w

©O© 0o ~NO 01 b~

10
11
12
13
14

15
16
17
18
19
20
21

=

Storage Networking Industry Association
Object-Based Storage Devices

Object Store Security Document T10/03-279r2

Revision: 8
Last Revised: 8/12/2003

Abstract

This document presents the requirements, motivation and a proposal for the security protocol
for object gore. This protocol is based upon the origina Network Attached Storage Device
(NASD) work [8] aswell as other work on secure object stores 9.

Related Documents
- The OSD White Paper offers an introduction to OSD and its gpplications.
The OSD Requirements Document discusses requirements of the OSD applications
discussed in the white paper.
The T10 SCSI Draft Standard for OSD implements the OSD framework for the SCS
architecture moddl.

ENDL Texas
Highlights indiate concepts (and maybe exact text) to be incorporated in OSD r09.

22
23

24

25
26
27
28
29
30
31
32
33

34
35
36
37

38
39
40
41
42
43
44
45
46

47
48
49
50
51
52

Table of Contents

0

1

3

4

REVISION HISTORY ..ottt 4
0.1 REVISION L.ttt sttt bbb 4
0.2 REVISION 2 ...ttt sttt sttt st st an e e nan e s na e sne e e nnnes 4
0.3 REVISIONS ..ottt sttt bbb bbbttt 4
0.4 REVISION 4 ...ttt ettt st e ab e e an e e e nae e snee e nnnes 4
0.5 REVISIOND ..ottt sttt bbb 4
0.6 REVISION B ...ttt sttt sttt b et e e nsn e s na e nne e e nnnes 4
0.7 REVISION 7 ceviieciieeeteecte ettt ettt bbb a bbb s 5
0.8 REVISION B ...ttt sttt sttt b et e e nsn e s na e nne e e nnnes 5

INTRODUCGCTION .ottt e e e e e e nsae e snaeeenaeeennees 6
1.2 LEVELSOF SECURITY ..ceuiiuctriiterissetssssessssssessssessssssessssssessssessssssessssssesssssssssssesanns 10
1.3 REQUIREMENTS SUMMARY.....ceuiiiteritetiesstesssesssssessssssessssesesssessssssesssssssssesanes 12
1.4 LIMITATIONSIN THE PROPOSED VERSION OF OBJECT STORE PROTOCOL 13

STRUCTURE OF CREDENTIALSAND BASIC MESSAGE FLOW................. 14
2.1 INTRODUCTION ..cecvuititisetesesesesssessssssessssssssssessssesessssessssssessssssessssesssssessssesnsnnses 14
2.2 CRYPTOGRAPHIC BUILDING BLOCKS.......ccuiiuiuiiecieieaetessie st sesse s s, 14
2.3 KEY MANAGEMENT OVERVIEWcvvuivriscessssesssesessssessssssessssssessssessssesessssesssnsns 14
24 CAPABILITY ARGUMENT AND CAPABILITY KEY ...cooviueriiirericreieeie s, 15
25 ANONYMOUSOBJIECT CREATIONcuiveriretisesesssesessssessssesessssssssssessssesesssesssnens 18
2.6 MESSAGE FLOW ...ouieiieieiccte ettt sttt 18
2.7 CREDENTIAL INVALIDATION ...coviteuieiterssesssssessssesessssessssssessssssesssessssesesssesnssnens 19
2.8 SECURITY RELATED ERROR STATUScviuivieieetiecieieae s b sesse st sannes 19

LEVEL 1-INTEGRITY OF CAPABILITIES.......coiieeeeeeeiee e 21
3.1 LEVEL1SECURITY WITH AUTHENTICATED CHANNELcceviecveriaeresecrerseesnanee, 21
3.2 LEVEL 1- SECURITY WITHOUT NETWORK SECURITYvuvirireriseressssessssesesnsessanees 23
3.3 ASSUMPTIONSON NETWORK INFRASTRUCTURE FOR END-TO-END SECURITY.......23
34 CLIENT-OBJECT STORE MESSAGE AND FLOWcocviieciicieiiseteisse s, 23
3.5 PERFORMANCE CONSIDERATIONS......cocviuitieiarsecsesssesesssessssssesssessssssesssssesanees 25

PER REQUEST NONCESFOR LEVEL 2AND LEVEL 3. 26

4.1 BACKGROUNDutiiiiiiiiesisiiieesssistee s ssiseee s s sssee e s s ssssee s s snsseeeessssneesssssseesssnsseeessanns 26

4.2 REQUIREMENTSttiiittie sttt e sttt stee st et e st e ssae e s nsse e s sne e ssn e e sseeesnneesnbeeesnneees 27
4.3 STRUCTURE OF THE PER COMMAND NONCE-.......ccciitieiiiieeiieeesreeesseesssseesssnes e 27
4.4 USE OF NONCE FORANTI REPLAY ...coiiiiiiiiie ettt 28
4.5 HOST PROTOCOL e iittiieiieiitie sttt e sttt e e s ssse e e s s nsnne e e s snnneeeesnnns 30
4.6 USEOF TIME...iiiiiiiiiie it s 30
4.7 ADDITIONAL ATTRIBUTESON PARTITION OBJECTvvveiiieeciieeesireeesineeesseeesnseeeens 30
5 LEVEL 2—-INTEGRITY OF ARGUMENTS........ccoiiii, 32
51 PERFORMANCE CONSIDERATIONS.cuttiiiuieeeiuieeessresesssesesssesssssesssssessnssnssnsenssnsens 34
6 LEVEL 3—INTEGRITY OF ARGUMENTSAND DATA ..., 35
6.1 IMPLEMENTATION EFFICIENCYcitiiiiiiiiii ittt 37
7 SECURITY MANGER —OSD PROTOCOLcocciriiiiiiinieieee e 38
7.1 INVALIDATION OF CAPABILITIESFOR A SPECIFIC OBECT .cecvveeeiveecieeessieeesnnee s 38
7.2 CLOCKSAND EXPIRY TIME ..eiiutiiiiiieesiiee sttt 38
8 KEY MANAGEMENT ...t 39
8.1 REQUIREMENTSttiiittie sttt e sttt stee sttt e site e s ssae e s s s sae e ssn e e saseeesnneesneeesnneees 39
8.2 KEY HIERARCHY .ttt ittt sttt e sttt e s st e st e e s sbae e e s asnn e e s s nsnseeessnneeeenanns 39
8.3 KEY EXCHANGE PROTOCOLvvtiiiieesirieesiieessiieessitee s s siee s s snee s s s 41
84 USING THE STANDARD PROTOCOL TO SET KEYS.....ciiiiiieiiiee e cees e s 42
85 DRIVE INITIALIZATION. ¢ccttutttesiteeesiteeesiseeesiseessiseesssseessssesssssessssessssessssessseessnseees 43
8.6 STORING LONG LIVED KEYS...iiiiiiiitiieciie e siee s siee s stee s sree s sssses e s snnessnnessnnes 44
8.7 SECURE COMPUTATION ..tiutteeeieeesseeesseessseessssesssssesssssesssssesssssessnssessnssessnseessnses 44
8.8 PARAMETERIZING CRYPTOGRAPHIC PRIMITIVEScciiieeiiieeeieeeesieeessieeesnseee s 44
9 REFERENCES........i s 46
10 APPENDIX ... s a7
10.1 COMPARISON TO ORIGINAL APPROACH.....cccctiiiiteiesiiieesteeesseessseessssesssssessnseeesns 47

79

80

81
82

83

85

86

87
88
89
90

91

92

93
94

95

96

97
98
99

100

101

102
103
104
105
106

O Revision History

0.1 Revision 1

Authors: Ddit Naor, Michael Factor, Julian Satran (IBM), Don Beaver, Erik Riedd (Seagate),
and David Nagle (Panasas).

0.2 Revision 2

Authors; Ddit Naor and Michad Factor

0.3 Revision 3
Authors Erik Riedd

Changes. Added description of Levels 2 and 3. Added sequence diagrams and detailed
message arguments. Changed “client” to “hogst” throughout for consstency. Use“OSD” instead
of “object store”. Reorganized itemsin the introduction. Added more white space for better
reedability.

0.4 Revision 4

Author: Ddlit Neor.

Changes: Incorporated presentation changes and open issues from comments submitted by May
6 from David Nagle, Erik Riedd, Dalit Naor, Michad Factor.

0.5 Revision 5
Author: Michad Factor

Changes. Incorporate changes to open issues as discussed in the SNIA Symposum in Boston.
Main changes include, added section on protocol between OSD and Security Manager, added
description of error codes, cleaned up presentation of sections 2 and 3

0.6 Revision 6
Author: Michad Factor

Changes. Fixed formatting. Cleanup of Chapter 1 (provided an introduction, deleted objectives
section as being repetitive with requirements, deleted some discussion of levels 4-7 of security,
editorid corrections). Moved key management to Chapter 8 and added Chapter 8. Added a
separate chapter on Nonces (Chapter 4) in place of the section on nonces which wasin the
discussion of leve 2 security.

107

108

109
110
111

112

113

114
115
116
117

0.7 Revision 7

Authors: Michad Factor, Dalit Naor

Minor changes from prior revison: Integrate editoria comments, in particular cleanup usage of
capability and credentiad. Add section 2.5 to describe credentias for creating objects without

specifying an object ID.
0.8 Revision 6

Author: Michad Factor

Additiona minor changes. darify object verson number in credentia (and renamed to object
verson tag), (re)add creetion time to credentid, clarify which keys protect credentias for
commands that are not scoped to a partition. Also remove descriptions of how do we know
the appropriate security leve; thiswill not be addressed in the first version of the stlandard

118

119
120
121
122
123
124
125
126

127
128
129
130
131
132
133

134
135
136
137

138
139
140
141
142
143
144
145
146

147

148
149
150

151
152
153
154

155
156

1 Introduction

Object storage is anew storage paradigm (in particular for network ble storage) in which
the abstraction of an array of blocksis replaced with an abstraction of a collection of objects.

In object Storage, a client accesses data by specifying the identity of an object dong with an
offset in the object, and the implementation of the storage is respongible for mapping the offset
to the actud location on the physical storage. From a security perspective, the main change
between object storage and today's block storage paradigm isthat every command is
accompanied by a cryptographicaly secure capability. Thus, object storage provides the means
of having secure, fine-grained access to storage.

This document presents the requirements, motivation and a description of the object store
security protocol. The gods of this document are multifold. Firg, it isintended to specify the
behavior of the high-leve protocol in sufficient detail to dlow a direct mapping to a standard
specification in aparticular trangport (e.g., in SCS). Itisaso intended to explain the protocol
inaway that it can be shared with security experts, outside of the OSD community, to dlow an
independent review of its correctness. Findly, it isintended as agenera background materid to
explain OSD security.

Onemgor goa for OSD security isto work well both on top of a secure network infrastructure
and in environments where there is no such infrastructure. This requirement has led us to define
multiple of levels of security which reflect the assumptions on the underlying infrastructure and
the protection required.

This document is organized asfollows. This chapter describes the basic security modd, and
the requirements we imposed upon oursalves. The next chapter describes the structure of the
cagpatiilities/credentids and the basic message flow; this structure and flow is common for all
levels of security. Chapter 3 describes the details of the security level which ensures integrity of
the security mechaniam; thislevel isidedly suited for use on top of a secure network
infragtructure, but it aso can be used in environments where there is no concern of network-
type attacks. Chapters 5 and 6 describe two different levels of security intended for use on
insecure networks; they differ in whether or not they securethe data. Chapters 7 and 8
describe security aspects that are not on the main data path.

1.1.1 Basic Security Model

The object store security mode is a credential- based access control system composed of three
active entities: the object store, a security manager, and a client/host. Each entity playsa
different role.

