
1

Storage Networking Industry Association 1

Object-Based Storage Devices 2

 3

Object Store Security Document T10/03-279r24
 5
Revision: 8 6
Last Revised: 8/12/2003 7
 8
Abstract 9
 10
This document presents the requirements, motivation and a proposal for the security protocol 11
for object store. This protocol is based upon the original Network Attached Storage Device 12
(NASD) work [8] as well as other work on secure object stores 9. 13
 14
Related Documents 15

• The OSD White Paper offers an introduction to OSD and its applications. 16
• The OSD Requirements Document discusses requirements of the OSD applications 17

discussed in the white paper. 18
• The T10 SCSI Draft Standard for OSD implements the OSD framework for the SCSI 19

architecture model. 20
 21

ENDL Texas
Highlights indiate concepts (and maybe exact text) to be incorporated in OSD r09.

2

Table of Contents 22
 23

0 REVISION HISTORY...4 24

0.1 REVISION 1 ..4 25

0.2 REVISION 2 ..4 26

0.3 REVISION 3 ..4 27

0.4 REVISION 4 ..4 28

0.5 REVISION 5 ..4 29

0.6 REVISION 6 ..4 30

0.7 REVISION 7 ..5 31

0.8 REVISION 6 ..5 32

1 INTRODUCTION ..6 33

1.2 LEVELS OF SECURITY..10 34

1.3 REQUIREMENTS SUMMARY..12 35

1.4 LIMITATIONS IN THE PROPOSED VERSION OF OBJECT STORE PROTOCOL13 36

2 STRUCTURE OF CREDENTIALS AND BASIC MESSAGE FLOW.................14 37

2.1 INTRODUCTION..14 38

2.2 CRYPTOGRAPHIC BUILDING BLOCKS ..14 39

2.3 KEY MANAGEMENT OVERVIEW ...14 40

2.4 CAPABILITY ARGUMENT AND CAPABILITY KEY ..15 41

2.5 ANONYMOUS OBJECT CREATION...18 42

2.6 MESSAGE FLOW ..18 43

2.7 CREDENTIAL INVALIDATION..19 44

2.8 SECURITY RELATED ERROR STATUS ..19 45

3 LEVEL 1 – INTEGRITY OF CAPABILITIES ...21 46

3.1 LEVEL 1 SECURITY WITH AUTHENTICATED CHANNEL ..21 47

3.2 LEVEL 1- SECURITY WITHOUT NETWORK SECURITY...23 48

3.3 ASSUMPTIONS ON NETWORK INFRASTRUCTURE FOR END-TO-END SECURITY......23 49

3.4 CLIENT-OBJECT STORE MESSAGE AND FLOW ..23 50

3.5 PERFORMANCE CONSIDERATIONS..25 51

4 PER REQUEST NONCES FOR LEVEL 2 AND LEVEL 326 52

3

4.1 BACKGROUND ...26 53

4.2 REQUIREMENTS ...27 54

4.3 STRUCTURE OF THE PER COMMAND NONCE ..27 55

4.4 USE OF NONCE FOR ANTI REPLAY..28 56

4.5 HOST PROTOCOL ...30 57

4.6 USE OF TIME..30 58

4.7 ADDITIONAL ATTRIBUTES ON PARTITION OBJECT ...30 59

5 LEVEL 2 – INTEGRITY OF ARGUMENTS...32 60

5.1 PERFORMANCE CONSIDERATIONS..34 61

6 LEVEL 3 – INTEGRITY OF ARGUMENTS AND DATA...................................35 62

6.1 IMPLEMENTATION EFFICIENCY...37 63

7 SECURITY MANGER – OSD PROTOCOL ...38 64

7.1 INVALIDATION OF CAPABILITIES FOR A SPECIFIC OBJECT38 65

7.2 CLOCKS AND EXPIRY TIME ..38 66

8 KEY MANAGEMENT...39 67

8.1 REQUIREMENTS ...39 68

8.2 KEY HIERARCHY..39 69

8.3 KEY EXCHANGE PROTOCOL ...41 70

8.4 USING THE STANDARD PROTOCOL TO SET KEYS...42 71

8.5 DRIVE INITIALIZATION...43 72

8.6 STORING LONG LIVED KEYS ...44 73

8.7 SECURE COMPUTATION...44 74

8.8 PARAMETERIZING CRYPTOGRAPHIC PRIMITIVES ..44 75

9 REFERENCES ...46 76

10 APPENDIX..47 77

10.1 COMPARISON TO ORIGINAL APPROACH...47 78

4

0 Revision History 79

0.1 Revision 1 80

Authors: Dalit Naor, Michael Factor, Julian Satran (IBM), Don Beaver, Erik Riedel (Seagate), 81
and David Nagle (Panasas). 82

0.2 Revision 2 83

Authors: Dalit Naor and Michael Factor 84

0.3 Revision 3 85

Authors: Erik Riedel 86

