
command, the setting of attributes in any attributes page
associated with any user object created by the command, except
attributes in a User Object Policy/Security attributes page

USER SET_ATTR U/C

Combinations of OBJECT TYPE field, PERMISSION BITS field, and OBJECT DESCRIPTOR TYPE field values not shown in
this table and table 10 are reserved.
The capability fields not shown in this table may place additional limits on the objects that are allowed to be
accessed.
 13

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
Setting attributes in any attributes page associated with the
addressed collection, except attributes in a Collection

Policy/Security attributes page

COLLECTION SET_ATTR U/C

As part of a CREATE COLLECTION command, the setting of
attributes in any attributes page associated with the collection
created by the command, except attributes in the Collection
Policy/Security attributes page

COLLECTION SET_ATTR U/C

Setting attributes in any attributes page associated with the
addressed partition, except attributes in a Partition Policy/Security
attributes page

PARTITION SET_ATTR PAR

As part of a CREATE PARTITION command, the setting of
attributes in any attributes page associated with the partition
created by the command, except attributes in the Partition
Policy/Security attributes page

PARTITION SET_ATTR PAR

Setting attributes in any attributes page associated with the root
object, except attributes in a Root Policy/Security attributes page
Setting attributes in any attributes page associated with partition
zero (see 3.1.31), except attributes in a Partition Policy/Security
attributes page

ROOT SET_ATTR PAR

Setting attributes in any attributes page associated with the
addressed user object

USER SET_ATTR
and

POL/SEC

U/C

As part of a CREATE command or CREATE AND WRITE
command, the setting of attributes in any attributes page
associated with any user object created by the command

USER SET_ATTR
and

POL/SEC

U/C

Setting attributes in any attributes page associated with the
addressed collection

COLLECTION SET_ATTR
and

POL/SEC

U/C

As part of a CREATE COLLECTION command, the setting of
attributes in any attributes page associated with the collection
created by the command

COLLECTION SET_ATTR
and

POL/SEC

U/C

Table 11 — Attribute retrieval and setting functions allowed by specific capability field values (Sheet 2 of 3)

Attribute-Related Functions Allowed

Capability Field values
that allow attribute-related functions

Object Type
Name

Permission
Bits That

Are Set To
One

Object
Descriptor

Name

Combinations of OBJECT TYPE field, PERMISSION BITS field, and OBJECT DESCRIPTOR TYPE field values not shown in
this table and table 10 are reserved.
The capability fields not shown in this table may place additional limits on the objects that are allowed to be
accessed.
14

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.x.3 Policy access tags

The policy access tag (see table 12) allows the coordinated actions of both the OSD logical unit and policy/storage
manager to prevent unsafe or temporarily undesirable utilization of OBSD storage that is assigned to the OSD
logical unit.

During normal operation the value of the FENCE bit is zero.

If the OSD logical unit detects a condition that would make further accesses to one or more OSD objects unsafe, it
shall set the FENCE bit to one in the policy access tag attributes in the Policy/Security attributes pages associated
with those objects (e.g., the User Object Policy/Security attributes page (see 7.1.2.23) if the OSD object is a user
object) and notify the policy/storage manager of a condition needing attention. The OSD logical unit, policy/storage
manager, or both act to correct whatever conditions are making accesses to the OSD objects unsafe. After the
conditions making accesses to the OSD objects unsafe are corrected the policy/storage manager sets the FENCE

bit to zero.

Setting attributes in any attributes page associated with the
addressed partition

PARTITION SET_ATTR
and

POL/SEC

PAR

As part of a CREATE PARTITION command, the setting of
attributes in any attributes page associated with the partition
created by the command

PARTITION SET_ATTR
and

POL/SEC

PAR

 Setting attributes in any attributes page associated with the root
object or in any attributes page associated with partition zero (see
3.1.31)

ROOT SET_ATTR
and

POL/SEC

PAR

Table 12 — Policy access tag format

Bit
Byte

7 6 5 4 3 2 1 0

0 FENCE (MSB)

VERSION
1

2

3 (LSB)

Table 11 — Attribute retrieval and setting functions allowed by specific capability field values (Sheet 3 of 3)

Attribute-Related Functions Allowed

Capability Field values
that allow attribute-related functions

Object Type
Name

Permission
Bits That

Are Set To
One

Object
Descriptor

Name

Combinations of OBJECT TYPE field, PERMISSION BITS field, and OBJECT DESCRIPTOR TYPE field values not shown in
this table and table 10 are reserved.
The capability fields not shown in this table may place additional limits on the objects that are allowed to be
accessed.
 15

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
If a set attributes list (see 5.2.1.3) contains a request to set the FENCE bit to one, the command shall be terminated
with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code
set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field contains 4000 0001h (i.e., the
security version policy access tag attribute) and the set attributes data specified by the SET ATTRIBUTES OFFSET field
(see 5.2.1.2) specifies that the FENCE bit be set to one, the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB.

To block capability-based access to one or more OSD objects, the policy/storage manager changes the VERSION

field in the policy access tag attributes in the Policy/Security attributes pages associated with those objects. The
conditions under which the policy/storage manager may be call on to do this include:

a) Recovery from errors other than those detected by the OSD logical unit that make accesses to one or more
OSD object unsafe; and

b) Receipt of a request to change the policy access tag from the security manager (see 4.9.5.4).

If a set attributes list (see 5.2.1.3) contains a request to set the VERSION field to zero, the command shall be termi-
nated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense
code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field contains 4000 0001h
(i.e., the security version policy access tag attribute) and the set attributes data specified by the SET ATTRIBUTES

OFFSET field (see 5.2.1.2) specifies that the VERSION field be set to zero, the command shall be terminated with a
CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set to
INVALID FIELD IN CDB.

The OSD logical unit shall not modify the contents of a policy access tag VERSION field.

The device server terminates any command received with a capability whose POLICY ACCESS TAG field contains a
non-zero value that differs from the policy access tag attribute value in the Policy/Security attributes page
associated with the objects (see 4.x.2.2).

4.9 Security

4.9.1 Basic security model

The OSD security model is composed of the following components:

a) An OBSD (see 3.1.26);
b) A policy/storage manager (see 4.x);
c) A security manager; and
d) Application clients.

 The principal function of the security manager is preparing credentials in response to application client requests. A
credential is a data structure containing a capability prepared by the policy/storage manager and protected by an
integrity check value (see 3.1.18), having the following properties:

a) The capability in the credential grants defined access to an OSD logical unit for specific command
functions (see 3.1.10); and

b) The integrity check value in the credential protects the capability and commands that include the capability
from various attacks described in 4.9

16

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
Figure 2 shows the flow of transactions between the components of the OSD security model.

The security manager generates credentials, including capabilities prepared by the policy/storage manager, for
authorized application clients at the request of an application client. The security manager returns a capability key
with each credential. The credential gives the application client access to specific OSD components. The capability
key allows the application client and device server to authenticate the commands and data they exchange with an
integrity check value (see 4.9.7).

The protocol between the application client and the security manager is not defined by this standard. However, the
structure of the credential returned from the security manager to the application client is.

 If any security method except NOSEC is used, the device server validates each command received from an appli-
cation client to confirm that:

a) The credential has not been tampered with (i.e., that the credential was generated by the security manager
and includes an integrity check value using a secret key known only to the security manager and OSD
device server); and

b) The credential was rightfully obtained by the application client from the security manager or through
delegation by another application client (i.e., that the application client knows the capability key that is
associated with the credential and has used the capability key to provide a proper integrity check value or
values for the command).

The capability key allows the OSD device server to validate that an application client rightfully obtained a credential
and that the capability has not been tampered with. An application client that has just the capability (e.g., obtained
by monitoring CDBs sent to the OSD device server) but not the capability key is unable to generate commands with
valid integrity check value, meaning that application client is denied access to the OSD logical unit. This protocol
allows delegation of a credential if a application client delegates both the credential and the capability key.

The application client requests credentials and capability keys from the security manager for the command
functions it needs to perform and sends those capabilities in those credentials to the OSD device server as part of
commands that include an integrity check value using the capability key. While the application client is not trusted
to follow this protocol, an application client that does not follow the protocol is unlikely to receive service from the
OSD device server.

Figure 2 — OSD security model transactions

OBSD

Application
Client

Security
Manager

Request Credential

Return Credential
Including Capability Key

Send Capability from
Credential to device
server as part of a
request for service

Shared
Secret

SET KEY and
SET MASTER KEY

Policy/Storage
Manager

Request
Capability

Return
Capability
 17

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The security manager may authenticate the application client, but the OSD device server does not authenticate
the application client. It is sufficient for the OSD device server to verify the capabilities and integrity check values
sent by the application client.

The security manager maintains security policy information the definition of which is outside the scope of this
standard.

4.9.2 Trust assumptions

This subclause describes how each component of the OSD security model trusts the other components.

The OBSD is a trusted component, meaning that once an application client authenticates that it is communicating
with a specific OSD logical unit using methods outside the scope of this standard, it trusts the OBSD to:

a) Provide integrity for stored data;
b) Perform the security protocol and functions defined for it by this standard; and
c) Not be controlled in a way that operates to the detriment of the application client’s interests.

The security manager is a trusted component. After the security manager is authenticated by the application client
and by the OBSD using methods outside the scope of this standard, the security manager is trusted to:

a) Safely store long-lived keys;
b) Apply access controls correctly according to requirements that are outside the scope of this standard;
c) Perform the security functions defined for it by this standard; and
d) Not be controlled in a way that operates to the detriment of the application client’s or OSD logical unit’s

interests.

The application client is not a trusted component. However, the OSD security model is defined so that the appli-
cation client receives service from the OSD device server only if it interacts with both the security manager and the
OSD device server in ways that assure the propriety of the application client’s actions. Application clients should
protect capability keys from disclosure to unauthorized entities.

The OSD security model components are trusted to maintain some degree of synchronization between their
clocks. The OSD security model includes features designed to minimize dependencies on the degree of clock
synchronization maintained by application clients (see 4.9.6).

Regardless of where the security manager resides (see 4.4), communications between the security manager and
other components are trusted based on the requirements shown in table 13.