As a credential-based access control system, all requests to the object store must be
accompanied with avalid capability that alows the host to perform the requested operation. A
credential isacryptographicaly secured capability and a capability isa set of rights the holder
has on an object (or set of objects).

The role of the security manager isto generate credentias for authorized hosts at the request of
the host. The protocol between the host and the security manager is not defined as part of the

6

157
158
159

160

161
162
163
164

165
166
167
168
169
170

171
172
173
174

175
176

177
178

179
180
181
182
183

OSD protocol; however, the structure of the credentia returned from the security manager to
the host is defined. In addition, the protocol between the OSD and the security manager is

specified.
Therole of the OSD isto vaidate a capability presented by a host:

1. Therequested operation is permitted by the capability based on a) the type of operation
(e.g., read, write) and b) alogica match of the specified attributes

2. The capability has not been tampered with, i.e., it was generated by the security manager
and was rightfully obtained by the hogt that presentsit (either directly or via delegation).

The object store can vdidate that a host rightfully obtained a capability since a credentia
contains both the capability and a secret part (CAP_Key — see section 2), which the host uses
to Sign its messages to the object store. Without this secret part, which should be transferred on
an encrypted channel from the security manager to the hog, the host cannot generate vaidly
sgned messages. Note this protocol does alow delegation of a credentid if ahost transfers
both the secret part of the credentid aswell as the public capability arguments.

The role of the host isto follow the protocol. While the hogt is not trusted to follow the
protocol, the protocol is structured in such away thet it isin the host’s sdlf-interest to follow the
protocol. In other words, if the host does not follow the protocal, it will not receive service from
the OSD. Thefigure below showsthisbasic flow.

Host ‘

Authorization Req
WO
Credentia
Credential
+ Security
Manager
Object Shared Secret
Store

Figurel. Basic System Structure

We specify seven levels of security, of which only the firgt three are within the scope of the
current proposal:

Levd 1 — Integrity of cgpability
Leved 2 — Integrity of arguments
Levd 3 — Integrity of detain trangt

184
185

186
187
188

189
190

191
192
193
194

195

196
197
198

199
200
201

202
203
204

205

206
207
208
209

210
211
212
213

214

215
216

Leves 2-4 correspond to the security levels defined in the original NASD work [8]. Leve 1is
best suited for the case where the network between the OSD and the host is secured; it can be
used as another layer on top of the network security 9.

With Leved 1, only access security is handled within the OSD specification, and network
security is handled by an externd, network- specific means (e.g., IPSec or FCS).

In order to implement Leve 3 efficiently, the authentication hashes for user data must be carried
by the underlying transports. The structure and interpretation of these hashes will be specified in
this document, but an efficient mapping to a particular network transport layer (e.g., FC or
TCPIIP) is|eft to externa specifications.

1.1.2 Trust Assumptions

Trust assumptions describe how each dement of the system trusts the other dements of the
system. The OSD is atrusted component. This means that once a host authenticatesthet it is
talking to a specific OSD, it trusts the OSD to:

1. provideintegrity for the datawhile stored
2. follow the protocol
3. not be controlled by an adversary

The host can authenticate thet it is talking to the intended OSD, i.e., the one for which the
Security manager has granted it credentias, either viathe use of an externaly provided
authenticated channd or as part of each command using mechanisms defined in this protocol.

The security manager is aso atrusted component. After it is authenticated,? it is trusted to:

safdy dore long-lived keys

compute access controls correctly according to the policy it implements®
follow the protocol

not be controlled by an adversary

> owbdhpE

The trust assumption on the host isthat a user trusts their own operating system to protect them
from mdicious clients on the same machine, e.g., protect its CAP_Key. We do not trust the
host to correctly follow the protocol; however, the host will not recelve service if it does not
follow the protocol.

1.1.3 Security Flow and Channel Requirements

As mentioned above, when a host wishes to access an object (or set of objects), it makes a
request to the security manager for a credentia alowing the intended operation.* In this

! The difficulty isin the ordering of the hashes with respect to the datawhile in transit and during
verification at the device. Thisis discussed further in Section 6.1.

2 Authentication of the Security Manager by the host is out-of-scope of this protocol.

% The definition of this policy is outside of the scope of this proposal.

8

217 reques, the host must specify the OSD and partition (see section 2.3.2) on which it wishesto
218 perform the operation; the identity of the object(s) it wishes to access; and the operation(s) it
219 wishesto perform. The security manager upon receiving this request may need to authenticate
220 the host making the request.” After authenticating the hogt, the security manager appliesits

221 policy to determine whether the client is authorized to perform the requested operation(s) on the
222 indicated object(s). If not, the security manager will fail the request for the credential.

223 Otherwise, the security manager will generate a credentia including the requested capability; this
224 credentid is cryptographically secured by a secret shared between the security manager and the
225 OSD. The credentid isthen sent from the security manager to the host over achannd whichis
226 encrypted and authenticated. Other than specifying the structure of the credentid returned from
227 the security manager to the client, the protocol between the client and security manager is not
228 defined by the OSD protocol.

229 Thehost must present a capability on each operation it executes againgt the OSD. When the
230 OSD recevesthe cagpability, it verifiesthat it has not been modified, using the secret it shares
231 with the security manager.® If the credentia has not been modified (and is properly held by the
232 requesdting client), the OSD will permit the operation based upon the rights encoded in the

233 capability.

234 Whenusng Levd 1 protection, we assume an existing network infrastructure that provides
235 secure channels (e.g., 1Psec) between the OSD and the host. More precisdly, if we are running
236 over asecure channel, we require both parties of the communication to know that they are
237 communicating with the parties that originaly established the channd (an authenticated but

238 anonymous channe). We do not imply a requirement for privecy, i.e., we assumeit is il

239 possiblefor amdicious party to eavesdrop on the channd.

240 Wedso assumethereisachanne for communication between the OSD and the security

241 manager. Looking at the bandwidth and latency requirements of the various channels, the

242 channd between the security manager and the object store has the least stringent requirements.
243 Thischannd isused only for a periodic key exchange’ and other administrative security

244 operations (see chapter 7). We bdlieve that the performance of this channe is not an issue.

245 The channe between the security manager and host has medium network requirements, since it
246 isused for amessage exchange for each unique credentia required by the client. In some

247 configurations this could become a performance issue, Snceit is expected this channd be

248 encrypted.

249 The channd between the host and the OSD has the most stringent bandwidth requirements as
250 every request to the OSD flows on this channd. Because of the heavy traffic on this channd, it
251 isnot reasonable to assume that by default this channd is encrypted.

* The host may request a broader set of rights than what is required for the operation it currently wishes to
perform.

® |t is conceivable that an authentication is not required, e.g., an object with world-wide read permission.
® When caching of credentialsis possible, some verification steps can be omitted.
"The protocol does not specify this period, but we believe tens of minutes or longer would be reasonable.

9

252

253
254
255
256

257
258
259

260
261
262
263
264
265
266

267

268
269
270
271

272
273

274
275

276
277

278
279
280

281
282
283
284
285

1.1.4 Layered Approach to Protocol Definition

We take alayered approach to defining the protocol for object store security. Thisalowsan
implementation to provide only the desired level(s) of (internd) security and to surface the
vaious layersin a consistent manner.? We also want to ensure a consistent message exchange
between the dements of the system, regardiess of what level of security is supported.

An object store implementation defines the levels of security it supports. By enriching the
information included in amessage a higher level of security can be interndly provided, as
opposed to leveraging an externd network security mechanism.

In taking this gpproach, we want to provide flexibility in choosing how to secure the transport,
ather internd or externd, while dlowing an ingdlation to pay only for the leve of security
needed. This should enable a smplified solution in certain glass-house environments (where no
network attacks are expected). It aso should enable leveraging exigting infrastructure for
network security and privacy while avoiding the cost of duplicate mechanisms. At the same
time, we must define a mechanism, which an object store can optiondly implement to provide
network security as part of protocol for use where no secure transport exists.

1.2 Levels of Security

We consider severd different levels of security that an OSD could provide. Inthefirst verson
of the protocol we only directly provide the firg three of these security levels. Privacy can be
provided through externa mechanisms, e.g., running the protocol on an encrypted channd.
The levels are incremental and support dl the protections of the level below them.

The particular level of security to be used for accessing a set of objects will be defined using a
mechanism not specified by the initid version of the standard.

1.2.1 No Security
In the no-security level, the same message structure will be used. However, when an object

doreis running with no security, the host must place zeros in the message related fields and the
object store must not examine these fields.

Thisis not consdered a security level and its support is optiond.
1.2.2 Level 1-Integrity of Capability (Access Control Security)
Access Control Security is the common component to dl the levels.

Integrity of capabilities by itsdlf is most useful when the channel between the object store and
client isexterndly secured. Inthiscasg, e.g., where we have an authenticated 1PSec channel,
we gill need amechanism that prevents a host from forging or otherwise modifying a credentia
and/or replaying a credentid over a different authenticated channdl. In addition, we need to
verify that the host rightfully possesses the credentid it is presenting. Without a secure network,

8 An implementation need not be layered

10

286
287

288
289

290

291
292
293

294
295
296

297
298
299
300

301
302

303
304

305
306
307
308
309
310
311
312
313

314
315

316

317
318
319

using only integrity of capability leaves an ingdlation susceptible to certain network attacks,
e.g., manin-the-middle, replay, etc.

Support for this security level isoptiond. However, its functiondity must be supported in
conjunction with al other security levels.

1.2.3 Level 2—-Integrity of Command and Arguments

Integrity of command and arguments is most useful when the channd between the object store
and the client is not externdlly secured and where providing integrity (hashes) for both
commands and data would be too expensive.

With integrity of arguments, maicious hosts cannot replay command parameters, even when
running on unsecured networks, but they can use network attacks on the data portion of the
messages exchanged between the client and the OSD.

Integrity of arguments prevents a maicious host from accessing a portion of object which was
not accessed by some client with avaid credentiad for the object, or changing aread operation
into awrite, but it does not prevent a maicious host from modifying the data read from or
written to the object.

Support for this security level isoptiond. If supported, it must be supported in conjunction with
the functiondity of integrity of capability.

1.2.4 Level 3-Integrity of Data (Access Control and Internal End-To-End
Security)

We assume that integrity of the data includes integrity of the command, i.e., thereisno point in
protecting the data if the command parameters describing to which object the datum belongsis
not aso protected. Thisleve of security provides security Smilar to integrity of capability when
the channd between the object store and the client is authenticated. The exact comparison
between the two depends on the level of network security that is provided by the externd
security mechanism. The difference isthat thisleved of the security internaly secures the network
asanintegral part of the object store protocol, thereby defining an end-to-end solution at the
storage layer as opposed to building upon pre-existing mechanisms for secure network
channds.

Support for this security level isoptiond. If supported, it must be supported in conjunction with
the functiondity of the two prior levels.

1.2.5 Privacy

Providing privacy, i.e., encryption, to the command and data, either in flight or at rest is beyond
the scope of the current proposal. Thisincludes Levels4 and 5. Note, thereis nothing in this
proposal that precludes building upon externa mechanisms for encryption.

11

320

321
322
323

324

325

326
327

328
329
330
331
332
333
334

335
336
337
338
339

340
341

1.2.6 Summary of Security Levels

All of the security levels are summarized in the table below. The table shows each leve onits
own as well as each layer when combined with a network security mechanism (such as |PSec)

providing integrity and (Sseparately) encryption aswdl asintegrity.

w/o asecure network | w/ asecure network

(integrity)
None No Security No security Network-level
integrity
Level 1 | Access Security End-to-end verification + Protection from
of credentials network attacks
Level 2 | + Command Integrity Protection from + Protection from
mistakes network attacks
(some duplicated
work)
Level 3 | + Datalntegrity End-to-end verification Duplicated work

of requests

1.3 Requirements Summary

We have defined a set of requirements for the OSD security model; these requirements attempt
to address arange of target platforms for implementing OSD.