Changes: Added description of Levels 2 and 3. Added sequence diagrams and detailed 87
message arguments. Changed “client” to “host” throughout for consistency. Use “OSD” instead 88
of “object store”. Reorganized items in the introduction. Added more white space for better 89
readability. 90

0.4 Revision 4 91

Author: Dalit Naor. 92

Changes: Incorporated presentation changes and open issues from comments submitted by May 93
6 from David Nagle, Erik Riedel, Dalit Naor, Michael Factor. 94

0.5 Revision 5 95

Author: Michael Factor 96

Changes: Incorporate changes to open issues as discussed in the SNIA Symposium in Boston. 97
Main changes include, added section on protocol between OSD and Security Manager, added 98
description of error codes, cleaned up presentation of sections 2 and 3 99

0.6 Revision 6 100

Author: Michael Factor 101

Changes: Fixed formatting. Cleanup of Chapter 1 (provided an introduction, deleted objectives 102
section as being repetitive with requirements, deleted some discussion of levels 4-7 of security, 103
editorial corrections). Moved key management to Chapter 8 and added Chapter 8. Added a 104
separate chapter on Nonces (Chapter 4) in place of the section on nonces which was in the 105
discussion of level 2 security. 106

5

0.7 Revision 7 107

Authors: Michael Factor, Dalit Naor 108

Minor changes from prior revision: Integrate editorial comments, in particular cleanup usage of 109
capability and credential. Add section 2.5 to describe credentials for creating objects without 110
specifying an object ID. 111

0.8 Revision 6 112

Author: Michael Factor 113

Additional minor changes: clarify object version number in credential (and renamed to object 114
version tag), (re)add creation time to credential, clarify which keys protect credentials for 115
commands that are not scoped to a partition. Also remove descriptions of how do we know 116
the appropriate security level; this will not be addressed in the first version of the standard 117

6

1 Introduction 118

Object storage is a new storage paradigm (in particular for network accessible storage) in which 119
the abstraction of an array of blocks is replaced with an abstraction of a collection of objects. 120
In object storage, a client accesses data by specifying the identity of an object along with an 121
offset in the object, and the implementation of the storage is responsible for mapping the offset 122
to the actual location on the physical storage. From a security perspective, the main change 123
between object storage and today's block storage paradigm is that every command is 124
accompanied by a cryptographically secure capability. Thus, object storage provides the means 125
of having secure, fine-grained access to storage. 126

This document presents the requirements, motivation and a description of the object store 127
security protocol. The goals of this document are multifold. First, it is intended to specify the 128
behavior of the high-level protocol in sufficient detail to allow a direct mapping to a standard 129
specification in a particular transport (e.g., in SCSI). It is also intended to explain the protocol 130
in a way that it can be shared with security experts, outside of the OSD community, to allow an 131
independent review of its correctness. Finally, it is intended as a general background material to 132
explain OSD security. 133