Table 13 — Security manager communications trust requirements

Component
Security Manager
communications trust requirement

OSD device server None

Application client Confidential a

Policy/storage manager None
a Confidential communications shall be protected from

eavesdropping by physical or cryptographic means.
18

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.9.m Preparing credentials

In response to a request from an application client, the security manager shall prepare and return a credential as
follows:

1) Forward the access requests from the application client to the policy/storage manager. If the policy/storage
manager denies the forwarded request an error shall be returned to the requesting application client;

2) Insert the capability returned by the policy/storage manager in the credential;
3) Set the credential OSD SYSTEM ID field to the value in the OSD system ID attribute in the Root Information

attributes page (see 7.1.2.8) of the OSD logical unit to which the credential applies;
4) Set the capability SECURITY METHOD field as follows:

A) Select a security method other than the partition default:
a) If the application client requested use of a specific security method, and use of the requested

security method is allowed by both the addressed partition and the maintained security policy
information, set the capability SECURITY METHOD field to the requested value;

b) If the maintained security policy information requires use of a specific security method for the
requesting application client, set the capability SECURITY METHOD field to that value;

or
B) Use the partition default:

a) If the application client requested a credential to be used the SET KEY command (see 6.23) or the
SET MASTER KEY command (see 6.24), set the capability SECURITY METHOD field to the value in
the default security method attribute in the Root Policy/Security attributes page (see 7.1.2.20);

b) Otherwise, set the capability SECURITY METHOD field to the value in the default security method
attribute in the Partition Policy/Security attributes page (see 7.1.2.21) for the partition whose
Partition ID is contained in the capability ALLOWED PARTITION_ID field;

5) If the SECURITY METHOD field contains NOSEC, place zero in the CREDENTIAL INTEGRITY CHECK VALUE field
and return the credential to the application client;
Otherwise:

6) Set the capability KEY VERSION field to the number of the working key secret key used to compute the
credential integrity check value. If a secret key other than a working key is used to compute the credential
integrity check value (e.g. for a SET KEY command (see 6.23) or SET MASTER KEY command (see
6.24)), then set the capability KEY VERSION field to zero ;

7) Set the capability INTEGRITY CHECK VALUE ALGORITHM field to the value that specifies the algorithm used to
compute all integrity check values related to this credential . The algorithm shall be one of those identified
by the supported integrity check value algorithm attributes in the Root Policy/Security attributes page (see
7.1.2.20) and the INTEGRITY CHECK VALUE ALGORITHM field shall be set as described in 7.1.2.20;

8) As specified by the maintained security policy information, modify other capability fields, including but not
limited to the following:
A) Setting the CAPABILITY EXPIRATION TIME field to a value that is consistent with the secret key man-

agement policy;
B) Ensuring that the capability AUDIT field and CAPABILITY DISCRIMINATOR field contain non-zero values;
C) Setting the capability OBJECT CREATED TIME field to a non-zero value as described in 4.x.2.2.1; and
D) Ensuring that the POL/SEC bit in the PERMISSIONS BIT MASK field is set to zero, if appropriate;

9) Compute the credential integrity check value as described in 4.9.5.3 and place the result in the CREDENTIAL

INTEGRITY CHECK VALUE field in the credential;
and

10) Return the credential thus constructed to the application client with the credential integrity check value
serving as the capability key.

Successful use of the capability expiration time (see step A) in step 8)) requires some degree of synchronization
between the clocks of the device server and security manager. The protocol for synchronizing the clocks is outside
the scope of this standard, however, the protocol should be implemented in a secure manner (i.e., it should not be
possible for an adversary to set the clock in the device server backwards to enable the replay of expired creden-
tials).
 19

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.9.3 Security methods

4.9.3.1 Introduction

This standard defines several security methods (see table 14).

Editors Note 1 - ROW: The discussion of secure channel features includes the following text: “Data
Confidentiality (privacy) Optional: if message is read, it cannot be understood other than by the
unauthorized parties”. This text is not included in the table below. Either Data Confidentiality is required
to satisfy the threat analysis shown in the table, meaning that Data Confidentiality is required, not
optional, or Data Confidentiality is not required, meaning that its absence from the table footnote is
appropriate.

The OSD security methods are designed to address zero or more specific security threats (see table 15).

Table 14 — OSD security methods

Security Method Description Reference

NOSEC No security 4.9.3.2

CAPKEY Integrity of capabilities 4.9.3.3

CMDRSP Integrity of CDB, status, and sense data 4.9.3.4

ALLDATA Integrity of all data in transit 4.9.3.5

Table 15 — Security methods and threats thwarted

Threat

Threat thwarted by security method

NOSEC

CAPKEY

CMDRSP ALLDATA

Over secure channel a

No Yes

Forgery of credential No Yes Yes Yes Yes

Alteration of capabilities No Yes Yes Yes Yes

Unauthorized use of credential No No Yes Yes Yes

Replay of command or status No No No Yes Yes

Alteration of command or status No No No Yes Yes

Replay of data No No No No Yes

Alteration of data No No No No Yes

Inspection of command, status or data No No No No No

a A secure channel provides the following security guarantees:
a) Cryptographic integrity: Any message received is the one was sent (i.e., no tampering occurred).

Messages in which tampering is detected are discarded;
b) Data origin authentication: The message received originated from the authenticated originator

within the limits of the secure channel authentication mechanism;
c) Replay protection: The same message is not delivered multiple times and that there is a limited

number of out-of-order messages.
20

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.9.3.2 The NOSEC security method

In the NOSEC security method, no OSD security features or algorithms are used by the device server. If the root
object and all partitions in the OSD logical unit use the NOSEC security method, then:

a) Specific SPC-3 commands (e.g., LOG SENSE) may be sent (see table 41 in 6.1) without encapsulating
them in the PERFORM SCSI COMMAND command (see 6.16); and

b) Persistent reservations (see 4.15) are allowed for the logical unit.

4.9.3.3 The CAPKEY security method

The CAPKEY security method validates the integrity of the capability information in each CDB.

The application client computes the CDB REQUEST INTEGRITY CHECK VALUE field (see 5.2.6) contents using:

a) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field (see 4.x.2.2);
b) The security token returned in the Security Token VPD page (see 7.5.3) ; and
c) The credential capability key (see 4.9.4.2).

The device server validates the credential as described in 4.9.5.1.

The CAPKEY security method is useful when the service delivery subsystem between the OSD device server and
application client is secured via methods specified in the applicable SCSI transport protocol. Combining the
CAPKEY security method with a secure transport (i.e., one that provides an authenticated channel) provides the
same protections as the ALLDATA security method. Even when communications are secured by such means, it is
necessary to prevent the untrusted application client (see 4.9.2) from forging or modifying a credential, and from
replaying a credential on a different secure channel.

4.9.3.4 The CMDRSP security method

The CMDRSP security method validates the integrity of the CDB, status, and sense data for each command.

The application client computes the CDB REQUEST INTEGRITY CHECK VALUE field (see 5.2.6) contents using:

a) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field (see 4.x.2.2);
b) All the bytes in the CDB with the bytes in the REQUEST INTEGRITY CHECK VALUE field set to zero; and
c) The credential capability key (see 4.9.4.2).

The device server validates the credential as described in 4.9.5.1.

If the credential validation process successfully validates the integrity check value associated with the command,
the device server shall:

1) Compute an integrity check value for the response data using:
A) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field (see 4.x.2.2);
B) The following array of bytes:

1) The request nonce from the CDB (see 5.2.6);
2) The status byte; and
3) If the status is CHECK CONDITION, the sense data with the RESPONSE INTEGRITY CHECK VALUE

field in the OSD response integrity check value sense data descriptor (see 4.13.x.y) set to zero;
and

C) The capability key (see 4.9.4.2) for the reconstructed credential (see 4.9.5.2);
and

2) Place the computed integrity check value in the following location:
 21

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
A) If the status is not CHECK CONDITION, the computed integrity check value shall be placed in the
response integrity check value attribute in the Current Command attributes page (see 7.1.2.24); or

B) If the status is CHECK CONDITION, the computed integrity check value shall be placed in the
RESPONSE INTEGRITY CHECK VALUE field in the OSD response integrity check value sense data
descriptor (see 4.13.x.y) in the sense data.

If the credential validation process fails to validate the integrity check value associated with the command, the
device server shall place zero in the RESPONSE INTEGRITY CHECK VALUE field in the OSD response integrity check
value sense data descriptor in the sense data.

If the status is not CHECK CONDITION, the application client validates the response integrity check value by
recomputing it as described in this subclause and comparing the result to the value of the response integrity check
value attribute in the Current Command attributes page.

If the status is CHECK CONDITION, the application client validates the response integrity check value by:

1) Saving the response integrity check value found in the RESPONSE INTEGRITY CHECK VALUE field in the OSD
response integrity check value sense data descriptor in the sense data;

2) Placing zero in the response integrity check value found in the RESPONSE INTEGRITY CHECK VALUE field in
the OSD response integrity check value sense data descriptor;

3) Recomputing the response integrity check value as described in this subclause; and
4) Comparing the result to the value saved in step 1).

If the application client fails in validating the response integrity check value as described in this subclause, it should
take a recovery action not specified by this standard (e.g., one possible action is to request a new credential from
the security manager and retry the command). If the error reoccurs, alternate recovery actions should be
considered and the presence of malicious entities perpetrating a denial of service attack should be considered.

The CMDRSP security method may be used when the service delivery subsystem between the OSD device server
and application client is not secured. The CMDRSP security method protects against corruption of the command,
command parameter data, status, and sense data while avoiding the overhead that may be required to protect all
transferred data. Use of the CMDRSP security method prevents an untrusted application client from forging,
modifying or replaying a capability.

4.9.3.5 The ALLDATA security method

The ALLDATA security method validates the integrity of all data in transit between an application client and device
server.

The application client computes the CDB REQUEST INTEGRITY CHECK VALUE field (see 5.2.6) contents using the
same algorithm specified for the CMDRSP security method (see 4.9.3.4). The device server validates the
credential as described in 4.9.5.1.

The application client also computes the data-out integrity check value using:

a) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field (see 4.x.2.2);
b) The used bytes in the following Data-Out Buffer segments (see 4.11.3):

1) Command data or parameter data;
2) Set attributes; and
3) Get attributes;
and

c) The credential capability key (see 4.9.4.2).
22

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The application client places the data-out integrity information (see table 16) in the Data-Out Buffer starting at the
byte specified by the CDB DATA-OUT INTEGRITY CHECK VALUE OFFSET field (see 5.2.6).

The NUMBER OF COMMAND OR PARAMETER BYTES field specifies the number of bytes from the command data or
parameter data segment that are included in the data-out integrity check value. If the value in the CDB LENGTH

field, if any, or the value in the CDB PARAMETER LIST LENGTH field, if any, is larger than the value in the NUMBER OF

COMMAND OR PARAMETER BYTES field, the command shall be terminated with a CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

The NUMBER OF SET ATTRIBUTES BYTES field specifies the number of bytes from the set attributes segment that are
included in the data-out integrity check value. If the value in the CDB SET ATTRIBUTE LENGTH field, if any, or the value
in the CDB SET ATTRIBUTES LIST LENGTH field, if any, is larger than the value in the NUMBER OF SET ATTRIBUTES BYTES

field, the command shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST and the additional sense code set to INVALID FIELD IN CDB.

The NUMBER OF GET ATTRIBUTES BYTES field specifies the number of bytes from the get attributes segment that are
included in the data-out integrity check value. If the value in the CDB GET ATTRIBUTES LIST LENGTH field, if any, is
larger than the value in the NUMBER OF GET ATTRIBUTES BYTES field, the command shall be terminated with a
CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set to
INVALID FIELD IN CDB.

The DATA-OUT INTEGRITY CHECK VALUE field contains the data-out integrity check value computed by the application
client.

The device server shall validate the data-out integrity check value by:

1) Computing an integrity check value using:
A) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field;
B) The following bytes from Data-Out Buffer:

1) The number of bytes specified by the NUMBER OF COMMAND OR PARAMETER BYTES field starting at
the Data-Out Buffer byte offset zero;

2) The number of bytes specified by the NUMBER OF SET ATTRIBUTES BYTES field starting at the
Data-Out Buffer byte offset specified by the CDB SET ATTRIBUTES LIST OFFSET field (see 5.2.1.3);
and

3) The number of bytes specified by the NUMBER OF GET ATTRIBUTES BYTES field starting at the
Data-Out Buffer byte offset specified by the CDB GET ATTRIBUTES LIST OFFSET field (see 5.2.1.3);

and

Table 16 — Data-out integrity information format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
NUMBER OF COMMAND OR PARAMETER BYTES

7 (LSB)

8 (MSB)
NUMBER OF SET ATTRIBUTES BYTES

15 (LSB)

16 (MSB)
NUMBER OF GET ATTRIBUTES BYTES

23 (LSB)

24 (MSB)
DATA-OUT INTEGRITY CHECK VALUE

43 (LSB)
 23

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
C) The capability key (see 4.9.4.2) for the reconstructed credential (see 4.9.5.2);
and

2) Comparing the results to contents of the DATA-OUT INTEGRITY CHECK VALUE field.