On the one hand we bdieve it isimportant to enable efficient implementations of the object
gtorage interface in storage controllers; such storage controllers are relatively resource rich, and
it is reasonable to envison them containing support for sandard network security, e.g.,
hardware support for 1PSec. We wish to be able to use an existing network security
infrastructure (when practicd) to take advantage of the development and design effort, as well
as the adminidtrative and support tools developed for such an infrastructure, i.e., we do not
want to (needlesdy) reinvent the whed!.

On the other hand there is arequirement to enable efficient implementation in low-end storage
devices. These devices are resource poor and the developers of these devices do not want to
add additiond hardware without a clear judtification. These devices will not dways support
standard network security and in such environments it is necessary to provide end-to-end
Security againgt attacks without depending on an externa mechanism to secure the network.

We have defined the following set of requirements that must be met by the OSD security modd!.
We digtinguish in defining these requirements between access control security (security which is

12

342 directly tied to the semantics of object storage) and network security (security which isrelated
343 primarily to network protocols and could be handled separately from the semantics of OSD).
344 Therequirements we define are:

345 - Mug prevent againg attacks on individud objects. Such attacks include both intentiona and
346 inadvertent access to an object in away not authorized by the security manager. In

347 particular, we must address madicious hogts forging or modifying a credentid, ahost stedling
348 acredentia from the channel between the object store and dlient,’ etc.

349 - Mug enable protection againgt attacks on the network such as manrinthe-middle (e.g., a
350 computer posing as an object store), replay, etc.

351 - Mug provide a sand-aone solution that works in the event there is no existing network
352 security infrastructure or for whatever reasons the implementer desires not to use an

353 externally secured network.

354 - Mud provide a solution that can use an existing standard network security infrastructure.
355 - Mug not duplicate the cost of security, where it can be avoided. e.g., if the host isrunning
356 over a secure network with Leve 1, it should not incur a higher overhead than a host

357 running over a non-secure network with Level 3.

358 - Mud dlow low cost implementation of the critica path.

359 - Mugt besmple In particular, we should use the same structures and same message flow
360 across dl the protocol levels.

361 - Should dlow efficient implementation on exigting network trangports.

362 1.4 Limitations in the Proposed Version of Object Store
363 Protocol

364 Theverson of the protocol defined in the following sections of this document isafirst step
365 towards OSD security. Assuch, it hasthe following limitations:

366 - Itdoesnotinterndly support privacy on the channd between the object store and the client
367 - Itdoesnot support privacy for the data at rest

368 - It requiresacommunication channel between the object store and the security manager.
369 This channd must be capable of carrying authenticated and encrypted messages.

370 - Ability to define capabilities that apply to multiple objects where the object to which a

371 capability appliesis defined by a predicate on the object's attributes. Note thisis not the
372 same as commands which apply to multiple objects.

373 - Ability to define acgpability which appliesto only a portion of an object or to only certain
374 object attributes.

375 - Itdoesnot provide ameans of determining from the object store what security level should
376 be used.

® As stated above, the assumption is that the channel between the host and the OSD is not encrypted, and
thusit is possible for amalicious host to eavesdrop on this channel.

13

377

378

379
380
381
382
383
384
385
386
387
388
389
390

391

392
393
394
395
396
397

398

399
400
401
402
403
404

405

406
407
408
409

410

411
412

2 Structure of Credentials and Basic Message Flow

2.1 Introduction

To enforce legitimate use of capabilities, the client receives from the security manager (over a
secure channel) both the capability (CAP_Args) and some associated secret information, a
capability key (CAP_Key). Together the capability and capability key are the credentid. The
client sends a capahiility to the object store as part of each request. The client uses the capability
key to compute a validation tag, which it appends to each request. The structure of this
vaidation tag depends upon whether an existing network security infrastructure is being used, or
whether the network security is provided interndly by the protocol. Among other semantics
depending upon the security level, the validation tag ensures the capability has not been
modified. Using the protocol appropriate for the security level, the object store validates the
validation tag and checks whether the operation requested by the command isindeed
permissible. Note that the object store does not need to authenticate the client or to have a
notion of "client identity".

2.2 Cryptographic Building Blocks

The cryptographic primitive that is used throughout this protocol is a keyed message
authentication code. The protocol uses an HMAC-SHA1 [9][10] whose output is 160 bits
long. When gpplicable, the fina output of 160 bitsis truncated into 96 bits. The HMAC-SHA1
key is 160 bits long. The means by which the HMAC-SHA1 key is generated is not specified
by the protocol. Later versions of this protocol may alow an object store to specify dternate
cryptographic primitives (see section 8.8).

2.3 Key Management Overview

The credential is based on a secret key that is shared between the object store and the security
manager. For each object store 5, K s« key j 1S 8N authentication key shared between 5 and the
security manager. For clarity, when concentrating on a specific object store we omit the index |
where no ambiguity arises. In particular, K eue ke 1S @ 160-bitslong SHAL key. More
accurately, thereis ahierarchy of keys shared between the object store and the security
manager.

This protocol exchanges a secret key between the object store and the security manager:

1. The security manager sends a secret key to the object store along with the key’ s version
number.

2. Theobject store updatesiits key, removes any cached credentids established with the
previous key, and acknowledges receipt of key.

In chapter 8, we elaborate on the hierarchy of keys and the protocol for exchanging keys.

In alater verdgon of the protocol we may define amechanism for piggybacking the exchanges of
keys over the client-object store channel without requiring a separate channel for the

14

413
414
415

416

417
418
419
420
421
422
423
424

425
426
427

428

429
430
431

432
433
434
435
436
437
438
439
440
441
442
443

445

446
447

448
449
450

communication between the object store and security manager. As we describe below, since a
channel between the object store and security manager is needed for other reasons, we take
advantage of this channel for the key exchange.

2.3.1 Maintaining two valid keys K secret key Simultaneously

A key refresh event between the object store and the security manager invalidates dl credentias
a once. Thisresultsin heavy communication traffic between dl clients and the security

manager; moreover, al new credentials must be explicitly vaidated (viaMAC cdculation)
before being cached. This phenomenon may cause undesired performance degradation after the
key refresh. To mediate this effect, we alow an object store to declare the last two (or more
generally n) refreshed versons of K« key 8 VAid, instead of just the latest one. As aresult,
the process of vaidating a credentia requiresakey version fied in the credentid to enable the
object store to know which key to use in vaidating the credentid.

The number of key versons used is configured between the OSD and the security manager.
The OSD implementation can specify the maximum number of key versons it supports, oneisa
legd value. The maximum number of key versons supported by the protocol is 16.

2.3.2 Partitions

An object store is divided into multiple partitions, each of which carries its own keys for security
purposes. Instead of having a separate secret key for each object store 5, thereis adistinct
secret key for each two-tuple of object store 5 and partition py.

All commands other than key exchange commands (see chapter 8) come with credentiads which
are protected by the key associated with a specific partition. For most commands, e.g., those
that operate on a specific object, the partition used is the partition containing the object being
operated upon. For those commands which operate at the level of an entire object store, e.g.,
the commands for formatting the object store or creating/removing partitions, we use the keys
associated with partition zero. Since the commands that operate at the leve of the object store
and not at theleve of individua objects are by their nature very powerful, we want to limit the
use of the keys associated with credential's used to execute these commands. We thus define
that partition zero should not contain user objects; in addition, to solve the problem of
bootstrapping, an object sore must aways contain a partition zero (e.g., to dlow formaiting the
object store). We note that aredization of the object store standard can define an identity
between the root object and partition zero.

2.4 Capability Argument and Capability Key
Define:

Type of the credentid (4 bits), which must currently al, be zero. Thisisintended to dlow
future extenson to different types of credentids.

MAC Function isafour bit fied indicating the cryptographic primitive used to congtruct the
credentid. Intheinitid verson of the protocol, the value of thisfiedld must be zero and the
HMAC SHA-1 must be used (see section 2.2)

15

451
452
453

454
455
456
457
458
459
460
461

462

463
464
465
466
467
468
469

470
471

472
473

474
475

476
477

478
479
480

481
482

483
484
485
486
487

Partion ID isthe identity of the partition for which this capability isbeing generated. Note
we do not include the object store ID in the capability under the assumption thet it is passed
on al commands as part of the addressing.

Capability Nonce to be an I-bits nonce (1=128) chosen uniquely by the security manager
for each credentid. The nonce may be a counter. We do not specify the means of
generating this nonce, leaving the mechanism up to the implementer of the security manager.
The role of thisnonceistwofold: 1) to ensure that every credentia generated by the security
manager is unique; this prevents a host from masguerading as an OSD to another hogt,
which would be possbleif both hogts received the same exact credentials and 2) to serve
as an audit fidd for alowing management applications to track the client which received a
cgpability.

This nonce has the following Structure

Audit tag isa 32 bit vaue which the security manager usesin an implementation
defined way to associate a credentia with the client to which it granted the
credentid. The correctness of the system will not be dependent upon the vaue the
Security maneger placesin thisaudit tag. However, the overdl performance and
usability of the system can be improved if thisfidd isused asaaudit tag. Thisfidd
can be used for purposes of auditing and report generation. It can aso be used by
an object store to better manage noncesin level 2 and leve 3 of the protocal.

Random bitsa 96 bit vaue which must be unique across al credentids with the
same audit tag and values for the other fidds.

Rights string specifies the rights and object(s) to which they apply. At this point we
propose the following structure for the rights string:*

Type — the implementation of the rights string; thisisfour bits with the following
vaues

0 — a specific object and set of operationsis specified
1-15 —reserved

Operations — a bitmap with one bit per OSD command; this bitmap should contain
additiona reserved bits for potentia extension, without requiring achange in the size
of credentials.

If the type == 0, then the following additiond field is defined
Object —theloca ID of the object to which this command applies™

Object Version Tag — a k-hits vdue (k=32) that is maintained as an attribute for each
object. It is used to invaidate credentids, which have been issued earlier for the same
object. If the security manager wishesto invdidate al credentids it had previoudy
generated for an object, it modifies the vaue of the attribute associated with the object (see
section 7.1); the new vaue should never have been previoudy used in acredentid for this

! The size of therights string is the sum of the sizes of its component fields with any necessary padding.
" The space required to encode the local 1D will be used for pattern matching on attributes for future types
of credentialsto be defined.

16

ENDL Texas

ENDL Texas

488
489

490
491
492
493
494

495
496
497

498
499
500
501
502
503

504
505

506
507
508

509
510
511
512
513
514

515
516
517
518
519
520

521
522

object ID. To alow resumed access to the object, the security manager should use this
new vaue in future credentidsiit generates for this object .

Creation Time — the time the object was created provided as an attribute by the object
store. If object IDs are reused, then two creates for an object in a given partition which use
the same ID mugt have different vaues for the createtime. Note, it is clearly acceptable for
this vaue to be unique for every object created in an object store. The sSize and resolution
of thisvaue will be as defined for the creetion time attribute of objects.

Key_version —afour bit index indicating the key verson of K o« key, The key versonis st
a every key refresh between the object store and the security manager. See also section
2.3.1 and chapter 8.

Expiry Time — a48 hit field giving the time the credentia expires in milliseconds Snce
January 1, 1970. The security manager should generate thistime. By using an expiry time
we alow the security manager to give different lifetimesto different credentids. We assume
aweskly synchronized clock between the security manager and the object store. No
assumptions are made on the client’s clocks. The OSD should not accept a capability with
an expiry time in the past.

