
 1

TO: T10 Membership
FROM: Paul A. Suhler, Certance
DATE: 12 February 2004
SUBJECT: T10/04-053r0, Revision of ADT Error Recovery Ladder Diagrams

Revision 0:

• Initial version

1.1 Background

T10/369r3 has changed the error recovery state machines. This proposal updates ADT Revision 10 Annex B to
change the state names and certain transitions to match the new state machines. It also adds a ninth diagram to
illustrate the new TE2:Retry Initiate Recovery state..

1.2 Changes

All sub-clauses of the Annex are changed, except for Non-retryable error (Figure A.7). It is included here for
simplicity.

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 2

A.2 Receiver-detected retryable error
Figure A.1 shows the detection of a retryable error by the receiver and the subsequent recovery.

NAK IU
(FN = k, PR = 1)

ACK IU
(FN = k)

IU A
(FN = k)

Initiate Recovery IU
(FN = k)

(Retryable Error)
 => Enter R1:Pending
 Recovery

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Enter R0:Idle

NFTS = k+1

(PR == 1)
 => Enter TE1:Initiating
 Recovery
 NFTS = k

Enter TE0:Idle

NFTS = k+1

IU Request(A)

(FN == EFN)
=> IU Indication(A)IU Confirmation(A)

NFTS = k

EFN = k+1

Figure A.1 – Receiver-detected retryable error

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 3

A.3 Receiver-detected retryable error with multiple active IUs
Figure A.2 shows the detection of a retryable error by the receiver, when the IU in error is followed by a good IU.

NAK IU
(FN = k, PR = 1)

NAK IU
(FN = k, PR = 0)

ACK IU
(FN = k)

IU A
(FN = k)

IU B
(FN = k+1)

Initiate Recovery IU
(FN = k)

(Retryable Error)
 => Enter R1:Pending
 Recovery

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(Type != Init Recovery)
=> Discard IU B

EFN = k+1

(FN == EFN)
 => Enter R0:Idle

NFTS = k+1

NFTS = k+2
((PR == 1) &&
 (ACK Offset >1))
 => Enter TE1:Initiating
 Recovery
 NFTS = k

((State == TE1) &&
 (ACK Offset == 0))
 => Send Initiate Recovery

Enter TE0:Idle

IU B
(FN = k+1)

NFTS = k+1

NFTS = k+2

IU Request(A)

(FN == EFN)
IU Indication(A)IU Confirmation(A)

(FN == EFN)
IU Indication(B)

IU Request(B)

IU Confirmation(B)
ACK IU

(FN = k+1)

EFN = k+2

NFTS = k

Figure A.2 – Receiver-detected retryable error with multiple active IUs

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 4

A.4 Lost IU with no further traffic
Figure A.3 shows a lost IU (e.g., bad checksum), in which there is not further traffic from the sender. The sender
detects the error when a timeout occurs without receipt of an Acknowledgement frame.

ACK IU
(FN = k)

IU A
(FN = k)

Initiate Recovery IU
(FN = k)

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Remain in R0:Idle

Timeoutack

X

EFN = k+1

No further traffic

NFTS = k+1

(Timeoutack)
 => Enter TE1:Initiating
 Recovery
 NFTS = k

NFTS = k+1

Enter TE0:Idle

IU Request(A)

(FN == EFN)
 => IU Indication(A)IU Confirmation(A)

NFTS = k

Figure A.3 – Lost IU with no further traffic

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 5

A.5 Lost ACK with recovery driven by out-of-order ACK
Figure A.4 illustrates how the requirement for Acknowledgement IUs to be sent in the same order as the original IUs
are received allows detection of the missing acknowledgement for FN k. There is no need to wait for timer expiration.

ACK IU
(FN = k)

ACK IU
(FN = k+1)

IU A
(FN = k)

IU B
(FN = k+1)

EFN = k

EFN = k+1X

EFN = k+2(FN == k+1)
=> Enter TE1:Initiating Recovery
 Stop timer
 NFTS = k

Timeoutack

NFTS = k+1

NFTS = k+2

IU Request(A)

IU Request(B)

(FN == EFN)
 => IU Indication(A)

NFTS = k

(FN == EFN)
 => IU Indication(B)

ACK IU
(FN = k)

Initiate Recovery IU
(FN = k)

IU A
(FN = k)

(FN != EFN)
 => Enter R2:Recovering

ACK IU
(FN = k)

(FN != EFN)
 => Discard IU AIU B

(FN = k+1)

ACK IU
(FN = k+1)

(FN != EFN)
 => Discard IU B

NFTS = k+1

NFTS = k+2

ACK IU
(FN = k+2)

IU C
(FN = k+2)

NFTS = k+3

IU Request(C)

(FN == EFN)
 => Enter R0:Idle
 IU Indication (C)

IU Confirmation(A)

IU Confirmation(B)

EFN = k+3

Enter TE0:Idle

IU Confirmation(C)

X

Figure A.4 – Lost ACK with recovery driven by out-of-order ACK

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 6

A.6 Lost IU with recovery driven by out-of-order NAK
Figure A.5 is similar to the previous one, but the second IU receives a NAK instead of an ACK. Again, there is no
need to wait for timer expiration.