If the validation fails, the state of the OSD objects and attributes shall not be altered in any detectable way, the
command shall be terminated with a CHECK CONDITION status, the sense key shall be set to ILLEGAL
REQUEST, and the additional sense code shall be set to INVALID DATA-OUT BUFFER INTEGRITY CHECK
VALUE.

The device server shall compute the response integrity check value using the same algorithm specified for the
CMDRSP security method (see 4.9.3.4) and the application client validates the response integrity check value
using the same algorithm specified for the CMDRSP security method.

The device server shall compute the data-in integrity check value using:

a) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field;
b) The used bytes in the following Data-In Buffer segments (see 4.11.2):

1) Command data or parameter data; and
2) Retrieved attributes;
and

c) The capability key (see 4.9.4.2) for the reconstructed credential (see 4.9.5.2).

The device server shall place the data-in integrity information (see table 17) in the Data-In Buffer starting at the
byte specified by the CDB DATA-IN INTEGRITY CHECK VALUE OFFSET field (see 5.2.6).

The NUMBER OF COMMAND OR PARAMETER BYTES field specifies the number of bytes from the command data or
parameter data segment that are included in the data-in integrity check value.

The NUMBER OF RETRIEVED ATTRIBUTES BYTES field specifies the number of bytes from the retrieved attributes
segment that are included in the data-in integrity check value.

The DATA-IN INTEGRITY CHECK VALUE field contains the data-in integrity check value computed by the device server.

After status has been received, the application client validates the data-in integrity check value by:

1) Computing an integrity check value using:
A) The algorithm specified in the capability INTEGRITY CHECK VALUE ALGORITHM field;
B) The following bytes from Data-In Buffer:

1) The number of bytes specified by the NUMBER OF COMMAND OR PARAMETER BYTES field starting at
the Data-In Buffer byte offset zero; and

Table 17 — Data-in integrity information format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
NUMBER OF COMMAND OR PARAMETER BYTES

7 (LSB)

8 (MSB)
NUMBER OF RETRIEVED ATTRIBUTES BYTES

15 (LSB)

16 (MSB)
DATA-IN INTEGRITY CHECK VALUE

35 (LSB)
24

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
2) The number of bytes specified by the NUMBER OF RETRIEVED ATTRIBUTES BYTES field starting at the
Data-In Buffer byte offset specified by the CDB RETRIEVED ATTRIBUTES OFFSET field (see 5.2.1);

and
C) The credential capability key (see 4.9.4.2);
and

2) Comparing the results to contents of the DATA-IN INTEGRITY CHECK VALUE field.

If the application client fails in validating the data-in integrity check value, it should take a recovery action not
specified by this standard (e.g., one possible action is to request a new credential from the security manager and
retry the command). If the error reoccurs, alternate recovery actions should be considered and the presence of
malicious entities perpetrating a denial of service attack should be considered.

The ALLDATA security method provides for applying integrity check values to every byte exchanged between the
application client and OSD device server. Protection is provided against network attacks similar to those protected
against by the security architecture for the internet protocol when confidentiality is not used (see RFC 2401), at the
expense of computing and validating numerous integrity check values.

4.9.4 Credentials

4.9.4.1 Credential format

A credential (see table 18) is transferred from the security manager to an application client over a communications
mechanism that meets the requirements specified in 4.9.2.

The capability is described in 4.x.2.2.

The OSD SYSTEM ID field specifies the value in the OSD system ID attribute in the Root Information attributes page
(see 7.1.2.8) of the OSD logical unit to which the credential applies.

The CREDENTIAL INTEGRITY CHECK VALUE field contains an integrity check value (see 4.9.7) that is computed using
the algorithm, inputs, and secret key specified in 4.9.5.3.

4.9.4.2 Capability key

All security methods except the NOSEC security method require the computation of one or more integrity check
values using a capability key as the secret key (see 3.1.37).

For application clients, the capability key is the contents of the CREDENTIAL INTEGRITY CHECK VALUE field (see
4.9.4.1).

Table 18 — Credential format

Bit
Byte

7 6 5 4 3 2 1 0

0
Capability (see 4.x.2.2)

79

80
OSD SYSTEM ID

99

100 (MSB)
CREDENTIAL INTEGRITY CHECK VALUE

119 (LSB)
 25

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The device server processing of each command relies on only the capability portion of the credential (see 4.9.4.1)
that the application client has copied into the CDB. Since the capability does not include the CREDENTIAL INTEGRITY

CHECK VALUE field, the device server needs to compute the capability key for each processed command by:

1) Reconstructing the credential containing the CDB capability as described in 4.9.5.2; and
2) Computing the credential integrity check value for the reconstructed credential using the algorithm, inputs,

and secret key specified in 4.9.5.3.

NOTE 1 The two steps used by the device server to compute capability key are the first two steps that the device
server uses to validate the capability contained in the CDB (see 4.9.5.1). The device server may perform these two
steps once for every command processed.

4.9.5 OSD device server security algorithms

4.9.5.1 Credential validation

The processes described in this subclause do not apply if the CDB SECURITY METHOD field specifies the NOSEC
security method (i.e., if the CDB SECURITY METHOD field contains zero).

The device server shall validate the credential associated with a CDB by:

1) Reconstructing the credential containing the capability as described in 4.9.5.2;
2) Computing the credential integrity check value for the reconstructed credential using the algorithm, inputs,

and secret key specified in 4.9.5.3;
3) Computing the request integrity check value using:

A) The algorithm specified by the INTEGRITY CHECK VALUE ALGORITHM field in the capability;
B) Based on the contents of the CDB SECURITY METHOD field, one of the following arrays of bytes:

a) For the CAPKEY security method, the security token (see 4.9.3.2); or
b) For the CMDRSP security method and the ALLDATA security method, all the bytes in the CDB with

the bytes in the REQUEST INTEGRITY CHECK VALUE field set to zero;
and

C) The credential integrity check value computed in step 2) as the secret key;
4) Verifying that the request integrity check value matches the contents of the CDB REQUEST INTEGRITY CHECK

VALUE field (see 5.2.6). If the contents in the request integrity check value field in the CDB do not match
the computed integrity check value, the command shall be terminated with a CHECK CONDITION status,
the sense key shall be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID
FIELD IN CDB; and

5) If the CDB SECURITY METHOD field specifies the CMDRSP security method or the ALLDATA security
method, validate the CDB REQUEST NONCE field as described in 4.9.6.2.

If the validation of a credential results in a CHECK CONDITION status being returned, the state of the OSD
objects and attributes shall not be altered .

4.9.5.2 Reconstructing the credential

The device server reconstructs a credential from a CDB capability by:

1) Copying the value in the OSD system ID attribute in the Root Information attributes page (see 7.1.2.8) to
the OSD SYSTEM ID field of the reconstructed credential; and

2) Copying the capability from the CDB to the reconstructed credential.
26

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The CREDENTIAL INTEGRITY CHECK VALUE field is not used in a reconstructed credential.

4.9.5.3 Computing the credential integrity check value

The credential integrity check value shall be computed using:

a) The algorithm specified by the INTEGRITY CHECK VALUE ALGORITHM FIELD in the capability;
b) The following bytes:

A) All of the bytes in all of the fields defined for the credential (see 4.9.4.1);
B) Except the bytes in the CREDENTIAL INTEGRITY CHECK VALUE field;
and

c) The secret key selected as follows;
A) If the OBJECT TYPE field in the capability (see 4.x.2.2) contains COLLECTION or USER, the secret key

is the authentication working key:
a) Identified by the KEY VERSION field in the capability; and
b) Associated with the partition identified by the PARTITION_ID field in the CDB;

B) If the OBJECT TYPE field in the capability contains ROOT or PARTITION and the command is not SET
KEY and not SET MASTER KEY the secret key is, the authentication working key for partition zero
identified by the KEY VERSION field in the capability;

C) If the command is SET KEY, the secret key is selected as follows:
a) If the KEY TO SET field in the CDB (see 6.23) contains 01b (i.e., update root key), the authentication

master key;
b) If the KEY TO SET field in the CDB contains 10b (i.e., update partition key), the authentication root

key; or
c) If the KEY TO SET field in the CDB contains 11b (i.e., update working key), the authentication

partition key for the partition identified by the PARTITION_ID field in the CDB;
or

D) For the SET MASTER KEY command:
a) For the seed exchange step (see 6.20.2), the authentication master key; or
b) For the change master key step (see 6.20.3), the next authentication master key computed after

GOOD status has been returned by the set master key seed step.

4.9.5.4 Invalidating credentials

The security manager may invalidate the credentials for one OSD object by requesting that the policy/storage
manager change the policy access tag attribute in the policy/security attributes page associated with that OSD
object (see 4.x) to a value other than the policy access tag value that is contained in the credential’s capability.

The security manager may invalidate credentials for an entire partition by using the SET KEY command (see 6.23)
to update the working key version used to compute the credential integrity check value in those credentials.
 27

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
4.9.6 Request nonces

4.9.6.1 Request nonce format

For some security methods (see 4.9.3), an application client generated request nonce (see table 19) is included in
the input data for each integrity check value computation (see 4.9.7) to thwart attempts to capture OSD commands
(e.g., FORMAT OSD) and replay them.

The TIMESTAMP field contains the number of milliseconds that have elapsed since midnight, 1 January 1970 UT
(see 3.1.47). Timestamp values should be coordinated with the contents of the clock attribute in the Root Infor-
mation attributes page (see 7.1.2.8) using techniques that are outside the scope of this standard.

The RANDOM NUMBER field contains a random number generated from a good source of entropy (e.g., as described
in RFC 1750).

If the security method being used does not require generation of request nonce values, the nonce TIMESTAMP field
should contain zero.

4.9.6.2 Device server validation of request nonces

If the inputs to an integrity check value computation include a request nonce with a non zero timestamp and the
nonce has been used in any previous integrity check value computation, the command shall be terminated with a
CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the additional sense code
shall be set to NONCE NOT UNIQUE. The command shall be terminated regardless of the success or failure of the
previous command in which the duplicate request nonce appeared (e.g., the request nonce appearing in a WRITE
command that ultimately fails due to insufficient quota or the request nonce appearing in a CREATE command that
ultimately fails because the computed credential integrity check value is wrong shall not be accepted a second
time).

If the command is being processed using the CMDRSP security method or the ALLDATA security method (see
4.9.3) and a request nonce with zero in the TIMESTAMP field is received, the command shall be terminated with a
CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the additional sense code
shall be set to INVALID FIELD IN CDB.

Device servers may reduce the amount of resources required to remember every request nonce ever received by
comparing the contents of the TIMESTAMP field in each request nonce to the contents of the clock attribute in the
Root Information attributes page (see 7.1.2.8).