The credentid C that the security manager issues for a client is comprised of two components, a
“public token” CAP_Args and a“secret extrainformation” CAP_Key.

CAP_Args © [rights string, Key_version, Nonce, Object Version Tag, creation time,
expiry time, partition 1D, object store ID]
CAP_Key°® MAC_K e key (CAP_Args)

CAP_Key is the 160-hits long output of the HMAC-SHA 1 computation on CAP_Argsaong
with the implicit parameters of the object store ID and partition ID. Note that CAP_Key cannot
be truncated (to 96 hits) asit is used later in the protocol as akey to another MAC
computation. It isthe host's responsibility to keep CAP_Key secret; if CAP_Key is
compromised, than it is possible for an adversary to issue requests using the capability if it
determines CAP_Args, which are passed on the wire between the OSD and host in the clear.

We note that not dl of the fieldsin the CAP_Args need to be passed explicitly on thewire. In
particular, since the object store knows the creation time and desired version tag for each
object, it is not necessary to passthese values. Instead, given the object ID, the object store
can determine which object verson tag and creation time to use in caculating the CAP_Key. If
the host had a credentid created using different vaues for these fidlds, aMAC cdculation
would fail and the command would be rejected.

Inadgmilar van, the partition ID and object store ID do not need to be passed as part of the
cgpability for each command. Thisis because these fields are part of addressability and will

17

ENDL Texas

523
524

525
526
527

528
529
530
531
532
533

534
535
536
537
538
539
540
541
542

543

545

546

547
548
549
550
551
552
553

554

555
556
557
558
559
560
561

need to be passed as part of the basic command (even if running with no security). In other
words, there is no need to pass partition 1D and object store ID twice.

The precise treetment of the object version tag, creation time, partition ID and object store ID
will be defined by each redlization of a concrete object store standard, however, we
recommend that they not be passed as part of a capability on each command.

Since the credentid includes information which is stored as attributes for the objects (namely the
cregtion time and version tag), we may have a problem of bootstrapping, in particularly if the
Security manager does not have thisinformation in its memory. How does the security manager
generate a credentid to read these attributes if it does not know these attributes? In addition, in
certain usage scenarios, e.g., al object IDs assgned by an externd catd oging entity, the use of
the creetion time may require additional message exchanges and provide no benefit.

To addressthis, if acredentid generated by the security manager uses zero for the version
tag/creetion time, then when calculating the CAP_Args the object store should not take into
account the actual value of the respective attribute associated with the object but rather will use
zero (of the gppropriate number of bits). When used with the version tag, this essentidly

crestes a credentia which cannot be invaidated (other than by akey exchange which invalidates
al credentidsfor the partition generated with the same working key). Notethat if aredization
of thiswork as a concrete standard does not pass the complete values of version tag or creation
time with each command (see above), it must pass an indication of whether or not these fidlds
should be treated as zero.

To delegate acredentid C to another host, ahost must transfer both the CAP_Args and
CAP_Key. While beyond the scope of this protocol, to ensure security, such delegation should
be done over an encrypted channdl.

2.5 Anonymous Object Creation

To support creating an object where the OSD provides the object 1D, the security manager
should generate a capability in which the object ID embedded in the rights string is zero and the
only right specified in the operations bitmap is object cregtion. The OSD mugt not dlow such a
capability to be used more thanonce. To minimize the memory requirements the OSD must
dedicate to ensuring that such capabilities are used & most once, it is strongly recommended
that the security manager construct such capabilities with expiry times very close to the current
time.

2.6 Message Flow

Prior to sending an object store command to a target, the client must request the credentid from
the security manager and in return the security manager sends back both the public part of the
credentid, CAP_Args, aswell as the private part, CAP_Key. CAP_Key should be sent to the
client over an authenticated and encrypted, channd to maintain its secrecy. To etablish this
channel (and aso to let the security manager identify the client), the client and the security
manager should authenticate each other in a preliminary step. The implementation of this channd
and its protocol are not part of the object store protocol.

18

ENDL Texas

ENDL Texas

562

563
564
565
566

567
568
569
570

571
572
573
574
575

576

S77
578
579
580
581
582
583

584

585
586

587
588

589

590
591
592
593
594

595
596

597
598

When the client executes the actua object store command, the object store should validate:

1. Theintegrity of the public credentid CAP_Args

2. That the public credentid CAP_Argsis used by adient that legitimately received it.

3. Theintegrity of the command itsalf (command and data), as required by the security
level.

For that, the client sends, aong with the command, the public credentid CAP_Args dong with
aMAC-based vdidation tag, which is computed usng CAP_Key. Since CAP_Key can be
computed from CAP_Args and the secret shared between the security manager and the object
gtore, the validation tag is also computable by the object store.

The gtructure of the vadidation tag and its usage depends on the security level being used.
Section 3 describes the vaidation tag if we assume an externd mechanism for the integrity of
data and command, namely an authenticated channd such as an 1PSec authenticated channd. In
Sections 5and 6 no such externa mechanism is assumed and therefore the vaidation tag as well
asitsvaidation at the object store is more eaborate.

2.7 Credential Invalidation

As described above, the object store protocol provides two means for invaidating a credential.
By the use of object verson tag in each credentid, we can invdidate dl of the outstanding
credentids for an object. By akey exchange between the security manager and the object
store we can invalidate dl credentia's a security manager had generated for a particular object
store partition. Note, by explicit decison, we have decided not to support an efficient means of
externdly invaidating al of the credentids given to a particular host by the security manager (but
See section 4.4).

2.8 Security Related Error Status

The following error responses related to security can be returned by the OSD to the host.
Some of these responses are limited to specific security levels as indicated:

NOT_SUPPORTED_CREDENTIAL_TYPE — the type of the credentia is not supported
by the object store.

CAPABILITY_MISMATCH — the requested operation is not alowed by the rights string

INVALID MAC — the message authentication code (MAC) included in the request is not
consstent with the credentid included in the message; in other words, the CAP_Key
calculated based upon the credentia cannot be used to compute the same MAC as the one
included in the message. In the event that the MAC isinvaid ether this error or
INVALID_KEY must be returned (regardless of other errors detected).

INVALID VERSON - the request includes a credentia with a object verson tag which is
no longer being accepted

INVALID_KEY —the key asindicated by key versonin the credentid is no longer valid;
the host mugt retrieve anew credentia from the security manager prior to retrying the

19

ENDL Texas

599
600
601

602

603
604

605
606

607
608
609

610
611

612
613

614
615

operaion. An OSD implementation does not need to be able to distinguish this situation
from the Stuation reported by INVALID _MAC; in which case it should report
INVALID_MAC.

EXPIRED _CREDENTIAL — based upon the expiry time, the credentia has expired.

INVALID_NONCE - the nonce does not contain avaid timestamp; a recommended time
stamp will be returned with this code. This may only be returned for level 2 or levd 3.

NONCE_NOT_UNIQUE — amessage with this per request nonce has previoudy been
seen by this object store. Thismay only be returned for level 2 or leve 3.

CAPABILITY_BLOCKED — The capahility was blocked, e.g., based on the capability
audit tag. Note that the reason for the “blockade’ is not given. This may only be returned
for level 2 or levd 3.

In addition to these error responses which are specific to security, the following additiond
errors, which we are not specificaly related to security, can be returned:

INSUFFICIENT_RESOURCES - atemporary condition exists which does not alow
processing this request due to alack of resources

INVALID_MESSAGE_STRUCTURE - the gtructure of the messageis not syntacticaly
vaid.

20

616

617
618
619
620

621

622
623
624
625
626
627
628
629

630
631
632

633
634
635
636
637

638
639
640

641
642

643

645
646
647
648

3 Level 1 — Integrity of Capabilities

This security leve is useful in two scenarios: 1) where no network attacks are expected to take
place (such asa‘glass house’ scenario) and 2) where an authenticated channel between the
hogt and the OSD is assumed. The mechanism for establishing this channel is beyond the scope
of the OSD protocol.

3.1 Level 1 Security with Authenticated Channel

For Leve 1 security with an authenticated channd, the channd provides integrity of messages as
well as an anti-replay mechaniam (for the given channel). The OSD-specific protocol prevents
copying messages from one channd to another by tying the message to the channd viaa
validation tag; this tag is computed as MACcap 1o(Channell D), where Channell D identifies
the communication channel. Given that the OSD knows the channel on which arequest was
received, the OSD can validate that the MACcap «e(ChannelID) included in amessage is for
the ChannelID associated with the channel on which the message wasreceived. The same
vaidation tag can be used with dl requests based upon a given credentid.

We do not need this vaidation tag on OSD responses since 1) the authenticated channel
ensures the host any responses it receives are received from the intended OSD and 2) we trust
the OSDs to not copy messages between channels (see section 1.1.2).

The ChannelID is anamefor the channe that is unique to this channd between the client and
the object store and is known to both ends. The sze of the ChannelID is transport dependent.
The lifetime of the ChannelID is no greater then the lifetime of the channd;** the lifetime of the
Channel1D isindependent of the lifetime of the key K swe key. See Section 3.3 for amore
precise definition of the assumptions on the channd and ChannelID.

Most likely, avaue that can be used as a ChannelID aready exists and was created at the time
the channel was established. Otherwisg, it requires another message exchange between the
client and target, where:

1. Client requests ‘open security window' with the object store.
2. Object store responds with arandomly chosen m-bit channgl name ChannelID.*

At this point we do not architect such aflow to explicitly have the object store provide the
ChannelID but rather we assume the channel provides the Channdl ID.

Bdow isthe protocal flow of messages dong with atable that explains the messages and their
corresponding arguments. Note that the OpenWindow messageis not needed for every
RegCap message. Furthermore, it may not be needed at al if a ChannellD isdready
exchanged.

“ Note it would be permissible to change the Channel I D for an existing channel; this would invalidate
cached credentials.
> Analogously, a‘ close security window’ clears knowledge of the session at the object store.

21

Sec Mgr | | Hgst I ObS

Req. Cap: Obj ID, GbSID | .. emaemrmen 2 SPOT IS¢
"""
Read: Command, Cap Args,
Response: Cap ; Channel 1D, MAGup iy (0, Channel I Q3
Key -
Response: ; g
§ b key(0, Channel I D)
—Read: ... MACyp (0, Channel D)
Req. Cap
Response Read
Response
649
650
651 Figure2. Flow of Messagesfor Level 1 Security. The establishment of the authenticated channel
652 isnot shown. The OpenWindow exchange will not berequired for most channels.
653
M essage Argument Explanation
RegCap OhjID Object identifier
Partition ID Partition ID
ObSID Object Store identifier
RegReturn Version)
Rights SAP-Args
Expiration | >
PatitionID =
Creation
Capability Nonce
CAP Key MA Ceoret key (CAP_Arguments)
OpenWindow
WindowReturn ChannelID
ReadData OhjID
Partition ID Partition ID
ObSID Object Store identifier
CAP-Args

22

654

655

656
657
658
659
660
661
662
663

664
665

666
667

668
669

670
671

672
673

674
675

676
677

678

679
680
681

Offset

Length

Nonce Ignored (all zeros)

RegMac MA Ccap ke, (ChannelI D)
ReadReturn Status

RetMac™® MA Ccap key (Channel D)

3.2 Level 1-security without network security

As noted above, thisleved of security isadso useful when no network attacks are expected to
take place. In the event no secure network infrastructure is used, level 1 security protects the
integrity of the capability. The protocol isidentical to the one described above. However, since
the ChannelID isnot in practice tied to a channd and there is no true means for tying a message
to the channd. An OSD implementation cannot, however, ignore the vaue of the vaidation tag
if level 1isbeing used without a secure network infrasiructure sSnce the vaidation tag is dso
used to validate the capability has not been modified. Inthis case, zero should be used asthe
vaue of the ChannelID.

