
 1

TO: T10 Membership
FROM: Paul A. Suhler, Certance
DATE: 19 November 2003
SUBJECT: T10/03-367r4, ADT Annex: Error detection and recovery action examples

Revision 4:

• Changes from 17 November working group teleconference (T10/04-002r0)

Revision 3:

• Changes from 3 November working group meeting (T10/03-378r0)

Revision 2:

• Various changes for 3 November working group meeting

Revision 1:

• Changes to clarify transmission of multiple IUs without receiving Acknowledgement IUs

• Fixed incorrect labels

• Added P4:Initiating Recovery state and added labels for sender actions.

• This is not entirely consistent with 03-355r2, which does not yet show a P3:P2 transition upon receipt
of an Initiate Recovery IU.

Revision 0:

• Initial version

1.1 Background

In the process of preparing proposals for error detection and recovery, we found that drawings made
comprehension easier. This document offers some such as an informative annex for ADT.

1.2 Changes

Add the following as an Annex.

ADT Annex: Error detection and recovery action examples T10/03-367r4

 2

Annex A

(Informative)

Error detection and recovery action examples

A.1 Introduction

This informative annex diagrams various error detection and recovery procedures for ADT devices
conforming to this standard. The conventions for the diagrams are shown in Table A.1.

Table A.1 – Diagram Drawing Conventions

Drawing Convention Meaning

Acknowledged or Unacknowledged IU

IU with error

Acknowledgement IU

IU Request(A)

Service request from upper layer of sender

IU Indication(A)

Service indication to upper layer of receiver

IU Confirmation(A)

Service confirmation to upper layer of sender

Time-out value exceeded

IU received is processed to transmit IU

X

IU lost or dropped

PR Value of the Pending Recovery (PR) bit in the NAK IU.
EFN Value of the port’s Expected Frame Number counter

NFTS Value of the port’s Next Frame To Send counter.
a = b Counter a is set to the value of expression b

(a == b) Expression a equals expression b
(a != b) Expression a does not equal expression b

(condition)
=> action

Because the condition is true, the action is performed

ADT Annex: Error detection and recovery action examples T10/03-367r4

 3

A.2 Receiver-detected retryable error

Figure A.1 shows the detection of a retryable error by the receiver and the subsequent recovery.

NAK IU
(FN = k, PR = 1)

ACK IU
(FN = k)

IU A
(FN = k)

Initiate Recovery IU
(FN = k)

(Retryable Error)
 => Enter P3:Pending
 Recovery

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Enter P2:Active

NFTS = k+1

(PR == 1)
 => Enter P4:Initiating
 Recovery
 NFTS = k

Enter P2:Active

NFTS = k+1

IU Request(A)

(FN == EFN)
=> IU Indication(A)IU Confirmation(A)

NFTS = k

EFN = k+1

Figure A.1 – Receiver-detected retryable error

ADT Annex: Error detection and recovery action examples T10/03-367r4

 4

A.3 Receiver-detected retryable error with multiple active IUs

Figure A.2 shows the detection of a retryable error by the receiver, when the IU in error is followed by a
good IU.

NAK IU
(FN = k, PR = 1)

NAK IU
(FN = k, PR = 0)

ACK IU
(FN = k)

IU A
(FN = k)

IU B
(FN = k+1)

Initiate Recovery IU
(FN = k)

(Retryable Error)
 => Enter P3:Pending
 Recovery

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(Type != Init Recovery)
=> Discard IU B

EFN = k+1

(FN == EFN)
 => Enter P2:Active

NFTS = k+1

NFTS = k+2

(PR == 1)
 => Enter P4:Initiating
 Recovery
 NFTS = k

((PR == 0) && (State == P4))
 => Do not retry IU or confirm

Enter P2:Active

IU B
(FN = k+1)

NFTS = k+1

NFTS = k+2

IU Request(A)

(FN == EFN)
IU Indication(A)IU Confirmation(A)

(FN == EFN)
IU Indication(B)

IU Request(B)

IU Confirmation(B)
ACK IU

(FN = k+1)

EFN = k+2

NFTS = k

Figure A.2 – Receiver-detected retryable error with multiple active IUs

ADT Annex: Error detection and recovery action examples T10/03-367r4

 5

A.4 Lost IU with no further traffic

Figure A.3 shows a lost IU (e.g., bad checksum), in which there is not further traffic from the sender. The
sender detects the error when a timeout occurs without receipt of an Acknowledgement frame.