 If the request nonces with timestamp is less than the contents of the clock attribute in the Root Information
attributes page minus the value in the oldest valid nonce attribute in the Partition Policy/Security attributes page
(see 7.1.2.21), then the command shall be terminated with a CHECK CONDITION status, with the sense key set to
ILLEGAL REQUEST, and with the additional sense code set to NONCE TIMESTAMP OUT OF RANGE. If a
command is terminated in this way, the current contents of the clock attribute in the Root Information attributes

Table 19 — Request nonce format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
TIMESTAMP

5 (LSB)

6 (MSB)
RANDOM NUMBER

11 (LSB)
28

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
page shall be returned left-aligned and zero-padded (see 3.7.2) in the COMMAND-SPECIFIC INFORMATION field of the
command-specific information sense data descriptor.

 If the request nonces with timestamp is greater than the contents of the clock attribute in the Root Information
attributes page plus the value in the newest valid nonce attribute in the Partition Policy/Security attributes page
(see 7.1.2.21), then the command shall be terminated with a CHECK CONDITION status, the sense key shall be
set to ILLEGAL REQUEST, and the additional sense code shall be set to NONCE TIMESTAMP OUT OF RANGE.
If a command is terminated in this way, the current contents of the clock attribute in the Root Information attributes
page shall be returned left-aligned and zero-padded (see 3.7.2) in the COMMAND-SPECIFIC INFORMATION field of the
command-specific information sense data descriptor.

Successful use of the capability request nonces requires some degree of synchronization between the clocks of
the device server and security manager. The protocol for synchronizing the clocks is outside the scope of this
standard, however, the protocol should be implemented in a secure manner (i.e., it should not be possible for an
adversary to set the clock in the device server backwards to enable the replay of expired credentials).

4.9.7 Integrity check values

An integrity check value is a value produced by a cryptographic function (e.g., HMAC-SHA1) based on a secret key
(see 4.9.8) that is able to be computed and verified by the entities knowing the secret key. Integrity check values
are used to verify that:

a) A collection of data fields contain correct values; and
b) The values in those data fields were prepared by the entity that created the integrity check value.

4.9.8 Secret keys

4.9.8.1 Introduction

The hierarchy of secret keys and the mechanisms for updating them are described in:

a) This subclause;
b) The definition of the SET MASTER KEY command, 6.24; and
c) The definition of the SET KEY command, 6.23.
 29

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
In the OSD security model, the security of transactions depends on a hierarchy of secret keys as shown in table 20,
with the highest key in the hierarchy (i.e., the master key) shown at the top of the table and the lowest keys in the
hierarchy (i.e., the capability keys) shown at the bottom of the table.

Each master, root, and partition key represents two secret key values as follows:

a) An authentication key that is used to compute the credential integrity check values; and
b) A generation key that is used by future SET KEY commands and SET MASTER KEY commands to

compute the updated generation key and new authentication key values.

When an OBSD is manufactured, both the master authentication key and master generation key values shall be
provided for each logical unit. The values may be identical.

The secret keys shared between the security manager and OSD device server are very secret information. They
should be protected from being discovered by an adversary. They should be stored in a tamper resistant non-vol-
atile manner and may be protected by a tamper resistant software shield. The master key shall be stored in a
tamper resistant manner.

Table 20 — OSD secret key hierarchy

Key Name Key Shared Using Key Used To Key Update Frequency

Keys shared between the security manager and the OSD device server

Master SET MASTER KEY
command

Update Root key Change of logical unit owner

 Root SET KEY
command

Update Partition key When Partition key may have been
compromised (i.e., very infrequently)

Partition a SET KEY
command

Update Working keys When Working key updates may have
been compromised (i.e., infrequently)

Working b SET KEY
command

Create Capability keys When normal key use affords too much
chance that the working key might be
reverse engineered (i.e., regularly)

Keys shared between the security manager and the application client c

Capability d Credentials and
mechanisms not specified

in this standard

Secure commands,
responses, and data

New with each new Credential

a For the purposes of the secret key hierarchy, the root object is treated the same as any other partition OSD
object using partition zero.

b For each partition, up to sixteen working keys may be active at any time, uniquely identified by the capability
KEY VERSION field (see 4.x.2.2).

c The device server is capable of computing the capability key (see 4.9.5.3) using the reconstructed credential
(see 4.9.5.2).

d As a dual purpose number, the capability key is different from other keys in the hierarchy. The capability key
is the credential integrity check value. Even though the security manager computes it, the computation is
based on values beyond the security manager’s control (e.g., the user object to which the credential allows
access). While changing the working key used to construct the credential integrity check value invalidates the
capability key, the credential may expire before that, making the capability key invalid.
30

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The seeds that have been used to create all secret keys other than the master key may be saved in nonvolatile
memory for later use in recomputing the secret key values. The OSD logical unit should not store the commands
sent to set the master key in a manner that has the potential for being externally accessible.

4.9.8.2 Computing updated generation keys and new authentication keys

The SET KEY command and SET MASTER KEY command shall perform the steps described in this subclause to
compute new generation and authentication keys.

The inputs to the process are:

a) The input key value is one of the following:
A) For a SET KEY command, the generation key from the next higher level in the key hierarchy shall be

used (e.g., the root key generation key is used to create the first partition keys for a newly created
partition), as selected by the KEY TO SET field in the CDB of that command; or

B) For a SET MASTER KEY command, the previous master key generation key shall be used;
b) The seed value is one of the following:

A) For a SET KEY command, the contents of the SEED field of the CDB for the command; or
B) For a SET MASTER command key, the result of the seed exchange step (see 6.20.2);
and

c) The integrity check value algorithm, as specified in the INTEGRITY CHECK VALUE ALGORITHM field in the
capability in the CDB for the command.

The updated generation key shall be computed by performing the specified integrity check algorithm with the
following inputs:

a) Input key value; and
b) CDB seed value.

The new authentication key shall be computed by performing the specified integrity check algorithm with the
following inputs:

a) Input key value; and
b) CDB seed value with the least significant bit changed from zero to one.

4.9.9 OSD security interactions with SPC-3 commands and SAM-3 task management functions

Persistent reservations (see 4.15) are incompatible with an OSD logical unit in which the root object or any partition
is using any security method other than NOSEC (see 4.9.3).

Except for the INQUIRY command, the REPORT LUNS command, the REQUEST SENSE command, and the
TEST UNIT READY command, all SPC-3 commands are invalid if addressed to an OSD logical unit in which any
partition is using any security method other than NOSEC (see table 41 in 6.1). The PERFORM SCSI COMMAND
command (see 6.16) allows SPC-3 commands other than persistent reservations commands to be performed
under the protection of the current security method.

If the root object or any partition in the OSD logical unit is using any security method other than NOSEC, all SAM-3
task management functions except QUERY TASK shall be ignored and responded to as if they have been success-
fully processed . The PERFORM TASK MANAGEMENT FUNCTION command (see 6.17) allows SAM-3 task
management functions to be processed under the protection of the current security method.
 31

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
5.2 Fields commonly used in OSD commands

OSD commands employ the basic structure shown in table 21 for the service action specific fields (see table 19) so
that the same field is in the same location in all OSD CDBs. Fields that are unique to one or two CDBs are not
shown in table 21.

Table 21 — OSD service action specific fields

Bit
Byte

7 6 5 4 3 2 1 0

10 OPTIONS BYTE

11 Reserved GET/SET CDBFMT Command specific options

12 TIMESTAMPS CONTROL

13
Reserved

15

16 (MSB)
PARTITION_ID

23 (LSB)

24 (MSB)
USER_OBJECT_ID

31 (LSB)

32
Reserved

35

36 (MSB)
LENGTH

43 (LSB)

44 (MSB)
STARTING BYTE ADDRESS

51 (LSB)

52
Get and set attributes parameters (see 5.2.1)

79

80
Capability (see 4.x.2.2)

159

160
Security parameters (see 5.2.6)

199
32

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
5.2.6 Security parameters

The CDB security parameters (see table 22) contain the security information needed for each command.

…

The capability is part of the credential (see 4.9.4) that the application client obtains from the security manager. The
device server uses the capabilities along with other information to validate the command as described in 4.9.5.2.
The format of a capability is defined in 4.x.2.2.

Table 22 — Security parameters format

Bit
Byte

7 6 5 4 3 2 1 0

... Other CDB fields
159

160 (MSB)
REQUEST INTEGRITY CHECK VALUE

179 (LSB)

180
REQUEST NONCE

191

192
DATA-IN INTEGRITY CHECK VALUE OFFSET

195

196
DATA-OUT INTEGRITY CHECK VALUE OFFSET

199

Capability (see 4.x.2.2)
 33

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
6.19 SET KEY

The SET KEY command (see table 23) causes the OSD device server to update the specified secret key.

The GET/SET CDBFMT field specifies the format of the get and set attributes parameters as described in 5.2.1.

The contents of the TIMESTAMPS CONTROL field are defined in 5.2.8.

Table 23 — SET KEY command

Bit
Byte

7 6 5 4 3 2 1 0

8 (MSB)
SERVICE ACTION (8818h)

9 (LSB)

10 Reserved

11 Reserved GET/SET CDBFMT Reserved KEY TO SET

12 TIMESTAMPS CONTROL

13
Reserved

15

16 (MSB)
PARTITION_ID

23 (LSB)

24 Reserved KEY VERSION

25 (MSB)
KEY IDENTIFIER

31 (LSB)

32 (MSB)
SEED

51 (LSB)

52
Get and set attributes parameters (see 5.2.1)

79

80
Capability (see 4.x.2.2)

159

160
Security parameters (see 5.2.6)

199
34

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The KEY TO SET field (see table 24) specifies which key shall be updated, which key identifier shall be stored, and
which keys shall be invalid following the SET KEY command.

For every key that is invalidated by a SET KEY command, the associated key identifier attribute shall have its
attribute length set to zero.

The contents of the PARTITION_ID field are defined in 5.2.4. If the KEY TO SET field contains 01b and the PARTITION_
ID field contains a value other than zero, the command shall be terminated with a CHECK CONDITION status, the
sense key shall be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN
CDB.

The KEY VERSION field specifies the working key version to be updated. If the KEY TO SET field contains 01b or 10b,
the KEY VERSION field shall be ignored.

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new key. Successful processing of
the SET KEY command shall include storing the key identifier value in the attribute specified in table 24.

The SEED field contains a random number generated from a good source of entropy (e.g., as described in RFC
1750). The updated key values shall be computed as described in 4.9.8.2.

If the least significant bit in the SEED field is set to one, the key values shall not be updated, the command shall be
terminated with a CHECK CONDITION status, the sense key shall be set to ILLEGAL REQUEST, and the
additional sense code shall be set to INVALID FIELD IN CDB.

The get and set attributes parameters are defined in 5.2.1. The format of the Data-In Buffer and Data-Out Buffer
when attributes are being retrieved or set is described in 4.11.

The security parameters are defined in 5.2.6. The secret key whose authentication key shall be used to compute
the capability key for this SET KEY command is specified in 4.9.8.2 4.9.5.3.

Table 24 — Key to set code values

Value Key to update Key identifier attribute to store Keys to invalidate

00b Reserved

01b Drive
Root

The drive root key identifier attribute in the Root
Policy/Security attributes page (see 7.1.2.20)

Previous drive root key, and all
partition and working keys

10b Partition The partition key identifier attribute in the Partition
Policy/Security attributes page (see 7.1.2.21)

Previous partition key, and all
working keys

11b Working The working key identifier attribute in the Partition
Policy/Security attributes page selected by the KEY
VERSION field in the CDB

None
 35

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
6.20 SET MASTER KEY

6.20.1 Introduction

The SET MASTER KEY command (see table 25) causes the OSD device server to update the master key secret
key.