3.3 Assumptions on Network Infrastructure for End-to-End
Security

We place the following requirements on the channel and ChannelID if we want to ensure and
end-to-end security solution using level 1 of OSD security:

Within the lifetime of akey, K s« ke, 8l channes established with a given object store from
any host must receive unique channd IDs.

There must be a means for the host and OSD to associate a received message with the
ChannelID for the channel on which the message was received.

Assuming that the channd provides the vaue of the ChannelID, this vaue must be non
forgesble.

The channd mugt be authenticated (although it may be anonymous) in the sense that it must
ensure both parties can be guaranteed all messages in a sesson come from the same party.

The channd must ensure message integrity, i.e., norn-modification of message contents by the
network.

3.4 Client-Object Store Message and Flow

1. Client sends acommand to the object store, along with the public token CAP_Args
(defined above) and a 96-bitslong vdidation tag V = MACcap ke (ChannelID). Vis
computed usng HMAC-SHA1 on the Channel 1D, truncated to 96 bits.

18 As discussed above, this MAC is not necessary —isit only used for symmetry with level 2 and level 3
security

23

682

683
684
685
686
687
688
689
690

691
692

693
694
695
696
697
698

699
700

2. Veification a object Sore:

1. Thevdidationtag V equals MACcap e (Channell D), where CAP_Key is obtained

aSMAC k_secret ey (CAP_Args).

Therights gring in the CAP_Args alows the requested operation

Thekey versioniscurrent.

4. The capability’s Version Tag is ether zero or equd to the version tag attribute of the
object. *’

5. The capability's Creation Time is either zero or equa to the crestion time attribute of
the object.

wnN

If any of the checksfails, the request is denied. If checks (a) and (c) pass, the object
store may cache the token CAP-Args associated with channe ChannelID.

An object gore implementation may cache the validation caculations. In paticular, if
CAP_Args has ever been presented to the object store on this channe within the lifetime of
current Channel 1D, the request may be granted without re-vdidation (i.e., without redoing
step 1). The authenticated channd assures that another client is not replaying CAP_Argson
this channd, rather it is currently presented by the same entity that presented it in the past, and
hence are-validation is not necessary.

Secret Key

®

Client/FM communication
over security channel

OSD returns:
1. CAP arguments

- 2. CAP-key
File Manager & OSD

share a secret key CAP arguments = {rights string, version, nonce, expiry ti Client

CAP-key = MACecrerkey (CAP argumen

@ Client sends

1. Command

2. CAP Arguments
PSD verifies request 3. ReqMAC = MAC
1. X = MACsecretkey (CAP arguments)
2.Y =MAC,(ChannellD)
3.Y =? ReqMAC

capkey(ChanneliD))

Secret Key

Figure3. Flow for Level 1 Security

Y This check can be implicit in checking the validation tag as the object version tag is part of the CAP_Args
and if the version tag isincorrect, the object store will not be using the same CAP_Key asthe host. This
comment applies aswell to the creation time. It also appliesto the other security levels. It isnot repeated.

24

7010 3.5 Performance Considerations

702 Forlevd 1 security, we have the following performance consderations:

703 - A client does not need to request a new credentia on every command; rather the client can
704 reuse the CAP_Args and CAP_Key on multiple commands for the same object(s).

705 - Theclient does not need to recdculate the RegMAC on each command; rather, this needs
706 to be calculated only once per credentid.

707 - The object store does not need to recalculate X and Y on each exchange with a client.
708 Rather since we assume a secure channdl, these va ues need to only be calculated the first
709 time object store sees a given capability.

25

710

711
712
713

714
715

716
717

718

719
720
721

722
723
124
725
726
727
728

729
730
731

732

733
734
735
736
737
738
739
740
741
742
743

744
745

4 Per Request Nonces for Level 2 and Level 3

Leve 2 and Leve 3 of the security protocol use Nonces included in each request to prevent
replay. The requirements for correctness of a nonce-based approach to preventing replay are
asfollows

The object store must not accept the same nonce more than once.

The object store must not accept a nonce that was rejected in the past.’®

In addition, it is acceptable for an implementation to regject valid requests with unseen nonces if
necessary to ensure that the two basic requirements are met.

There are three main means of generating nonces:

Random
Session based
Time based

Webdieveitisfarly easy to argue that the time-based protocol has better performance and
gpace requirements than either a session-based or random generation protocol if al entitiesin
the system are well-behaved. On the other hand, the time-based protocol can have extremely
large memory requirements or require frequent changes of the secret keys if enough clientsin the
system are not well-behaved. In addition, assumptions on strong clock synchronization
between the clients and object store are problematic both from a practica and security

perspective.

The approach to nonces we define is a time-based approach modified to have only weak
dependencies upon client clocks and augments to minimize the impact of poorly behaved
entities.

4.1 Background

We define a system running level 2 or level 3 security as well-behaved if & any giventimet, the
tota number of far-in-the-future messages (messages with anonce whose time is grester than
t + d) which have been sent to an object store from dl clients, islessthan k, for
implementation-defined valuesd and k. In other words, a system iswell-behaved if the number
of far-in-the-future messages, which an object store hasreceived, isbounded. Smilaly a
client running level 2 or level 3 security is defined as well-behaved if it does not send any
nonces for atime greater than t + d wheret isthe current time of the target object store. An
ill-behaved client and ill-behaved system have the obvious definitions. Mdiciousintent is not
required for aclient to beill-behaved. Also notethat if thereis mdicious intent, the
maiciousnessis not necessarily directly from theill-behaved client; for insgtance, amalicious
time-server can causes clients to be ill-behaved.

In the worst case, with the time-based nonces, an object store implementation must ensure that
it has sufficient memory™ to remember the nonce from each message it could receive in the

8 This holds regardless of the reason the message was rejected

26

746
747
748
749
750
751
752
753
754
755

756
757
758
759
760
761
762

763

764
765

766
767

768
769
770
771

772
773
774

775

776
e
778

period between working key exchanges. Thisisto prevent messages from being replayed: the
implementation must aso ensure that any message which has ever been rgected will never
become vdid in the future. In other words, given an object sore which can handle n messages a
second and a key exchange every e seconds, the object store needs to be able to remember ne
nonces® This, admittedly unlikely worst case, would occur if every message received was for
the end of the period in which the key wasvaid. Note an dternative would beto dlocate a
fixed amount of memory, much lessthan for ne nonces and if this memory fills up, for the object
goreto force akey exchange. Thisleaves open adenid of service (DOS) attack in which dl
exiding capahilities areinvaidated. The god of our modifications to a pure-time-based nonce
protocal isto reduce the easy of this DOS attack

One way to mitigate the amount of memory required to handle ill-behaved systems? isto design
the messages in such away that the object store would be able to reduce its memory
requirements by organizing the noncesinto groups. If the far-in-the-future messages are limited
to a subset of the groups of nonces, the implementation can decide to reect nonces belonging to
the problematic groups, while continuing to accept other nonces. Clearly, the efficiency of such
an gpproach depends on the accuracy of the grouping. We leverage the audit tag field of the
nonce® inthe CAP_Args for this purpose; see section 2.4.

4.2 Requirements

In addition to the generd requirements listed above, we place the following requirements on the
protocol:

The changesto alow better behavior in ill-behaved systems should incur no additiond cost
in the case of awdl-behaved system.

An implementation that chooses so must be able to bound the amount of memory required
for correct behavior independent of the frequency in which the key is exchanged between
the object store and security manager (i.e., safety with bounded memory), while sill ensuring
liveness for well-behaved dientsin many scenarios where there are ill-behaved clients.

We must dlow freedom to the object store implementer to trade-off between
implementation complexity and overdl system behavior in the event that dients are not well-
behaved.

4.3 Structure of the Per Command Nonce

When working with the time-based nonces, on each request, the host generates a nonce by
combining a48-hit time representing the number of milliseconds since January 1, 1970. The
nonce aso includes a 48- bit random number.

9 Clearly various compression techniques could be used; for example see [11].

® This s the number of nonces that must be remembered; the memory that is required isimplementation
dependent and may need to take into account compression techniques.

2 Although there are still scenariosin which correct behavior entails either remembering all nonces or
forcing akey exchange.

% Not to be confused with the per command nonce described in this section

27

779

780
781
782
783
784
785
786
787

788
789
790
791
792
793

794
795
796
797
798
799
800
801

802
803
804
805
806
807

808
809
810
811
812

4.4 Use of Nonce for Anti Replay

Definethe current interval for an object store whose clock currently is at timet as the period
of time beginning with t-d, and ending with t+ d,, where d; and d, are vaues determined by the
object store implementation. The current interva defines the time-based nonces the object
Store expects to receive from well-behaved clients. The object store can accept any valid
request received in thistimerange. To prevent replay, the object sore must have sufficient
resources to remember al nonces seen in thisrange. Messages received with nonces less than
t-d; do not need to be remembered.® Define as far-in-the-future a nonce for atime greater
than t+d,. By definition, such nonceswill only be sent by ill-behaved dients.

When the object store receives arequest in level 2 or level 3 with anoncein the current interva,
the object store must remember the nonce in acurrent interval nonce list.** Whilethe only
requirement from the protocol is that anti-replay be provided, the space allocated to the current
interva nonce list should be sufficient® to hold the number of nonces that can be received by the
object store during the time of the current intervd, i.e., afunction of the size of anonce (12
bytes) times the number of messages the object store can receiveintimed; + d,.

Note, the object store must remember the nonce even if the message fails verification of the
MAC. Thisisrequired to prevent the following, replay-like attack. Assume an adversary
hijacks a request to the object store, modifies the command portion of the request and forwards
the request to the object store. The object storewill send an INVALID_MAC error response
to the client. The client may then decide to regenerate the request with a new nonce and MAC.
Assuming this request is executed, the adversary can now replay the origind request. We
should point out that a client should be suspicious of an INVALID_MAC response which does
not itself contain avaid MAC.

If the noncein arequest isfor atimethat is older than the current interval, the object store
rejects the request without further processng with an INVALID _NONCE error message. The
INVALID_NONCE response includes the current time of the object store, allowing the cliert to
try again with anonce that will fal in the current interval. The object store does not need to
remember the nonce. A well-behaved client will (logicaly) reset its clock to be that of the
object store for future messages it sends.

Findly, if the nonce in arequest is afar-in-the-future nonce, the object store must remember
the nonce in the far-in-the-future nonce list.*® The object store implementation may reject the
command with an INVALID _NONCE satus or it may decide to process the request as
described for messages received with anonce in the current interval, aslong as the nonce
uniqueness is guaranteed.?” 1f an INVALID_NONCE response is returned, as above, it will

23 Note we assume that if the clock of an object store is set backwards, akey exchange with the security
manager will also take place.

Note, the reference to a current internal nonce list is for explanatory purposes only; an implementation
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met.
% After any compression techniques

% Note, the reference to a far-in-the-future nonce list is for explanatory purposes only; an implementation
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met.
7 But this does not enable the client to be informed that it should update its clock

28

813
814

815
816
817
818
819
820

821
822

823
824
825
826

827
828
829
830
831
832
833

834
835
836
837

838
839
840
841
842
843

845
846
847

include the current time of the object store and awell-behaved dient will logicaly reset its clock
to be that of the object store.

We define the size of the far-in-the-future nonce list to be large enough to hold some number,
k, of nonces?® where k isimplementation dependent, not specified by the protocol, and may
vary a different timesfor agiven implementation. Clearly, a nonce can be removed from the
far-in-the-future nonce list when the nonce represents atime prior to the start of the current
interval. If an implementation ensures the basic requirements, a nonce can be removed from the
far-in-the-future nonce list & other times.