ACK IU
(FN = k)

IU A
(FN = k)

Initiate Recovery IU
(FN = k)

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Remain in P2:Active

Timeoutack

X

EFN = k+1

No further traffic

NFTS = k+1

(Timeoutack)
 => Enter P4:Initiating
 Recovery
 NFTS = k

NFTS = k+1

Enter P2:Active

IU Request(A)

(FN == EFN)
 => IU Indication(A)IU Confirmation(A)

NFTS = k

Figure A.3 – Lost IU with no further traffic

ADT Annex: Error detection and recovery action examples T10/03-367r4

 6

A.5 Lost ACK with recovery driven by out-of-order ACK

Figure A.4 illustrates how the requirement for Acknowledgement IUs to be sent in the same order as the
original IUs are received allows detection of the missing acknowledgement for FN k. There is no need to
wait for timer expiration.

ACK IU
(FN = k)

ACK IU
(FN = k+1)

IU A
(FN = k)

IU B
(FN = k+1)

EFN = k

EFN = k+1X

EFN = k+2(FN == k+1)
=> Enter P4:Initiating Recovery
 Stop timer
 NFTS = k
[See note]

Timeoutack

NFTS = k+1

NFTS = k+2

IU Request(A)

IU Request(B)

(FN == EFN)
 => IU Indication(A)

NFTS = k

(FN == EFN)
 => IU Indication(B)

ACK IU
(FN = k)

Initiate Recovery IU
(FN = k)

IU A
(FN = k)

(FN != EFN)
 => Enter P5:Recovering

ACK IU
(FN = k)

(FN != EFN)
 => Discard IU AIU B

(FN = k+1)

ACK IU
(FN = k+1)

(FN != EFN)
 => Discard IU B

NFTS = k+1

NFTS = k+2

ACK IU
(FN = k+2)

IU C
(FN = k+2)

NFTS = k+3

IU Request(C)

(FN == EFN)
 => Enter P2:Active
 IU Indication (C)

IU Confirmation(A)

IU Confirmation(B)

EFN = k+3

Enter P2:Active

IU Confirmation(C)

Figure A.4 – Lost ACK with recovery driven by out-of-order ACK

ADT Annex: Error detection and recovery action examples T10/03-367r4

 7

A.6 Lost IU with recovery driven by out-of-order NAK

Figure A.5 is similar to the previous one, but the second IU receives a NAK instead of an ACK. Again,
there is no need to wait for timer expiration.

ACK IU
(FN = k)

IU A
(FN = k)

Initiate Recovery IU
(FN = k)

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

(FN == EFN)
 => Enter P2:Active

X

ACK IU
(FN = k+1)

IU B
(FN = k+1)

EFN = k+2

NFTS = k+1

(PR == 1)
 => Stop timer
 Enter P4:Initiating
 Recovery
 NFTS = k
[See note]

NFTS = k+1

NFTS = k+2

Enter P2:Active

IU B
(FN = k+1)

NAK IU
(FN = k, PR = 1)

(Retryable Error (FN != EFN))
 => Enter P3:Pending
 Recovery

EFN = k+1

NFTS = k

Timeoutack

IU Request(A)

IU Request(B)

(FN == EFN)
 => IU Indication(A)

(FN == EFN)
 => IU Indication(B)

IU Confirmation(A)

IU Confirmation(B)

NFTS = k+2

Figure A.5 – Lost IU with recovery driven by out-of-order NAK

ADT Annex: Error detection and recovery action examples T10/03-367r4

 8

A.7 Lost NAK with recovery driven by timeout

In the example in Figure A.6 – unlike the previous ones – the sender does not use an out-of-order
Acknowledgement IU to infer that an earlier Acknowledgement IU was lost. Instead, it waits for the
Timeoutack on the earlier Acknowledgement IU.