The DH_STEP (Diffie-Hellman step) field (see table 26) specifies which step in the Diffie-Hellman exchange to
process.

Table 25 — SET MASTER KEY command

Bit
Byte

7 6 5 4 3 2 1 0

8 (MSB)
SERVICE ACTION (8819h)

9 (LSB)

10 Reserved

11 Reserved GET/SET CDBFMT Reserved DH_STEP

12 TIMESTAMPS CONTROL

13
Reserved

23

24 DH_GROUP

25 (MSB)
KEY IDENTIFIER

31 (LSB)

32 (MSB)
PARAMETER LIST LENGTH

35 (LSB)

36 (MSB)
ALLOCATION LENGTH

39 (LSB)

40
Reserved

51

52
Get and set attributes parameters (see 5.2.1)

79

80
Capability (see 4.x.2.2)

159

160
Security parameters (see 5.2.6)

199

Table 26 — Diffie-Hellman exchange step values

Code Description Reference

00b Seed exchange 6.20.2

01b Change master key 6.20.3

10b to 11b Reserved
36

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
If a SET MASTER KEY command is received with a non-zero value in the DH_STEP field and no SET MASTER KEY
command has been received with zero in the DH_STEP field on the same I_T_L nexus during the past ten seconds,
the command shall be terminated with a CHECK CONDITION status, the sense key shall be set to ILLEGAL
REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The usage of other CDB fields is described in the description of each Diffie-Hellman step.

6.20.2 Seed exchange

The GET/SET CDBFMT field specifies the format of the get and set attributes parameters as described in 5.2.1.

The contents of the TIMESTAMPS CONTROL field are defined in 5.2.8.

The DH_GROUP field specifies the coded value selected from the Group Description list of coded values maintained
by IANA (see http://www.iana.org/assignments/ipsec-registry) that identifies the DH_group_value to be used for the
seed exchange step. If the value in the DH_GROUP field does not appear in one of the DH group attributes in the
Root Policy/Security attributes page (see 7.1.2.20) the command shall be terminated with a CHECK CONDITION
status, the sense key shall be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID
FIELD IN CDB.

The KEY IDENTIFIER field is reserved for the seed exchange step.

The PARAMETER LIST LENGTH field specifies the number of bytes of application client DH_data to be sent to the
device server. The application client DH_data is computed as follows:

1) A two-byte or larger random number, x, is generated, observing the requirements in RFC 1750;

2) The application client DH_data is equal to DH_group_valuex, where the DH_group value is identified by
the code value in the CDB DH_GROUP field.

The ALLOCATION LENGTH field specifies the number of bytes available to receive the device server DH_data (see
table 27) sent in response to the SET MASTER KEY command. If the allocation length is not sufficient to contain
device sever DH_data, the command shall be terminated with a CHECK CONDITION status, the sense key shall
be set to ILLEGAL REQUEST, and the additional sense code shall be set to INVALID FIELD IN CDB.

The RESPONSE LENGTH field indicates the number of bytes of device server DH_data that follow.

The DEVICE SERVER DH_DATA field contains the DH_data computed by the device server as follows:

1) A two-byte or larger random number, y, is generated, observing the requirements in RFC 1750;

2) The device server DH_data is equal to DH_group_valuey, where the DH_group value is identified by the
code value in the CDB DH_GROUP field.

Table 27 — Device server DH_data format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
RESPONSE LENGTH (n-3)

3 (LSB)

4
DEVICE SERVER DH_DATA

n

 37

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The get and set attributes parameters are defined in 5.2.1. The format of the Data-In Buffer and Data-Out Buffer
when attributes are being retrieved or set is described in 4.11.

The security parameters are defined in 5.2.6. The authentication master key (see 4.9.5.3) shall be used to compute
the capability key for this SET MASTER KEY command 4.9.8.2.

After GOOD status has been returned for the SET MASTER KEY command seed exchange step and before the
SET MASTER KEY COMMAND change master key step is processed, the next authentication master key and next
generation master key shall be computed as described in 4.9.8.2, using a seed value that is the concatenation of
the following:

1) DH_group_valuexy;

2) The contents of the OSD system ID attribute in the Root Information attributes page (see 7.1.2.8);
3) The contents of the product model attribute in the Root Information attributes page;
4) The contents of the serial number attribute in the Root Information attributes page;
5) The contents of the OSD name attribute in the Root Information attributes page; and
6) The contents of the username attribute in the Partition Information attributes page (see 7.1.2.9).

6.20.3 Change master key

The GET/SET CDBFMT field specifies the format of the get and set attributes parameters as described in 5.2.1.

The contents of the TIMESTAMPS CONTROL field are defined in 5.2.8.

The DH_GROUP field is reserved for the change master key step.

The KEY IDENTIFIER field specifies a unique identifier to be associated with the new master key. Successful
processing of the SET MASTER KEY command change master key step shall include storing the key identifier
value in the master key identifier attribute in the Root Policy/Security attributes page (see 7.1.2.20).

The PARAMETER LIST LENGTH field specifies the number of bytes in the change master key DH_data (see table 28).

The ALLOCATION LENGTH field is reserved for the change master key step.

The get and set attributes parameters are defined in 5.2.1. The format of the Data-In Buffer and Data-Out Buffer
when attributes are being retrieved or set is described in 4.11.

The security parameters are defined in 5.2.6. The next authentication master key computed after the return of
GOOD status for the most recent SET MASTER KEY command seed exchange step (see 6.20.2) shall be used to
compute the capability key for this SET MASTER KEY command.

Table 28 — Change master key DH_data format

Bit
Byte

7 6 5 4 3 2 1 0

0
APPLICATION CLIENT DH_DATA

k

k+1
DEVICE SERVER DH_DATA

n

38

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
Successful processing of a SET MASTER KEY command change master key step shall:

a) Replace the authentication master key with the next authentication master key computed after the return of
GOOD status for the most recent SET MASTER KEY command seed exchange step (see 6.20.2);

b) Replace the generation master key with the next generation master key computed after the return of
GOOD status for the most recent SET MASTER KEY command seed exchange step;

c) Invalidate all of the following keys (see 4.9.8):
a) The drive root key;
b) The partition key for every partition on the OSD logical unit; and
c) Every working key in every partition on the OSD logical unit.

For every key that is invalidated by a SET MASTER KEY command change master key step, the associated key
identifier attribute shall have its attribute length set to zero.
 39

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
7.1.2 OSD attributes pages

7.1.2.1 Attributes pages overview

…

The attributes pages defined by this standard are shown in table 29.

Table 29 — Attributes pages defined by this standard

Page Number Page Name Reference
Page Format

Defined

0h User Object Directory 7.1.2.7 No

1h User Object Information 7.1.2.11 No

2h User Object Quotas 7.1.2.14 Yes

3h User Object Timestamps 7.1.2.18 Yes

4h Collections 7.1.2.19 Yes

5h User Object Policy/Security 7.1.2.23 Yes

6h to 7Fh Reserved

C+0h Collection Directory 7.1.2.6 No

C+1h Collection Information 7.1.2.10 No

C+2h Reserved

C+3h Collection Timestamps 7.1.2.17 Yes

C+4h Reserved

C+5h Collection Policy/Security 7.1.2.22 Yes

C+6h to C+7Fh Reserved

P+0h Partition Directory 7.1.2.5 No

P+1h Partition Information 7.1.2.9 No

P+2h Partition Quotas 7.1.2.13 Yes

P+3h Partition Timestamps 7.1.2.16 Yes

P+4h Reserved

P+5h Partition Policy/Security 7.1.2.21 Yes

P+6h to P+7Fh Reserved

R+0h Root Directory 7.1.2.4 No

R+1h Root Information 7.1.2.8 No

R+2h Root Quotas 7.1.2.12 Yes

R+3h Root Timestamps 7.1.2.15 Yes

R+4h Reserved

R+5h Root Policy/Security 7.1.2.20 Yes

R+6h to R+7Fh Reserved

F000 0000h to FFFF FFFDh Reserved

FFFF FFFEh Current Command 7.1.2.24 Yes
40

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
7.1.2.20 Root Policy/Security attributes page

The Root Security attributes page (R+5h) shall contain the attributes listed in table 30.

The page identification attribute (number 0h) shall have the format described in 7.1.2.2 with the VENDOR IDENTIFI-
CATION field containing the ASCII characters "INCITS" and the ATTRIBUTES PAGE IDENTIFICATION field containing the
ASCII characters "T10 Root Security".

The default security method attribute (number 1h) shall identify specifies the security method (see table 35 in
7.1.2.21) used for the processing of the SET KEY command (see 6.23) and SET MASTER KEY command (see
6.24) in the absence of conditions that specify a different security method (see 4.9.m). The value of the default
security method attribute shall not be changed by a FORMAT OSD command (see 6.9). The value placed in the
default security method attribute when the OBSD (see 3.1.26) is manufactured is vendor specific. If the value of the
default security method attribute is changed, the working keys for partition zero should be invalidated using the
SET KEY command.

The oldest valid nonce limit attribute (number 2h) specifies the largest value allowed in the oldest valid nonce
attribute in any Partition Policy/Security attributes page (see 7.1.2.21).

The newest valid nonce limit attribute (number 3h) specifies the largest value allowed in the newest valid nonce
attribute in any Partition Policy/Security attributes page.

Table 30 — Root Security attributes page contents

Attribute
Number

Length
(bytes) Attribute

Application
Client

Settable
OSD Logical
Unit Provided

0h 40 Page identification No Yes

1h 1 Security Default security method Yes Yes

2h 6 Oldest valid nonce limit No Yes

3h 6 Newest valid nonce limit No Yes

2h 4h to 5h Reserved No

6h 1 Partition default security method Yes Yes

7h 2 Supported security methods No Yes

8h Reserved No

9h 6 Adjustable clock Yes Yes

Ah to 7FFCh Reserved No

7FFDh 0 or 7 Master key identifier No Yes

7FFEh 0 or 7 Drive Root key identifier No Yes

7FFFh to 7FFF FFFFh Reserved No

8000 0000h to 8000 000Fh 1 Supported integrity check value
algorithm

No Yes

8000 0010h to 8000 001Fh 1 Supported DH group No Yes

8000 0010h 8000 0020h to
FFFF FFFEh

Reserved No
 41

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The partition default security method attribute (number 6h) specifies the value to be placed in the default security
method attribute of each partition, when it is created. The value of the partition default security method attribute
shall not be changed by a FORMAT OSD command (see 6.9). The value placed in the partition default security
method attribute when the OBSD is manufactured is vendor specific.

The supported security methods attribute (number 7h) indicates which security methods (see 4.9.3) are supported
by the OSD logical unit (see table 31).

The NOSEC (NOSEC security method supported) bit is set to zero if the NOSEC security method is not supported.
The NOSEC bit is set to one if the NOSEC security method is supported.

The CAPKEY (CAPKEY security method supported) bit is set to zero if the CAPKEY security method is not
supported. The CAPKEY bit is set to one if the CAPKEY security method is supported.

The CMDRSP (CMDRSP security method supported) bit is set to zero if the CMDRSP security method is not
supported. The CMDRSP bit is set to one if the CMDRSP security method is supported.