To verify that a nonce has not previoudy been seen, the object store must look in both the
current and far-in-the-future nonce lists

If the object store receives more than k far in the future nonces, i.e., the object store has run out
of resources to remember far-in-the-future nonce, the object store implementation has severa
options, aslong as it guarantees the basic requirements of not accepting the same nonce more
than once and not accepting a nonce that was previoudy rejected.

One option, the "big hammer" option, isfor the object Sore to refuse to accept any more
messages using the same working key which was used for the cgpabilitiesin the messages with
the far in the future nonces. In this case, the object store may return an indication of
INVALID_KEY when it receives requests with thisworking key. It isimplementation
dependent as to how the security manager is notified that the working key needs updating.
Optionsinclude (but are neither limited to, nor required to include) having the security manager
poll the object store and having the client pass on an indication to the security manager.

The drawback of the "big hammer” option isthat it invaidates al capabilities whose
corresponding credentia was created with the given working key. In other words, dl clients
which have capabilities for the given object store partition created with the same verson of the
working key are impacted.

To mitigate the likelihood an implementation needs to resort to the big hammer, the
implementation can organize the far-in-the-future nonce list based upon the architected audit tag
that the security manager placesin the credential.* One option an implementation can choose is
to partition this nonce list based upon the audit tag. For instance, if the object store receives
more than ¢ far-in-the-future nonces with a given audit tag created by the same working key,
the object store can refuse to receive additiona requests with the given audit tag until the oldest
request in the far-in-the-future nonce lig for this audit tag is older than the start of the current
interval. If the object store isrefusing to receive requests with a given audit tag or capability, it
should return CAPABILITY BLOCKED. For thisto work, the object sore must dways
remember the ¢ newest far-in-the-future nonces received with a given audit tag. In this case, the

% Again, thismay be after compression

The description of separate current and far-in-the-future nonces lists is for explanatory reasons only; an
implementation that ensures the basic requirements need not have separate lists.

¥ The implementation may arrange the far in the future setin any manner, e.g., it according to the nonce
hash value. However using audit tagsis a reasonabl e choice as they identify the “source” of the attack.

29

848 object store only needs to "drop the hammer” if more than k/c clients are not well behaved.
849 Other implementations are clearly possibly aslong as they meet the base requirements.

850 Wereguirethat c beavaduethat isvisbleto adlient. Clients may send a batch of requests

851 without waiting for aresponse. In this case, aclient needs to be able to determine how many
852 outstanding requests it can send to an object store without risking having the object store decide
853 itisill-behaved and thus refusing to accept requests from it.

854 4.5 Host Protocol

855 To prevent replay of responses, hosts must maintain nonce ligtsin the same way the object store
856 supports nonceligs

857 4.6 Use of Time

858 Theonly requirement for the time used to determine nonce timestampsisthat it be

859 monotonicaly increasing, dthough weakly synchronized clocks between the OSD and hosts will
860 avoid additional messages. Thistime must never go backwards without akey exchange. In
861 order to catch the time up to an externd “red time’, the OSD may choose to accelerate or

862 decderate the passage of time until it has caught up or the “red time’ has caught up. Any OSD
863 that isunsure of thetime, or concerned about a time-based attack, may choose to expand the
864 szeof itsnonceligsasit seesfit. Thismay dow performance, but does not affect security.

865 4.7 Additional Attributes on Partition Object

866 Todlow implemerting a complete solution, an object store implementing level 2 or leve 3
867 security, must define the following attributes on a partition object:

868 - NUM_REQS BEFORE BAD - the minimum number of requests which are far-in-the-
869 future which aclient may send, prior to the object store determining that the client isill-

870 behaved.® This guarantee will only hold if there are not too many dients sending

871 NUM_REQS BEFORE BAD at the sametime. Note that one and zero are legal vaues.
872 - WORKING _KEY FROZEN(i) —an aray of n=16 Boolean attributes, where thei'th

873 attribute is true if an object store needs to "drop the hammer” and refuse any credentias
874 created with the i'th verson of the working key (asindicated in the key version) fied of the
875 credentiad. An OSD sets bit i whenit, of itsown initigtive, invaidatesworking key i and an
876 OSD unsets bit i when it receives and accepts a key management command that defines a
877 new vaue for working key i.

878 - OLDEST VALID_NONCE - the minimum number of milliseconds older than the object
879 gtore's current time anonce that is received will be consdered vaid; this attribute maps to
880 the value d; defined above. Zeroisalegd vaue implying the absence of information.

3 Thisis the "maximum" number of requests that a client trying to be well-behaved can issue without
receiving aresponse from any, and be confident that the OSD will not invalidate the associated working key
in the case that its nonces are in fact far-in-the-future relative to the OSD clock.

30

881 - NEWEST_VALID_NONCE — the minimum number of milliseconds newer than the object

882 store's current time a nonce that is received will be considered vaid; note an object store
883 implementation may decide to treet as valid nonces that are even newer than this. This
884 attribute maps to the vaue d, defined above. Zero isalegd vaue implying the absence of
885 informetion.

31

886

887
888
889

890
891

892
893
894
895
896

897

898
899
900
901
902

903

904
905

906
907
908
909

910

911
912

913
914
915

5 Level 2 —Integrity of Arguments

This security level does not make any assumption about the security of the underlying network
and interndly provides end-to-end protection for the arguments at the level of the OSD
protocol.

The Host makes arequest for a cgpability to the Manager and the manager returnsthe
credential composed of CAP_Args aswdl asthe CAP_Key.

The Host then presents the command, including the CAP_Args and the Cmd_Args, dong with
the RegMac to the OSD. The RegMac isaMAC using the CAP_Key of theCmd_Argsand a
nonce congtructed as described in the prior chapter. This ensures that the Cmd_Args are not
modified in trangt. The Nonce ensures that the command is not being replayed from some point
in the past.

The OSD then verifies that:

1. theNonceisfresh, i.e, it has not been seen before

2. the Cmd_Args are compatible with the CAP_Args (i.e, the rights string permits the
operation)

3. theVersgon Tag and Cregtion Time are vaid

4. CapY matches RegMac as sent by the host

Where CapY is cdculated usng

CapX =aMAC computed using the secret_key on the CAP_Args (thisisthe CAP_Key)
CapY =aMAC using CapX on the Cmd_Args and the Nonce

If any of these conditions cannot be verified, the request is rgjected and no further command
processing is performed other than processing related to the nonce as described above.

Nonce related failures are handled as described in the prior section. Other failures are reported
with a Status as described in Section 2.8.

Indl cases:

1. A RetMac iscomputed usng CapX on the Satus and the Nonce (from the origina
request) to dlow the host to verify the response

Note we can safely apply this MAC to dl messages, including with a gatus of INVALID_MAC
without becoming susceptible to ablack box attack due to the properties of HMAC we are
usng.* See section 2.2.

¥ The Message Authentication Code (MAC) has the Computation - Resistance property [1], namely, given
text-MAC pairs (x_i, h_k(x_i)), itis computationally infeasible to compute any other text-MAC pair (X_j,
h_k(x_j)) for any new input x_j [3] .

32

<
o
B}
>
il
T
o
2
O
2
O

i
|
ReqCap()/—: :
| |
i | |
=== ReqReturn() I I
| e |
| | |
I I ReadData() I
i i i
| | |
| |
! ! ReadReturn() ____———=""7"" __E	
I -	
k- ’	
916
917
918
M essage Arguments Explanation
ReqCap ObjID Object identifier
Partition ID Partition identifier
ObSID Object Store identifier
RegReturn Version
Rights LCAPR-Args
Expiration 77
PartitionID
Creation
Capability Nonce Capability nonce
CAP Key MA Corret key (CAP_Arguments)
ReadData ObiID T A a e
Partltlon L OITITUMATD guul nS
Offset
Length
Nonce Per command nonce
CapArgumentsCAP_Args
RegMac MA Ccapkeycar key (ObjID, Offset, Length, Nonce)
ReadReturn Status return code from the request, success or failure
RetMac MA Ceapkeycar key (Status, Nonce)
919

33

920

921

922
923

924

5.1 Performance Considerations

For level 2 security, we have the following performance considerations:

A client does not need to request anew credential on every command; rather the client can
reuse the CAP_Args and CAP_Key on multiple commands for the same object(s).

The object store does not need to recalculate CapX on each exchange with aclient.

925

926
927
928
929

930
931
932
933

934
935
936

937

938
939
940
941
942

943

944
945

946
947
948
949

950
951
952
953

954
955
956
957

6 Level 3 —Integrity of Arguments and Data

This security level does not make any assumption about the security of the underlying network
and provides end-to-end protection at the level of the OSD protocol. In addition to the
protection of Leve 2, thislevel dso includes integrity checking of the data portion of the
command.

The Host makes arequest for a capability to the Security Manager and the host returns a
credentid, namely the CAP_Args aswell asthe CAP_Key. Asinlevd 2, the Host then
presents the command, including the CAP_Args and the Cmd_Args, dong with the RegMac to
the OSD. The RegMac isaMAC usng the CAP_Key of the Cmd_Args and the Nonce.

In addition, the DataMac isaMAC usng the CAP_Key of the Data and the Nonce. On a
WRITE command, the DataMac is computed by the Host, on aREAD it is caculated by the
OSD.

The OSD then verifies that:

1. theNonceisfresh, it has not been seen before

2. the Cmd_Args are compatible with the CAP_Args (i.e, the rights string permits the
operetion)

3. theVerson Tag and Cregtion Time are vdid

4. CapY matches RegMac as sent by the host

Where CapY iscdculated usng

CapX =aMAC computed using the secret_key on the CAP_Args (thisisthe CAP_Key)
CapY =aMAC using CapX onthe Cmd_Args and the Nonce

In addition for Writes the OSD verifies
5. (WRITE) DataZ matches DataMac as sent by the Host
Where
Dataz = aMAC computed usng CAP_Key on the Data and Nonce

If any of these conditions cannot be verified, the request is rgjected and no further command
processing is performed other than processing related to the nonce as described above.
Nonce related failures are handled as described in the section 4. Other failures are reported
with a Status as described in Section 2.8.

Indl cases:
1. aRetMaciscomputed usng CapX on the Satus and the Nonce
In addition for successful read commands, the OSD returns

2. aDataMac iscomputed usng CAP_Key on the Data and Nonce

35

958

959
960

to alow the host to verify the response.

Manager Host OSD
i i i
! ReqCap()___———1 !	
I I I	
:‘—— ~~~~~ RegReturn() : :	
T T T~ ———— 1 1	
—	
: I ReadData() :	
: : ReadReturn() _’__________.:	
a - a	
I I I	
: ' WriteData() :	
i .	
: : WriteReturn() ________.:	
e a	
I I I
M essage Arguments Explanation
ReqCap ObjID Object identifier
Partition ID Partition Id
ObSID Object Store identifier
RegReturn Version
Rights SAP-Args
Expiration — Y
Partition ID -
Creation
Capability Nonce Capability nonce
CAP Key MA Cocret key (CAP_Args)
ReadData ObiID Y A~y AL
Patition | ' —
ObSID r
Offset
Length
Nonce Time-based nonce
CAP_Args
RegMac MA Ccap ke, (Cmd_Args, Nonce)
ReadReturn Status return code from the request, success or failure
DataMac MA Ccap ke, (Data, Nonce)
RetMac MA Ccap ke (Status, Nonce)
WriteData Cmd_Args

36

Nonce Time-based nonce

CAP_Args
RegMac MACcap ke, (Cmd_Args, Nonce)
DataMac MA Ccap ke, (Data, Nonce)

WriteReturn Status

RetMac MA Ccap ke (Status, Nonce)

961

962 6.1 Implementation Efficiency

963 Theédficient computetion of the DataMac is straightforward in the case of READ. Asdatais
964 read from the media, the MAC is computed and it is sent as part of the status message at the
965 end of the command.