This diagram would also apply similarly if IU A received an ACK instead of a non-retryable NAK.

NAK IU
(FN = k, RP = 0)

ACK IU
(FN = k+1)

IU A
(FN = k)

IU B
(FN = k+1)

EFN = k

EFN = k+1X

EFN = k+2

(Timeoutack)
=> Enter P4:Initiating Recovery
 NFTS = k

NFTS = k+1

NFTS = k+2

(Non-Retryable Error)

(FN == EFN)
 => IU Indication(B)

ACK IU
(FN = k)

Initiate Recovery
(FN = k)

(RP == 0)
=> IU Confirmation(A, Error)

NAK IU
(FN = k, RP = 0)

IU A
(FN = k)

IU Confirmation(B)

IU Request(B)

(Non-Retryable Error)

IU Request(A)

IU B
(FN = k+1)

ACK IU
(FN = k+1)

(FN != EFN)
 => Discard IU B

NFTS = k+2

IU Confirmation(B)

NFTS = k+1

(FN != EFN)
 => Enter P5:Recovering

ACK IU
(FN = k+2)

IU C
(FN = k+2)

NFTS = k+3

IU Request(C)

(FN == EFN)
 => Enter P2:Active
 IU Indication (C)

EFN = k+3

IU Confirmation(C)

NFTS = k

Enter P2:Active

Figure A.6 – Lost NAK with recovery driven by timeout

ADT Annex: Error detection and recovery action examples T10/03-367r4

 9

A.8 Non-retryable error

In Figure A.7, the receiver detects a non-retryable error and sends a NAK IU with a value of zero in the
PENDING RECOVERY (PR) field. The error is reported to the sender’s upper layer and when transmission of
the next IU is requested, it is sent with the next frame number in sequence.

(Non-Retryable Error)

NAK IU
(FN = k, PR = 0)

IU A
(FN = k)

ACK IU
(FN = k+1)

IU B
(FN = k+1)

EFN = k+2

EFN = k+1

EFN = k

NFTS = k+1

NFTS = k+2

IU Confirmation (A, Error)

IU Request(A)

IU Request(B)

(FN == EFN)
 => IU Indication(B)IU Confirmation(B)

NFTS = k

Figure A.7 – Non-retryable error

ADT Annex: Error detection and recovery action examples T10/03-367r4

 10

A.9 Lost ACK with errors on next IU

Figure A.8 shows a succession of three errors: a lost ACK, a retryable error, and a lost NAK for the
retryable error. It is the timeout on the original lost ACK which begins the error recovery sequence.

ACK IU
(FN = k)

ACK IU
(FN = k)

IU A
(FN = k)

IU B
(FN = k+1)

Initiate Recovery IU
(FN = k)

EFN = k

ACK IU
(FN = k)

IU A
(FN = k)

EFN = k+1X

ACK IU
(FN = k+1)

IU B
(FN = k+1)

(FN != EFN)
 => Discard IU A

NFTS = k+2

NFTS = k+1

Enter P2:Active

(Retryable Error)
 => Enter P3:Pending
 Recovery

(FN != EFN)
 => Enter P5:Recovering

EFN = k+2

NAK IU
(FN = k+1, PR = 1)

X

NFTS = k+2

IU Request(A)

IU Request(B)

(FN == EFN)
IU Indication(A)

(FN == EFN)
 => Enter P2:Active
IU Indication(B)

IU Confirmation(A)

IU Confirmation(B)

NFTS = k

NFTS = k+1

(Timeoutack)
=> Enter P4:Initiating Recovery
 NFTS = k

EFN = k+1

Figure A.8 – Lost ACK with errors on next IU