The ALLDATA (ALLDATA security method supported) bit is set to zero if the ALLDATA security method is not
supported. The ALLDATA bit is set to one if the ALLDATA security method is supported.

The adjustable clock attribute (number 9h) shall contain the current time in use by the OSD device server repre-
sented as the count of the number of milliseconds elapsed since midnight, January 1, 1 January 1970 UT (see
3.1.47). The value shall be set to the UT when the OBSD (see 3.1.26) is manufactured and may be modified by the
application client after that. The mechanism used to maintain value in the adjustable clock attribute value is outside
the scope of the standard. The adjustable clock attribute value should not gain or lose more than one second in any
24-hour interval.

The master key identifier attribute (number 7FFDh) contains the key identifier value from the most recent
successful SET MASTER KEY command (see 6.24). If a SET MASTER KEY command has never been
processed, the master key identifier attribute length shall be zero seven and the master key identifier attribute value
shall be the ASCII characters "1st key".

The drive root key identifier attribute (number 7FFEh) contains the key identifier value from the most recent
successful SET KEY command (see 6.23) with the KEY TO SET field set to 01b (i.e., update drive root key). If the
drive root key is invalid (i.e., never set or invalidated by a SET MASTER KEY command), the drive root key
identifier attribute length shall be zero. Regardless of the root key identifier attribute length, the used capacity
attribute in the Partition Information attributes page (see 7.1.2.9) for partition zero (see 3.1.31) shall reflect an
attribute length of seven (i.e., it shall not be possible for a SET KEY command to cause the partition zero used
capacity attribute value to exceed the capacity quota attribute in the Partition Quotas attributes page (see 7.1.2.13)
for partition zero and generate a quote error).

Table 31 — Supported security methods attribute format

Bit
Byte

7 6 5 4 3 2 1 0

0 Reserved ALLDATA CMDRSP CAPKEY NOSEC

1 Reserved
42

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The supported integrity check value algorithm attributes (numbers 8000 0000h to 8000 000Fh) contain coded
values (see table 32) identifying the supported algorithms that the OSD device server supports for computing
integrity check values. The supported integrity check value algorithm with the lowest valued attribute number (i.e.,
8000 0000h) identifies the most preferred integrity check value algorithm and the highest valued attribute number
(i.e., 8000 000Fh) identifies the least preferred algorithm. If a supported integrity check value algorithm attribute
contains zero, then all supported integrity check value algorithm attributes with higher valued attribute numbers
also shall contain zero. The low order four bits of the attribute number are the value that appears in the INTEGRITY

CHECK VALUE ALGORITHM field (see 4.x.2.2) in each capability (e.g., attribute number 8000 0007h identifies the
integrity check value algorithm used if the INTEGRITY CHECK VALUE ALGORITHM field contains seven).

The supported DH group attributes (numbers 8000 0010h to 8000 001Fh) contain coded values identifying the
supported values in the DH_GROUP field of a SET MASTER KEY command (see clause 6.20). The values of the
supported DH group attributes are the values associated with a Group Description in the Internet Key Exchange
Attributes registry maintained by IANA (see http://www.iana.org/assignments/ipsec-registry). The DH group
indicated by each value is as specified by IANA in that registry.

Every DH group identified by a supported DH group attribute shall be a MODP DH group. One of the supported DH
group attributes shall contain Dh (i.e., 14) indicating the 2048-bit MODP DH group defined by RFC 3526. The code
values 1h (i.e., the 768-bit MODP DH group defined by RFC 2409) and 2h (i.e., the 1024-bit MODP DH group
defined by RFC 2409) shall not appear in any supported DH group attribute.

The supported DH group with the lowest valued attribute number (i.e., 8000 0000h) identifies the most preferred
DH group and the highest valued attribute number (i.e., 8000 000Fh) identifies the least preferred DH group. If a
supported DH group attribute contains zero, then all supported DH group attributes with higher valued attribute
numbers also shall contain zero

If a set attributes list (see 5.2.1.3) contains an entry specifying the number of an attribute that table 30 states may
not be set is not application client settable, the command shall be terminated with a CHECK CONDITION status,
with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field (see 5.2.1.2) specifies the number of an attribute that
table 30 states may not be set is not application client settable, the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB.

Table 32 — Supported integrity check value algorithm codes

Value Algorithm Reference

00h No algorithm supported

01h HMAC-SHA1 FIPS 180-1 (1995) and FIPS 198 (2002)

02h - DFh Reserved

E0h - FFh Vendor specific
 43

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The page format for the Root Security attributes page is shown in table 33.

The PAGE NUMBER field contains the attributes page number of the Root Security attributes page.

The PAGE LENGTH field contains the number of additional bytes in the page format of the Root Security attributes
page.

The OLDEST VALID NONCE LIMIT field contains the value of the oldest valid nonce limit attribute.

The NEWEST VALID NONCE LIMIT field contains the value of the newest valid nonce limit attribute.

Table 33 — Root Security attributes page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
PAGE NUMBER (R+5h)

3 (LSB)

4 (MSB)
PAGE LENGTH (26h 3Fh)

7 (LSB)

8 DEFAULT SECURITY METHOD

9 PARTITION DEFAULT SECURITY METHOD

10
SUPPORTED SECURITY METHODS

11

12 (MSB)
OLDEST VALID NONCE LIMIT

17 (LSB)

18 (MSB)
NEWEST VALID NONCE LIMIT

23 (LSB)

24 Reserved MKI_VALID DRKI_VALID

25 (MSB)
MASTER KEY IDENTIFIER

31 (LSB)

32 (MSB)
DRIVE ROOT KEY IDENTIFIER

38 (LSB)

39
Most preferred SUPPORTED INTEGRITY CHECK VALUE ALGORITHM

(attribute number 8000 0000h)
...

54
Least preferred SUPPORTED INTEGRITY CHECK VALUE ALGORITHM

(attribute number 8000 000Fh)

55
Most preferred SUPPORTED DH GROUP

(attribute number 8000 0010h)
...

70
Least preferred SUPPORTED DH GROUP

(attribute number 8000 001Fh)
44

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The DEFAULT SECURITY METHOD field contains the value of the default security method attribute.

The PARTITION DEFAULT SECURITY METHOD field contains the value of the partition default security method attribute.

The SUPPORTED SECURITY METHODS field contains the value of the supported security methods attribute.

The MKI_VALID (master key identifier valid) bit shall be set to zero if the master key identifier attribute length is zero.
Otherwise, the MKI_VALID bit shall be set to one.

The DRKI_VALID (drive root key identifier valid) bit shall be set to zero if the drive root key identifier attribute length is
zero. Otherwise, the DRKI_VALID bit shall be set to one.

If the MKI_VALID bit is set to one, the MASTER KEY IDENTIFIER field contains the value of the master key identifier
attribute. Otherwise, the contents of the MASTER KEY IDENTIFIER field are undefined.

If the DKI_VALID bit is set to one, the DRIVE ROOT KEY IDENTIFIER field contains the value of the drive root key
identifier attribute. Otherwise, the contents of the DRIVE ROOT KEY IDENTIFIER field are undefined.

The sixteen 16 SUPPORTED INTEGRITY CHECK VALUE ALGORITHM fields contain the supported integrity check value
attribute values in ascending attribute number order. The SUPPORTED INTEGRITY CHECK VALUE ALGORITHM field with
the smallest byte offset in the page identifies the most preferred integrity check value algorithm. The SUPPORTED

INTEGRITY CHECK VALUE ALGORITHM field with the largest byte offset in the page identifies the least preferred
algorithm.

The sixteen SUPPORTED DH GROUP fields contain the supported DH group attribute values in ascending attribute
number order. The SUPPORTED DH GROUP field with the smallest byte offset in the page identifies the most preferred
DH group to be used by the SET MASTER KEY command (see clause 6.20). The SUPPORTED DH GROUP field with
the largest byte offset in the page identifies the least preferred DH group.
 45

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
7.1.2.21 Partition Policy/Security attributes page

The Partition Security attributes page (P+5h) shall contain the attributes listed in table 34.

The page identification attribute (number 0h) shall have the format described in 7.1.2.2 with the VENDOR IDENTIFI-
CATION field containing the ASCII characters "INCITS" and the ATTRIBUTES PAGE IDENTIFICATION field containing the
ASCII characters "T10 Partition Security".

The default security method attribute (number 1h) shall identify specifies the security method (see table 35) used
for the processing of all commands except the SET KEY command and SET MASTER KEY command in the
absence of conditions that specify a different security method (see 4.9.m).

A CREATE PARTITION command (see 6.7) shall copy the partition security method attribute from the Root
Policy/Security attributes page (see 7.1.2.20) to the security method attribute in new Partition Security attributes
page. The value of the security method attribute for partition zero shall not be changed by a FORMAT OSD
command (see 6.9). The value placed in the security method attribute for partition zero when the OBSD (see

Table 34 — Partition Security attributes page contents

Attribute
Number

Length
(bytes) Attribute

Application
Client

Settable
OSD Logical
Unit Provided

0h 40 Page identification No Yes

1h 1 Security Default security method Yes Yes

2h 6 Oldest valid nonce Yes Yes

3h 6 Newest valid nonce Yes Yes

4h 2 Minimum future requests No Yes

5h 2 Frozen working key bit mask No Yes

6h 4 Security version tag Yes Yes

7h 4 User object security version tag Yes Yes

8h 4h to 7FFEh Reserved No

7FFFh 0 or 7 Partition key identifier No Yes

8000h to 800Fh 4000 0000h 0 or 7 Working key identifier No Yes

4000 0001h 4 Policy access tag Yes Yes

4000 0002h 4 User object policy access tag Yes Yes

8010h 4000 0002h to FFFF
FFFEh

Reserved No

Table 35 — Security method attribute values

Value Security Method Reference

00h NOSEC 4.9.3.2

01h CAPKEY 4.9.3.3

02h CMDRSP 4.9.3.4

03h ALLDATA 4.9.3.5

04h to FFh Reserved
46

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
3.1.26) is manufactured is vendor specific. If the value of the security method attribute is changed, the working keys
for affected partition should be invalidated using the SET KEY command (see 6.23).

The oldest valid nonce attribute (number 2h) shall contain indicates the minimum number of milliseconds prior to
the value in the clock attribute in the Root Information attributes page (see 7.1.2.8) to which the device server
constrains the contents of the TIMESTAMP field in a request nonce (see 4.9.6) received in a command addressed to
the partition, a collection in the partition, or a user object in the partition. The processing of request nonces affected
by this constraint is described in 4.9.6.2. An oldest valid nonce attribute value of zero indicates that the value is not
expressible as a constant.

If a set attributes list (see 5.2.1.3) contains a request to set the oldest valid nonce attribute to a value that is larger
than the value in the oldest valid nonce limit attribute in the Root Policy/Security attributes page (see 7.1.2.20), the
command shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST
and the additional sense code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field
contains 2h (i.e., the oldest valid nonce attribute) and the set attributes data specified by the SET ATTRIBUTES

OFFSET field (see 5.2.1.2) contains a value that is larger than the value in the oldest valid nonce limit attribute in the
Root Policy/Security attributes page, the command shall be terminated with a CHECK CONDITION status, with the
sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

The newest valid nonce attribute (number 3h) shall contain indicates the minimum number of milliseconds prior to
later than the value in the clock attribute in the Root Information attributes page to which the device server
constrains the contents of the TIMESTAMP field in a request nonce (see 4.9.6) received in a command addressed to
the partition, a collection in the partition, or a user object in the partition. The processing of request nonces affected
by this constraint is described in 4.9.6.2 and 4.9.6.3. A newest valid nonce attribute value of zero indicates that the
value is not expressible as a constant.