966 Thecaseof WRITE is more difficult. If the DataMac is sent in the same message as the

967 command, then the Host must make two passes over the data— one to compute the MAC and
968 asecond to send the data. In order to avoid this, there must be an additional message as shown
969 inthefallowing.

970
Manager Host OSD
i i i
I I I
| | |
| | |
! ReqCap()___——1 !
| |
I I I
:‘—— ~~~~~ RegReturn() : :
T Te=~a2 e | |
| — |
: I ReadData() :
I I
I I I
i i ReadReturn() ________.i
| T T Readverify() - |
I = -- I
| T |
| I\WriteDataO |
i I WriteVerify()\,i
| M
| | |
! ! WriteReturn() [J:
I e -t I
| N |
I I I
I I I
971
972
ReadVerify DataMac MA Ccap ke, (Data, Nonce)
WriteVerify DataMac MA Ccap ke, (Data, Nonce)
973

974 Implementation of this additional message must be supported by the underlying transport in
975 order to achieve the necessary efficiency.

37

976 7 Security Manger — OSD protocol

977 Whilethe precise behavior and policies applied by the security manager are not defined by this
978 protocol, the interactions between the security manager and the OSD are defined.

979 The OSD treats commands from the security manager in the same way it processes commands
980 receved fromahog. In other words, these commands must contain a valid capability

981 authorizing the operation. A security manager must use the appropriate level of security as
982 gecified for the partition with which it isinteracting.

983 7.1 Invalidation of capabilities for a Specific Object

984 The security manager can invaidate al previoudy issued capabilities for agiven object by
985 informing the OSD that it should only accept capabilities for the object with agiven object
986 verdontag. The parametersthat must be provided in this command include:

987 - Object —theidentity of the object to which this command gpplies. This should include the
988 partition ID and locd ID
989 - Object Version Tag - the vaue below which no capability will be accepted for this object.

990 Thisfunction will be redized as a st attribute on the indicated object. In addition to dlowing
991 <t atributes, the capabilitiy provided for this function must include adminidrative rights.

992 7.2 Clocks and Expiry Time

993 The OSD must reect any capabilities that have expired. Since the time placed in the capability
994 comes from the security manager’s clock, for the OSD to be able to properly interpret the
995 expiry timein the cgpability, we require some degree of synchronization between the clocks of
996 the OSD and Security manager.

997 The protocol for synchronizing the clocks is not specified as part of the object store protocol.
998 Theexpectation isthat a standard clock synchronization protocol will be used; we dso bdieve it
999 makes sense to dlow multiple such protocols to be implemented. The specification of the

1000 protocol isbeyond the scope of this document.

1001 We do, however, assume that this protocol will be implemented in a secure manner, i.e., we do
1002 not want an adversary to be able to change the time for the OSD or Security Manager. Such
1003 anaction could condtitute an attack, which increased the effective lifetime of legitimately issued
1004 capahilities. Depending upon the implementation, it could aso extent the time during which a
1005 secret key isused.

38

1006

1007
1008
1009

1010

1011
1012

1013
1014
1015

1016

1017
1018

1019
1020
1021

1022
1023
1024

1025

1026
1027

1028

1029
1030

1031
1032
1033
1034
1035

1036
1037
1038
1039

8 Key Management

The credential is based on a secret key that is shared between the object store and the security
manager. In order to prevent an adversary from obtaining too many credentias generated with
the same key, keys must be refreshed regularly. Thus, akey management scheme s required.

8.1 Requirements
The security manager should be able to replace the object store keys in a secure manner

even if the channd it has with the object store is not secure.

The security manager (or ahigher leve authority) should be able to divide the drive into
multiple partitions. Each partition should carry its own keys for security purposes. Thus, a
credentia generated for one partition cannot be valid for another.

A key refresh should invaidate dl the credentids generated by that key.

The key refresh scheme should not necessarily lead to a surge in the communication caused
by clients requesting a new vdid credentid.

The security manager has a source for random bits.
The object store is not required to have a source for generating random bits.
The drive manufacturer cannot assume to know the identity of the drive purchaser.

The drive manufacturer should not have control over the drive onceit isinitidized. i.e., the
manufacturer should not be able to know the secret keys that are used to generate
credentias.

A drive crash should not necessarily invadidate vaid credentids.

Provisoning anew drive should not require mechanical actions to configure the security
mechanism.

8.2 Key Hierarchy

We suggest using the key hierarchy proposed by Gobioff in [7]. Thekey hierarchy is
comprised of 4 layers as described below:

Master key —held by the disk owner. Used to initidize the drive and to create the
drive key. This key does not change unless the drive owner is changed. Asthe top
most key in the hierarchy it should be used aslittle as possible in order to reduce its
exposure, and it would be preferable if this key could be immutable aslong asthe
drive does not change owners.

Drive key — held by the disk owner, used to divide the drive into multiple partitions
and to create the partition keys. Thiskey is used very rarely and is changed only if
either it is (suspected to be) compromised, or the drive owner changes, or a (rare)
key refresh operation is carried in order to increase security.

39

1040
1041
1042

1043
1044
1045

1046

1047
1048
1049
1050
1051

1052

1053
1054
1055
1056
1057

1058

1059
1060
1061
1062

1063

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1076

Partition keys — held by the (partition’s) security manager. Used soldly to creste
the working keys. The partition keys are changed infrequently, but in aregular
manner to increase security.

Working keys — held by the (partition’s) security manager. Used to generate the
cap-keys. Theworking keys are refreshed frequently (e.g., on an hourly or daily
basis) in order to limit the number of credentidsthat are generated by the same key.

8.2.1 Master Key

The master key isthe topmost key in the hierarchy. It dlows unrestricted access to the drive.
Itslossis considered a catastrophic event. Due to the importance of the master key, it is desired
to limit its use as much as possible. Thus, the only use of the master key isto initidize the drive
and to set the drive key. This master key does not change unless the drive owner is changed,
e.g., the driveis sold. We denote the Master key by Km.

8.2.2 Drive Key

Thedrive key provides an unresiricted access to the drive, very much like the master key,
except that it cannot be used either to initidize the drive or to set another master key or anew
drive key. Oncethe drive key is st it can be used to divide the drive into partitions and to set
the partitions' keys. The drive key can be changed in case it was compromised, or as part of a
scheduled update operation in order to maintain security. We denote the drive key by Kd.

8.2.3 Partition Key

An object store can be divided into multiple partitions, formerly known as security classes,
which carry their own keys for security purposes. From the perspective of the security
maneger, it will have adigtinct secret key for each two-tuple of object store 5 and partition ¢
We denote the key of partition j by Kp.

8.2.4 Working Key

The working keys are used to generate the capability keysfor a particular partition; hence they
should be refreshed very frequently, e.g., on an hourly basis. However, since akey refresh
event between the object store and the security manager invalidates dl credentids generated by
that key & once, asmplistic scheme which keeps only a single working key for each partition
would result in an undesired performance degradation as al the clients would be required to
communicate with the security manager in order to get new credentials, moreover, al new
credentials must be explicitly vaidated (viaMAC caculation) before being cached by the object
dore. To mitigate the undesired effects of a key refresh, the following optimization, as suggested
in[8], can be used: an object store may declare the last two (or more generdly n) refreshed
versonsof theworking key asvdid, instead of just the latest one. As aresult, the process of
vaidating a capability requiresakey version fied to be incorporated in the cgpability indicating
which key should be used in the validation process.®

% For more details on this mechanism, see the object store security document

40

1077
1078
1079
1080
1081
1082

1083

1084

1085
1086

1087

1088
1089
1090

1091
1092

1093
1094

1095
1096
1097

1098
1099
1100
1101
1102

1103
1104

1105
1106
1107
1108
1109
1110

The number of active key versons used is configured between the OSD and the security
manager. When setting a new working key, the security manager tags the key with aversion
number (between 0 and 15); the object store uses this tag to determine which key to usein
vaidating acommand. The OSD implementation can specify the maximum number of key
versonsit supports, oneisalegd vaue. The maximum number of key versons supported by
the protocol is 16.

We denote the working key of partition j with version i by Kw ;.

8.3 Key Exchange Protocol

We present a protocol for key exchange that applies well-known techniques for key updates™
and does not use encryption.

The protocol has the following characterigtics:

Except for the topmost key, keys of one level can be replaced only by using a
higher-level key. We describe how the magter key is set in the Drive Initidization
section.

The compromise of akey a agiven level does not reved information on keysin
higher levels, or on other keys (if multiple key versons exis) at the same leve.

The exchange of akey a agiven leve invaidates dl keys at lower levels (eg., anew
partition key invalidates dl working keys).

We propose that the drive use a pseudo random number generator to generate the keysusing a
random string (a seed) which is sent to it by the drive owner / security manager. Note that the
security manager and the drive must use the same generation procedure.

A cryptographic pseudo random number generator may be congtructed either from a good
MAC function, e.g., SHA1, or ablock cipher function, e.g., AES. The specific cryptographic
pseudorandom number generator we propose is one that utilizes the cryptographic hash SHA-
1, asdefined in FIPS 186, Section 3.3. Upon selecting the seed s, it basicdly appliesthe MAC
function to thevauessand s+ 1 using a shared (secret) key.

Agan, TimeNonce refers to the 12-bytes nonce structure defines in the OSD protocol (a 32-
bits timestamp followed by 64 random bits).

We requirethat a each level, there will be two keys rather then one. Thefirdt key is used for
message authentication and the second for key generation. For example, instead of having one
master key, Km, we have two keys, akeyed MAC key, denoted K, 4, used for message
authentication and a second key for the pseudo random number generator, denoted K, 6, used
for key generation. The same scheme holds for every level. As before, we defer the discussion
on how to set the master keysto the Drive Initialization section.

¥ See for instance section 12.3.1 of [3], Remark 12.19 (pp. 498-490), states that the confidentiality of the key
updateis not necessary, and that it may be avoided by employing instead akey derivation from a
pseudorandom permutation.

41

1111
1112

1113

1114
1115
1116

1117
1118

1119
1120

1121

1122
1123
1124

1125

1126
1127

1128
1129

1130

1131
1132
1133
1134

1135

1136
1137

1138

1139
1140
1141
1142
1143
1144

Note that the protocol does not describe how random seeds are generated. It isthe
responsibility of the security manager to create them as random as possible,

8.3.1 Setting the Drive Key

In order to set the drive key, a SetK ey message is sent (as described below), protected by the
mester key. This command will indudea Seed, which isarandom string of length 160 bits
computed by the drive owner; LSB (least Sgnificant bit) of the seed must be zero.

The new drive authentication key and generation key are computed by applying the generator
function on the seed to obtain two digtinct pseudo random numbers as follows:

Kd_G = GKm_G(Seed or OXO].)
Kd_A= GKm_G(%ed)

8.3.2 Setting a Partition Key

In order to set the keys of a specific partition, a SetK ey message is sent (as described below),
protected by the drive key. The command will include a seed as defined above aswell asa
Partition Number, which isthe number of the partition for which the key isto be set.

The new partition authentication key and generation key are computed by:

Kp,partition number G = GKd_G(%ed or 0X01)
K p,partition number A= Gkd_c(Seed)

Note, setting a partition key invaidates dl working keysfor the partition and thus al capability
keysfor the partition.

8.3.3 Setting a Working Key

In order to set the working keys of a specific partition, a SetK ey is sent (as described below),
protected by the partition key, e.g., for partition j, the security manager usesKp,j. The
command will include a seed and partition number as defined above, aswell asaVersion
Number, whichis the verson number of the key to be s&t.