ACK IU
(FN = k)

IU A
(FN = k)

Initiate Recovery IU
(FN = k)

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Enter R0:Idle

X

ACK IU
(FN = k+1)

IU B
(FN = k+1)

EFN = k+2

NFTS = k+1

(PR == 1)
 => Stop timer
 Enter TE1:Initiating
 Recovery
 NFTS = k

NFTS = k+1

NFTS = k+2

Enter TE0:Idle

IU B
(FN = k+1)

NAK IU
(FN = k, PR = 1)

(Retryable Error (FN != EFN))
 => Enter R1:Pending
 Recovery

EFN = k+1

NFTS = k

Timeoutack

IU Request(A)

IU Request(B)

(FN == EFN)
 => IU Indication(A)

(FN == EFN)
 => IU Indication(B)

IU Confirmation(A)

IU Confirmation(B)

NFTS = k+2

X

Figure A.5 – Lost IU with recovery driven by out-of-order NAK

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 7

A.7 Lost NAK with recovery driven by timeout
In the example in Figure A.6 – unlike the previous ones – the sender does not use an out-of-order Acknowledgement
IU to infer that an earlier Acknowledgement IU was lost. Instead, it waits for the Timeoutack on the earlier
Acknowledgement IU.

This diagram would also apply similarly if IU A received an ACK instead of a non-retryable NAK.

NAK IU
(FN = k, RP = 0)

ACK IU
(FN = k+1)

IU A
(FN = k)

IU B
(FN = k+1)

EFN = k

EFN = k+1X

EFN = k+2

(Timeoutack)
=> Enter TE1:Initiating Recovery
 NFTS = k

NFTS = k+1

NFTS = k+2

(Non-Retryable Error)

(FN == EFN)
 => IU Indication(B)

ACK IU
(FN = k)

Initiate Recovery
(FN = k)

(RP == 0)
=> IU Confirmation(A, Error)

NAK IU
(FN = k, RP = 0)

IU A
(FN = k)

IU Confirmation(B)

IU Request(B)

(Non-Retryable Error)

IU Request(A)

IU B
(FN = k+1)

ACK IU
(FN = k+1)

(FN != EFN)
 => Discard IU B

NFTS = k+2

IU Confirmation(B)

NFTS = k+1

(FN != EFN)
 => Enter R2:Recovering

ACK IU
(FN = k+2)

IU C
(FN = k+2)

NFTS = k+3

IU Request(C)

(FN == EFN)
 => Enter R0:Idle
 IU Indication (C)

EFN = k+3

IU Confirmation(C)

NFTS = k

Enter TE0:Idle

Figure A.6 – Lost NAK with recovery driven by timeout

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 8

A.8 Non-retryable error
In Figure A.7, the receiver detects a non-retryable error and sends a NAK IU with a value of zero in the PENDING
RECOVERY (PR) field. The error is reported to the sender’s upper layer and when transmission of the next IU is
requested, it is sent with the next frame number in sequence.

(Non-Retryable Error)
NAK IU

(FN = k, PR = 0)

IU A
(FN = k)

ACK IU
(FN = k+1)

IU B
(FN = k+1)

EFN = k+2

EFN = k+1

EFN = k

NFTS = k+1

NFTS = k+2

IU Confirmation (A, Error)

IU Request(A)

IU Request(B)

(FN == EFN)
 => IU Indication(B)IU Confirmation(B)

NFTS = k

Figure A.7 – Non-retryable error

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 9

A.9 Lost ACK with errors on next IU
Figure A.8 shows a succession of three errors: a lost ACK, a retryable error, and a lost NAK for the retryable error. It
is the timeout on the original lost ACK which begins the error recovery sequence.

ACK IU
(FN = k)

ACK IU
(FN = k)

IU A
(FN = k)

IU B
(FN = k+1)

Initiate Recovery IU
(FN = k)

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

EFN = k+1X

ACK IU
(FN = k+1)

IU B
(FN = k+1)

(FN != EFN)
 => Discard IU A

NFTS = k+2

NFTS = k+1

Enter TE0:Idle

(Retryable Error)
 => Enter R1:Pending
 Recovery

(FN != EFN)
 => Enter R2:Recovering

EFN = k+2

NAK IU
(FN = k+1, PR = 1)X

NFTS = k+2

IU Request(A)

IU Request(B)

(FN == EFN)
IU Indication(A)

(FN == EFN)
 => Enter R0:Idle
IU Indication(B)

IU Confirmation(A)

IU Confirmation(B)

NFTS = k

NFTS = k+1

((Timeoutack) &&
 (ACK Offset > 0))
=> Enter TE1:Initiating Recovery
 NFTS = k
 ACK Offset --
 Restart Timeoutack

EFN = k+1

((Timeoutack) &&
 (ACK Offset == 0))
=> Send Initiate Recovery

Figure A.8 – Lost ACK with errors on next IU

Revision of ADT Error Recovery Ladder DiagramsT10/04-053r0

 10

A.10 Error on Initiate Recovery IU
Figure A.9 shows the detection of a retryable error by the receiver, detection of an error on the Initiate Recovery IU,
and the subsequent recovery.

NAK IU
(FN = k, PR = 1)

NAK IU
(FN = k, PR = 1)

IU A
(FN = k)

(Retryable Error)
 => Enter R1:Pending
 Recovery

EFN = k

(Retryable Error)

NFTS = k+1

(PR == 1)
 => Enter TE1:Initiating
 Recovery
 NFTS = k

(PR == 1)
=> Enter TE2:Retry
 Initiate Recovery

IU Request(A)

NFTS = k

Initiate Recovery IU
(FN = k)

ACK IU
(FN = k)

Initiate Recovery IU
(FN = k)

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Enter R0:Idle

Enter TE0:Idle

NFTS = k+1
(FN == EFN)
=> IU Indication(A)IU Confirmation(A)

EFN = k+1

Figure A.9 – Error on Initiate Recovery IU