If a set attributes list (see 5.2.1.3) contains a request to set the newest valid nonce attribute to a value that is larger
than the value in the newest valid nonce limit attribute in the Root Policy/Security attributes page, the command
shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the
additional sense code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field
contains 3h (i.e., the newest valid nonce attribute) and the set attributes data specified by the SET ATTRIBUTES

OFFSET field (see 5.2.1.2) contains a value that is larger than the value in the newest valid nonce limit attribute in
the Root Policy/Security attributes page, the command shall be terminated with a CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

The minimum future requests attribute (number 4h) shall contain the minimum number of commands addressed to
the partition, a collection in the partition, or a user object in the partition containing a far in the future request nonce
that device server guarantees to process concurrently.

The frozen working key bit mask attribute (number 5h) indicates which working key versions (see table 36) have
been frozen to reduce the amount of resources required to remember every request nonce ever received as
described in 4.9.6.3.3.

A WK00_FZN (working key 0h frozen) bit set to zero indicates that device server is not rejecting commands that
contain credentials with the working key with a key version of zero in order to reduce the resources required to
remember every request nonce ever received. A WK00_FZN bit set to one indicates that device server is rejecting

Table 36 — Frozen working key bit mask attribute format

Bit
Byte

7 6 5 4 3 2 1 0

0 WK07_FZN WK06_FZN WK05_FZN WK04_FZN WK03_FZN WK02_FZN WK01_FZN WK00_FZN

1 WK0F_FZN WK0E_FZN WK0D_FZN WK0C_FZN WK0B_FZN WK0A_FZN WK09_FZN WK08_FZN
 47

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
commands that contain credentials with the working key with a key version of zero in order to reduce the resources
required to remember every request nonce ever received as described in 4.9.6.3.3. Once the WK00_FZN bit is set to
one, it shall not be set to zero until a new working key with key version zero is established using the SET KEY
command (see 6.23).

The WK01_FZN bit, WK01_FZN bit, WK02_FZN bit, WK03_FZN bit, WK04_FZN bit, WK05_FZN bit, WK06_FZN bit,
WK07_FZN bit, WK08_FZN bit, WK09_FZN bit, WK0A_FZN bit, WK0B_FZN bit, WK0C_FZN bit, WK0D_FZN bit, WK0E_FZN

bit, and WK0F_FZN have the same bit value definitions as the WK00_FZN bit, except that the definitions apply to the
working keys with key versions one to fifteen, respectively.

The partition key identifier attribute (number 7FFFh) contains the key identifier value from the most recent
successful SET KEY command (see 6.23) with the KEY TO SET field set to 10b (i.e., update partition key). If the
partition key is invalid (i.e., never set, invalidated by a SET MASTER KEY command (see 6.24), or invalidated by a
SET KEY command), the partition key identifier attribute length shall be zero. Regardless of the partition key
identifier attribute length, the used capacity attribute in the Partition Information attributes page (see 7.1.2.9) shall
reflect an attribute length of seven (i.e., it shall not be possible for a SET KEY command to cause the partition’s
used capacity attribute value to exceed the capacity quota attribute in the Partition Quotas attributes page (see
7.1.2.13) and generate a quote error).

The working key identifier attributes (numbers 8000h to 800Fh) contain the key identifier value from the most
recent successful SET KEY command with:

a) The KEY TO SET field set to 11b (i.e., update working key); and
b) The KEY VERSION field set to the attribute number minus 8000h (e.g., a version key of three sets attribute

8003h and a version key of eight sets attribute 8008h).

If a working key is invalid (i.e., never set, invalidated by a SET MASTER KEY command, or invalidated by a SET
KEY command), the working key identifier attribute length for the associated working key shall be zero. Regardless
of the lengths of any of the working key identifier attributes, the used capacity attribute in the Partition Information
attributes page shall reflect an attribute length of seven for all sixteen working key identifier attributes (i.e., it shall
not be possible for a SET KEY command to cause the partition’s used capacity attribute value to exceed the
capacity quota attribute in the Partition Quotas attributes page and generate a quote error).

The security version policy access tag attribute (number 6h 4000 0001h) specifies the expected non-zero contents
of the SECURITY VERSION POLICY ACCESS TAG field in any capability (see 4.x.2.2) that allows access to this partition.
The format, use, and attribute setting restrictions for the policy access tag attribute are described in 4.x.3. A
CREATE PARTITION command (see 6.7) shall set the security version policy access tag attribute to FFFF FFFFh
7FFF FFFFh.

If a set attributes list (see 5.2.1.3) contains an request to set the security version tag attribute to zero, the command
shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the
additional sense code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field
contains 6h (i.e., the security version tag attribute) and the set attributes data specified by the SET ATTRIBUTES

OFFSET field (see 5.2.1.2) contains zero, the command shall be terminated with a CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

The user object security version policy access tag attribute (number 7h 4000 0002h) specifies the value to be
placed in the security version policy access tag attribute of each collection or user object, when it is created. A
CREATE PARTITION command (see 6.7) shall set the user object security version policy access tag attribute to
FFFF FFFFh 7FFF FFFFh.

If a set attributes list (see 5.2.1.3) contains an request to set the user object security version tag attribute to zero,
the command shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL
REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE
48

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
NUMBER field contains 7h (i.e., the user object security version tag attribute) and the set attributes data specified by
the SET ATTRIBUTES OFFSET field (see 5.2.1.2) contains zero, the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB.

If a set attributes list contains an entry specifying the number of an attribute that table 34 states may not be set is
not application client settable, the command shall be terminated with a CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST. If the
CDB SET ATTRIBUTE NUMBER field specifies the number of an attribute that table 34 states may not be set is not
application client settable, the command shall be terminated with a CHECK CONDITION status, with the sense key
set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.
 49

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The page format for the Partition Security attributes page is shown in table 37.

The PAGE NUMBER field contains the attributes page number of the Partition Security attributes page.

The PAGE LENGTH field contains the number of additional bytes in the page format of the Partition Security attributes
page.

Table 37 — Partition Security attributes page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
PAGE NUMBER (P+5h)

3 (LSB)

4 (MSB)
PAGE LENGTH (8Fh 8Bh)

7 (LSB)

8
Reserved

10

11 DEFAULT SECURITY METHOD

12 (MSB)
OLDEST VALID NONCE

17 (LSB)

18 (MSB)
NEWEST VALID NONCE

23 (LSB)

— (MSB)
MINIMUM FUTURE REQUESTS

— (LSB)

—
FROZEN WORKING KEY BIT MASK

—

24 (MSB)
SECURITY VERSION POLICY ACCESS TAG

27 (LSB)

28 (MSB)
USER OBJECT SECURITY VERSION POLICY ACCESS TAG

31 (LSB)

32 Reserved PKI_VALID

33 WKI07_VLD WKI06_VLD WKI05_VLD WKI04_VLD WKI03_VLD WKI02_VLD WKI01_VLD WKI00_VLD

34 WKI0F_VLD WKI0E_VLD WKI0D_VLD WKI0C_VLD WKI0B_VLD WKI0A_VLD WKI09_VLD WKI08_VLD

35 (MSB)
PARTITION KEY IDENTIFIER

41 (LSB)

42 (MSB) WORKING KEY IDENTIFIER

(for attribute number 8000h)

60 (LSB)
...

140 (MSB) WORKING KEY IDENTIFIER

(for attribute number 800Fh)

146 (LSB)
50

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The DEFAULT SECURITY METHOD field contains the value of the default security method attribute.

The OLDEST VALID NONCE field contains the value of the oldest valid nonce attribute.

The NEWEST VALID NONCE field contains the value of the newest valid nonce attribute.

The MINIMUM FUTURE REQUESTS field contains the value of the maximum future requests attribute.

The FROZEN WORKING KEY BIT MASK field contains the value of the frozen working key bit mask attribute.

The SECURITY VERSION POLICY ACCESS TAG field contains the value of the security version policy access tag
attribute.

The USER OBJECT SECURITY VERSION POLICY ACCESS TAG field contains the value of the user object security version
policy access tag attribute.

The PKI_VALID (partition key identifier valid) bit shall be set to zero if the partition key identifier attribute length is
zero. Otherwise, the PKI_VALID bit shall be set to one.

The WKI00_VLD (working key identifier 0h valid) bit shall be set to zero if the working key identifier attribute number
8000h has a length of zero. Otherwise, the WKI00_VLD bit shall be set to one.

The WKI01_VLD bit, WKI01_VLD bit, WKI02_VLD bit, WKI03_VLD bit, WKI04_VLD bit, WKI05_VLD bit, WKI06_VLD bit,
WKI07_VLD bit, WKI08_VLD bit, WKI09_VLD bit, WKI0A_VLD bit, WKI0B_VLD bit, WKI0C_VLD bit, WKI0D_VLD bit,
WKI0E_VLD bit, and WKI0F_VLD have the same bit value definitions as the WKI00_VLD bit, except that the definitions
apply to the attributes with numbers 8001h to 800Fh, respectively.

The sixteen WORKING KEY IDENTIFIER fields contain the working key identifier attribute values in ascending attribute
number order. If a working key identifier valid bit is set to one, the corresponding WORKING KEY IDENTIFIER field
contains the value of the working key identifier attribute. Otherwise, the contents of the WORKING KEY IDENTIFIER

field are undefined.

7.1.2.22 Collection Policy/Security attributes page

The Collection Security attributes page (C+5h) shall contain the attributes listed in table 38.

The page identification attribute (number 0h) shall have the format described in 7.1.2.2 with the VENDOR IDENTIFI-
CATION field containing the ASCII characters "INCITS" and the ATTRIBUTES PAGE IDENTIFICATION field containing the
ASCII characters "T10 Collection Security".

Table 38 — Collection Security attributes page contents

Attribute
Number

Length
(bytes) Attribute

Application
Client

Settable
OSD Logical
Unit Provided

0h 40 Page identification No Yes

1h to 5h 4000 0000h Reserved No

6h 4 Security version tag Yes Yes

4000 0001h 4 Policy access tag Yes Yes

4000 0002h to FFFF FFFEh Reserved No
 51

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The security version policy access tag attribute (number 6h 4000 0001h) specifies the expected non-zero contents
of the SECURITY VERSION POLICY ACCESS TAG field in any capability (see 4.x.2.2) that allows access to this collection.
The format, use, and attribute setting restrictions for the policy access tag attribute are described in 4.x.3. A
CREATE COLLECTION command (see 6.6) shall copy the user object security version policy access tag attribute
from the Partition Policy/Security attributes page (see 7.1.2.21) to the security version policy access tag attribute in
new Collection Security attributes page.

If a set attributes list (see 5.2.1.3) contains an request to set the security version tag attribute to zero, the command
shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the
additional sense code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field
contains 6h (i.e., the security version tag attribute) and the set attributes data specified by the SET ATTRIBUTES

OFFSET field (see 5.2.1.2) contains zero, the command shall be terminated with a CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

If a set attributes list contains an entry specifying the number of an attribute that table 38 states may not be set is
not application client settable, the command shall be terminated with a CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST. If the
CDB SET ATTRIBUTE NUMBER field specifies the number of an attribute that table 38 states may not be set is not
application client settable, the command shall be terminated with a CHECK CONDITION status, with the sense key
set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

The page format for the Collection Security attributes page is shown in table 39.