The new working authentication key and generation key are computed by:

Kw,j version number_G = Gk P, _G(Seed or OXOl)
KW,j, version number_A= GK p. _G(Seed)

8.4 Using the standard protocol to Set Keys

Instead of defining a set of gpecific protocol messages to be used for key management, we can
use asingle new SetKey command aong with the basic OSD security mechanisms. We assume
that we have objects (or pseudo objects) with known identifiers representing the object store as
awhole aswell as each partition. The partition and working keys are set by invoking SetKey
on the object for the partition and the drive key by invoking SetKey on the object for the object
store asawhole.

42

1145

1146
1147

1148
1149
1150
1151

1152
1153
1154

1155
1156
1157
1158
1159
1160

1161

1162
1163
1164
1165
1166
1167
1168

1169
1170

1171
1172
1173

1174
1175

1176
1177

1178
1179

The parameters of the command are;

One of the following, DriveKey , PatritionKey, or WorkingKey depending upon the
key being set

an 8-byte string composed of a 1-byte KeyVersior™ followed by 7 bytes that
uniquely identifies the key (a counter will do). In particular, the key identifier
indicates the Partition number. Thisinformation can be used for auditing and other
reporting purposes.

the information that is needed to infer the next key, i.e,, Vaueis st to be the Seed
that is used to generate the two corresponding keys (message authentication key and
key generation).®

The command is sent using the OSD security protocol as gppropriete for the level of security
being used by the object store. For messages sent to set the key for the drive, the object
representing the drive must be queried to determine the appropriate security level. The CAP-
Args right-string must contain an indication that keys can be set. Note that the CAP_Key that
corresponds to the credential issued on this command is computed using Krigner a. Specificaly,
CAP_key = MAC_Kiigher (CAP-ArQs).

8.5 Drive Initialization

The protocol gives full power over the drive to the possessor of the master key. Thus, using and
Setting the master key should be done in the most secure environment possible. To alow setting
the master key after the drive is obtained from a vendor, we assume that the drive comes from
the manufacturer with an initid master key built-in. This master key is dso provided in a secure
manner (e.g., afloppy, aseparate email message) to the owner. Before the driveis used for
goring the dient data, the drive must be initidized. Theinitidization is done by replacing the
initid master key with a new one, generated by the security manager / drive owner. Note that

The manufacturer cannot access the drive if initidization was done properly since the
new Magter Key is known only to the owner.

If the drive has been initidized dsawhere (mistakenly or maicioudy) thiswill be
detected by the owner asthe initid Master Key that was provided to the owner will
no longer work.

The following command will be used to set the master key. The message is authenticated using
the previous master key denoteby Km_A_old

SetM aster Key msg Mkm a_ previous (SetM aster K ey, msg)
Where msg = Seed, TimeNonce

Seed isarandom siring of length 160 bits computed by the drive owner; the LSB
(leest Significant hit) of the seed is zero.

% |n the range 0-15.
% Thereisan assumption for Level 2 security that the attribute value is part of the command parameters and
thus protected by the per command MAC.

43

1180

1181
1182

1183
1184
1185

1186
1187
1188
1189

1190

1191
1192
1193
1194
1195
1196

1197
1198

1199

1200
1201

1202

1203
1204
1205
1206
1207
1208

The effect of this command isto set the magter key asfollows:

Km_G_new = GKm_G ,_previous (Seed or OXOJ.)
Km_A_nEW: Gum_c _previous ($ed)

Note, if oneis concerned that an entity may listen on the wire aswell as sted the master key
provided by the object store manufacturer, there is nothing that prevents sending these
commands via a direction connection and not over a network.

We point out that this differs from the suggestion in [8] isthat the drive comesin an
uninitialized state, where it has no partitions and no vaid keys. Here, before the drive is
placed in the generd network, the owner initidizes it using a secure network, eg., acable
directly attached from the owner Iaptop to the drive.

8.6 Storing Long Lived Keys

The drive keys are consdered highly secret information. It isimportant to protect them from
being leaked to an adversary. In order to protect the drive the keys should be stored in a
tamper resistant®” nonvolatile manner and maybe even protected by tamper resistant software
shield. Note that only the master key must be remembered in atamper resistant manner. The
seeds that were used to create dl other keys can be saved in a nonvolatile memory and used to
recompute the keys in case of adrive crash.

Note, the object store should not remember the messages sent to set the master key ina
manner that could be externaly accessible®

8.7 Secure Computation

In order to conform with FIPS 140-1 [5] leved 4, storing keys, computing the credentia keys
and the key exchange protocol should be done in a secure coprocessor.

8.8 Parameterizing Cryptographic Primitives

We would like to provide the flexibility of having an object store support multiple
implementations of the cryptographic primitives, i.e, MAC functions. To do this, aroot object
will support an atribute which provides the cryptographic primitives an object store prefers,; this
will be provided as an ordered and numbered list of primitives, where number zero isthe highest
preference. We will allow an object store to support up to sixteen primitives. Note dl objects
stores must support an HMAC SHA-1.

% See Security Engineering - A guide to building dependable distributed systems, by Ross Anderson,
John Wiley & Sons, Inc. pp.277-304.

% The actual requirement for correctness may be slightly weaker than this, but this seemsto be sufficient, if
not completely necessary.

44

1209
1210
1211

1212
1213
1214
1215
1216
1217
1218

1219
1220
1221

1222

When the user getsthe initid key for the object store, the key will dso specify which
cryptographic primitives to use with the initiad key exchange; the number of this combination will
aso be specified.

The CAP_Argsincludes afour bit field indicating the cryptographic primitive used to congtruct
the credential. The security manager will place in this field the number of the cryptographic
primitives used in congtructing thecredential. The security manager will need to take into
account the clients cgpabilities when it gives acredentid to the dient. The client will need to use
the cryptographic primitive upon which it agreed with the security manager. The intent of this
gpproach was to dlow a smooth upgrade of a system, in which some clients may not support a
newer cryptographic primitive.

In the firgt verson of the standard we will only support asingle MAC function. Later versons
of the standard will need to address the security issues that arisein usng multiple MAC
functions with asngle key.

45

1223

1224
1225
1226

1227
1228

1229
1230

1231

1232

1233

1234
1235

1236
1237

1238
1239

1240
1241

1242
1243
1244
1245

9 References

[1] Azagury, R. Canetti, M. Factor, S. Hdevi, E. Henis, D. Naor, N. Rinetzky, O. Rodeh,
J. Satran, “A Two Layered Approach for Securing an Object Store Network,” First
|EEE International Security In Storage Workshop, Greenbelt, MD, Dec 2002

[2] A.J Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press 1996. pp. 325.

[3] A.J Menezes, P. C. Van Oorschat, S. A. Vanstone, Handbook of Applied
Cryptography, by, CRC Press 1996. Section 12.3.1

[4] AES Advanced encryption standard
[5] FIPS 140-1 security standard
[6] FIPSPublication 186, Section 3.3

[7] H.Gobioff, et al., Security for network attached storage devices, Technica report,
CMU-CS-97-185.ps

[8] H. Gobioff, Security for a High Performance Commodity Storage Subsystem, PhD
thes's, Carnegie Mdlon University, 1999.

[9] H.Krawczyk, M. Bdlare, R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication”, RFC 2104, http://www.ietf.org/rfc/rfc2104.txt

[10] M. Bélare, R. Canetti, H. Krawczyk, “The HMAC Congtruction”, Cryptobytes Vol.
2, No. 1, Spring 1996.

[11] M.K.Aguilera, M. J, M. Lillibridge, J. MacCormick, E. Oertli, D. Andersen, M.
Burrows, T. Mann, C.A. Thekkath, “ Block-Level Security for Network-Attached
Disks,” 2™ Usenix Conference on File and Storage Technology, San Francisco,
CA, March 2003.

46

1246

1247

1248
1249
1250
1251

1252

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266

10 Appendix
10.1 Comparison to Original Approach

We now summearize the origind NASD protocol and describe the differences between the
original protocol and the current proposal.

10.1.1 Original NASD Proposal

Aswe gtated, we want to enable providing only integrity of capabilities (if desred). Inthe
origind NASD work 9, which isthe garting point for thiswork, integrity of capabilitiesis
intertwined with network security. To access an object, ahost recelves a credentia composed
of acgpability and a CAP-key from a Security Manager; the CAP-key is derived from the
capability using a secret shared between the object store and the security manager. On each
request, the CAP-key is used to authenticate the request: the CAP-key is used as key for a
MAC on the nonce and the command/data. The nonce provides anti-replay, i.e., providesa
function of network security. The MAC on the command/data provides integrity of
command/data. The use of the CAP-key for computing the MAC implicitly providesintegrity
of capahility; if the capability had been modified then the object store would fall in its attempt to
vaidate the MAC of the command/data. The CAP-key is also used by the object store to
authenticate its reply to the client.

Secret Key %7

@ Client/FM communication
over security channel

OSD returns:
1. CAP arguments

2. CAP-key

File Manager & OSD

share a secret key CAP arguments = {ObjID, version, rights, expire, ...

CAP-key = MAC (CAP argument

secret-key
Client sends

1. Command

2. CAP Arguments

3. Nonce
< 4. ReqMAC = MAC_,,.
@ OSD verifies request re(cOMMand, nonce)
Secret Key 1. X =MACecre key (CAP arguments)
2.Y =MAC,(command, nonce)
osD

3.Y=?ReqMAC

@ OSD sends

1. OSD_Nonce
2. RepMAC =MAC ., ,,(reply, OSD_nonce)

47

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

1280

1281
1282
1283
1284
1285
1286
1287

1288

1289
1290
1291
1292
1293

This approach requires both the host and the object store to calculate anew MAC for each
command. However, if we have a secure or trusted network, a direct gpplication of origina
NASD protocol involves redundant computation. In particular, if we were running on top of an
| PSec authenticated channel we would have:

Two mechanisms for anti-replay
Two mechanisms for integrity of data

Thisleadsto our chalenge: Define integrity of capabilities and integrity of command/data such
that integrity of capabilities uses a subset of the cryptographic structure.

In addition to this mgjor challenge, there are some additiona minor issues with the origind
definition of the protocol. These issues led to additiona changes from the origind NASD
protocol in the verson of the object store security protocol presented in the following sections.

10.1.2 Ability to Use Either Channel ID or Command Unique Nonce

By replacing the command unique nonce with a channd 1D, we are able to extend the origind
NASD protocol into a protocol that supports running on an externally secured channel without
incurring unnecessary overhead. Since the channd ID does not change on each command, it is
not necessary to recalculate aMAC that involves this channel 1D on each command.

However, since the channd ID istied to the channd and the channdl is authenticated, receipt of
aMAC based upon this channd ID enables the object store to be certain that the capability it is
receiving was legitimatdy obtained by the client.

10.1.3 Unique Value Added to CAP_Args

To avoid scenarios in which the same CAP_Args and CAP_key is given by the security
manager to different clients requesting the same rights to the same (set of) object(s), we add a
unique vaueto each CAP_Args. This change closes apotentid security hole in the version of

the protocol using interna security. Without this change a client could masquerade as an object
gtore for another client, if both clients get the same authorization for a given object.

48

	1 Introduction
	2 Structure of Credentials and Basic Message Flow
	2.3 Key Management Overview
	2.7 Credential Invalidation

	3 Level 1 – Integrity of Capabilities
	4 Per Request Nonces for Level 2 and Level 3
	5 Level 2 – Integrity of Arguments
	6 Level 3 – Integrity of Arguments and Data
	7 Security Manger – OSD protocol
	8 Key Management