The PAGE NUMBER field contains the attributes page number of the Collection Security attributes page.

The PAGE LENGTH field contains the number of additional bytes in the page format of the Collection Security
attributes page.

The SECURITY VERSION POLICY ACCESS TAG field contains the value of the security version policy access tag
attribute.

Table 39 — Collection Security attributes page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
PAGE NUMBER (C+5h)

3 (LSB)

4 (MSB)
PAGE LENGTH (4h)

7 (LSB)

8 (MSB)
SECURITY VERSION POLICY ACCESS TAG

11 (LSB)
52

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
7.1.2.23 User Object Policy/Security attributes page

The User Object Security attributes page (5h) shall contain the attributes listed in table 40.

The page identification attribute (number 0h) shall have the format described in 7.1.2.2 with the VENDOR IDENTIFI-
CATION field containing the ASCII characters "INCITS" and the ATTRIBUTES PAGE IDENTIFICATION field containing the
ASCII characters "T10 User Object Security".

The security version policy access tag attribute (number 6h 4000 0001h) specifies the expected non-zero contents
of the SECURITY VERSION POLICY ACCESS TAG field in any capability (see 4.x.2.2) that allows access to this user
object collection. The format, use, and attribute setting restrictions for the policy access tag attribute are described
in 4.x.3. A CREATE command (see 6.4) or CREATE AND WRITE command (see 6.5) shall copy the user object
security version policy access tag attribute from the Partition Policy/Security attributes page (see 7.1.2.21) to the
security version policy access tag attribute in new User Object Security attributes page.

If a set attributes list (see 5.2.1.3) contains an request to set the security version tag attribute to zero, the command
shall be terminated with a CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST and the
additional sense code set to INVALID FIELD IN PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field
contains 6h (i.e., the security version tag attribute) and the set attributes data specified by the SET ATTRIBUTES

OFFSET field (see 5.2.1.2) contains zero, the command shall be terminated with a CHECK CONDITION status, with
the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

If a set attributes list contains an entry specifying the number of an attribute that table 40 states may not be set is
not application client settable, the command shall be terminated with a CHECK CONDITION status, with the sense
key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN PARAMETER LIST. If the
CDB SET ATTRIBUTE NUMBER field specifies the number of an attribute that table 40 states may not be set is not
application client settable, the command shall be terminated with a CHECK CONDITION status, with the sense key
set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN CDB.

Table 40 — User Object Security attributes page contents

Attribute
Number

Length
(bytes) Attribute

Application
Client

Settable
OSD Logical
Unit Provided

0h 40 Page identification No Yes

1h to 5h 4000 0000h Reserved No

6h 4 Security version tag Yes Yes

4000 0001h 4 Policy access tag Yes Yes

4000 0002h to FFFF FFFEh Reserved No
 53

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The page format for the User Object Security attributes page is shown in table 41.

The PAGE NUMBER field contains the attributes page number of the User Object Security attributes page.

The PAGE LENGTH field contains the number of additional bytes in the page format of the User Object Security
attributes page.

The SECURITY VERSION POLICY ACCESS TAG field contains the value of the security version policy access tag
attribute.

7.1.2.24 Current Command attributes page

The Current Command attributes page (FFFF FFFEh) shall contain the attributes listed in table 42.

The page identification attribute (number 0h) shall have the format described in 7.1.2.2 with the VENDOR IDENTIFI-
CATION field containing the ASCII characters "INCITS" and the ATTRIBUTES PAGE IDENTIFICATION field containing the
ASCII characters "T10 Current Command".

If the NOSEC security method or the CAPKEY security method (see 4.9.3) is used to process the command or if
status returned for the command is CHECK CONDITION, the response integrity check value attribute (number 1h)
shall contain zero. Otherwise, the response integrity check value attribute shall contain an integrity check value
(see 4.9.7) that is computed as described in 4.9.3.4.

Table 41 — User Object Security attributes page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
PAGE NUMBER (5h)

3 (LSB)

4 (MSB)
PAGE LENGTH (4h)

7 (LSB)

8 (MSB)
SECURITY VERSION POLICY ACCESS TAG

11 (LSB)

Table 42 — Current Command attributes page contents

Attribute
Number

Length
(bytes) Attribute

Application
Client

Settable
OSD Logical
Unit Provided

0h 40 Page identification No Yes

1h 12 20 Response integrity check value No Yes

2h 1 Object Type No Yes

3h 8 Partition_ID No Yes

4h 8 Collection_Object_ID or User_Object_ID No Yes

5h 8 Starting byte address of append No Yes

6h to FFFF FFFEh Reserved No
54

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
NOTE 2 If a command terminates with a CHECK CONDITION status, the response integrity check value is
returned in the sense data (see 4.13).

The object type attribute (number 2h) shall identify the type of OSD object on which the current command is
operating using the code values shown in table 4 (see 4.x.2.2).

The Partition_ID attribute (number 3h) shall contain the Partition_ID (see 4.6.4) of partition containing the OSD
object on which the current command is operating.

If the object type attribute contains COLLECTION (see table 4 in 4.x.2.2), the Collection_Object_ID or
User_Object_ID attribute (number 4h) shall contain the Collection_Object_ID (see 4.6.6) of the collection on which
the current command is operating. Otherwise, the Collection_Object_ID or User_Object_ID attribute shall contain
the User_Object_ID (see 4.6.5) of the user object on which the current command is operating.

If the current command is an APPEND (see 6.2), the starting byte address of append attribute (number 5h) shall
contain the starting byte address used for the append command function. If the current command is not an
APPEND, the starting byte address of append attribute shall contain zero.

If a set attributes list (see 5.2.1.3) contains an entry specifying the number of an attribute that table 42 states may
not be set is not application client settable, the command shall be terminated with a CHECK CONDITION status,
with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID FIELD IN
PARAMETER LIST. If the CDB SET ATTRIBUTE NUMBER field (see 5.2.1.2) specifies the number of an attribute that
table 42 states may not be set is not application client settable, the command shall be terminated with a CHECK
CONDITION status, with the sense key set to ILLEGAL REQUEST and the additional sense code set to INVALID
FIELD IN CDB.

The page format for the Current Command attributes page is shown in table 43.

Table 43 — Current Command attributes page format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
PAGE NUMBER (FFFF FFFEh)

3 (LSB)

4 (MSB)
PAGE LENGTH (28h 30h)

7 (LSB)

8 (MSB)
RESPONSE INTEGRITY CHECK VALUE

27 (LSB)

28 OBJECT TYPE

29
Reserved

31

32 (MSB)
PARTITION_ID

39 (LSB)

40 (MSB)
COLLECTION_OBJECT_ID OR USER_OBJECT_ID

47 (LSB)

48 (MSB)
STARTING BYTE ADDRESS OF APPEND

55 (LSB)
 55

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
The PAGE NUMBER field contains the attributes page number of the Current Command attributes page.

The PAGE LENGTH field contains the number of additional bytes in the page format of the Current Command
attributes page.

The RESPONSE INTEGRITY CHECK VALUE field contains the value of the response integrity check value attribute.

The OBJECT TYPE field contains the value of the object type attribute.

The PARTITION_ID field contains the value of the Partition_ID attribute.

The COLLECTION_OBJECT_ID OR USER_OBJECT_ID field contains the value of the Collection_Object_ID or
User_Object_ID attribute.

The STARTING BYTE ADDRESS OF APPEND field contains the value of the starting byte address of append attribute.

7.5 Vital product data parameters

7.5.1 Overview

This subclause defines the VPD pages used with OSD type devices.

See SPC-3 for VPD pages used with all device types.

The VPD page codes that are specific to OSD type devices are defined in table 44.

Table 44 — OSD specific VPD page codes

Page code Description Reference
Support

Requirements

B0h OSD Information 7.5.2 Optional

B1h Security Token 7.5.3 Optional

B2h to BFh Reserved for OSD type devices
56

Rewrite of OSD Security and Policy/Storage Manager Models T10/04-193r4
7.5.3 Security Token VPD page

The Security Token VPD page (see table 45) contains a security token for use in the CAPKEY security method
(see 4.9.3.3).

The PERIPHERAL QUALIFIER field and the PERIPHERAL DEVICE TYPE field are defined in SPC-3.

The PAGE LENGTH field specifies the length of the following VPD page data. The page length shall be at least
sixteen. If the allocation length is less than the length of the data to be returned, the page length shall not be
adjusted to reflect the truncation.

The SECURITY TOKEN field contains a value that is unique to the I_T_L nexus that sent the INQUIRY command. The
security token shall be random as defined by RFC 1750. An I_T nexus loss event, logical unit reset event, or reset
event (see SAM-3) shall cause the security token to change.

Table 45 — Security Token VPD page

Bit
Byte

7 6 5 4 3 2 1 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 PAGE CODE (B1h)

2
PAGE LENGTH (n-3)

3

4
SECURITY TOKEN

n

 57

	4.4 Elements of the example configuration
	4.x Policy/storage management
	4.x.1 Overview
	4.x.2 Capabilities
	4.x.2.1 Introduction
	4.x.2.2 Capability format
	4.x.2.2.1 Introduction
	4.x.2.2.2 U/C capability object descriptor
	4.x.2.2.3 PAR capability object descriptor

	4.x.2.3 Capabilities and commands allowed

	4.x.3 Policy access tags

	4.9 Security
	4.9.1 Basic security model
	4.9.2 Trust assumptions
	4.9.m Preparing credentials
	4.9.3 Security methods
	4.9.3.1 Introduction
	4.9.3.2 The NOSEC security method
	4.9.3.3 The CAPKEY security method
	4.9.3.4 The CMDRSP security method
	4.9.3.5 The ALLDATA security method

	4.9.4 Credentials
	4.9.4.1 Credential format
	4.9.4.2 Capability key

	4.9.5 OSD device server security algorithms
	4.9.5.1 Credential validation
	4.9.5.2 Reconstructing the credential
	4.9.5.3 Computing the credential integrity check value
	4.9.5.4 Invalidating credentials

	4.9.6 Request nonces
	4.9.6.1 Request nonce format
	4.9.6.2 Device server validation of request nonces

	4.9.7 Integrity check values
	4.9.8 Secret keys
	4.9.8.1 Introduction
	4.9.8.2 Computing updated generation keys and new authentication keys

	4.9.9 OSD security interactions with SPC-3 commands and SAM-3 task management functions

	5.2 Fields commonly used in OSD commands
	5.2.6 Security parameters

	6.19 SET KEY
	6.20 SET MASTER KEY
	6.20.1 Introduction
	6.20.2 Seed exchange
	6.20.3 Change master key
	7.1.2 OSD attributes pages
	7.1.2.1 Attributes pages overview
	7.1.2.20 Root Policy/Security attributes page
	7.1.2.21 Partition Policy/Security attributes page
	7.1.2.22 Collection Policy/Security attributes page
	7.1.2.23 User Object Policy/Security attributes page
	7.1.2.24 Current Command attributes page

	7.5 Vital product data parameters
	7.5.1 Overview
	7.5.3 Security Token VPD page