One major goal for OSD security is to work well both on top of a secure network infrastructure 134
and in environments where there is no such infrastructure. This requirement has led us to define 135
multiple of levels of security which reflect the assumptions on the underlying infrastructure and 136
the protection required. 137

This document is organized as follows. This chapter describes the basic security model, and 138
the requirements we imposed upon ourselves. The next chapter describes the structure of the 139
capabilities/credentials and the basic message flow; this structure and flow is common for all 140
levels of security. Chapter 3 describes the details of the security level which ensures integrity of 141
the security mechanism; this level is ideally suited for use on top of a secure network 142
infrastructure, but it also can be used in environments where there is no concern of network-143
type attacks. Chapters 5 and 6 describe two different levels of security intended for use on 144
insecure networks; they differ in whether or not they secure the data. Chapters 7 and 8 145
describe security aspects that are not on the main data path. 146

1.1.1 Basic Security Model 147

The object store security model is a credential-based access control system composed of three 148
active entities: the object store, a security manager, and a client/host. Each entity plays a 149
different role. 150

As a credential-based access control system, all requests to the object store must be 151
accompanied with a valid capability that allows the host to perform the requested operation. A 152
credential is a cryptographically secured capability and a capability is a set of rights the holder 153
has on an object (or set of objects). 154

The role of the security manager is to generate credentials for authorized hosts at the request of 155
the host. The protocol between the host and the security manager is not defined as part of the 156

7

OSD protocol; however, the structure of the credential returned from the security manager to 157
the host is defined. In addition, the protocol between the OSD and the security manager is 158
specified. 159

The role of the OSD is to validate a capability presented by a host: 160

1. The requested operation is permitted by the capability based on a) the type of operation 161
(e.g., read, write) and b) a logical match of the specified attributes 162

2. The capability has not been tampered with, i.e., it was generated by the security manager 163
and was rightfully obtained by the host that presents it (either directly or via delegation). 164

The object store can validate that a host rightfully obtained a capability since a credential 165
contains both the capability and a secret part (CAP_Key – see section 2), which the host uses 166
to sign its messages to the object store. Without this secret part, which should be transferred on 167
an encrypted channel from the security manager to the host, the host cannot generate validly 168
signed messages. Note this protocol does allow delegation of a credential if a host transfers 169
both the secret part of the credential as well as the public capability arguments. 170

The role of the host is to follow the protocol. While the host is not trusted to follow the 171
protocol, the protocol is structured in such a way that it is in the host’s self-interest to follow the 172
protocol. In other words, if the host does not follow the protocol, it will not receive service from 173
the OSD. The figure below shows this basic flow. 174

Host

Object
Store

Security
Manager

Shared Secret

Authorization Req

Credential
Credential

 175

Figure 1. Basic System Structure 176

We specify seven levels of security, of which only the first three are within the scope of the 177
current proposal: 178

 Level 1 – Integrity of capability 179
 Level 2 – Integrity of arguments 180
 Level 3 – Integrity of data in transit 181
 Level 4 – Privacy of arguments 182
 Level 5 – Privacy of data in transit 183

8

 Level 6 – Integrity of data at rest 184
 Level 7 – Privacy of data at rest 185

Levels 2-4 correspond to the security levels defined in the original NASD work [8]. Level 1 is 186
best suited for the case where the network between the OSD and the host is secured; it can be 187
used as another layer on top of the network security 9. 188

With Level 1, only access security is handled within the OSD specification, and network 189
security is handled by an external, network-specific means (e.g., IPSec or FCS). 190

In order to implement Level 3 efficiently, the authentication hashes for user data must be carried 191
by the underlying transports. The structure and interpretation of these hashes will be specified in 192
this document, but an efficient mapping to a particular network transport layer (e.g., FC or 193
TCP/IP) is left to external specifications.1 194

1.1.2 Trust Assumptions 195

Trust assumptions describe how each element of the system trusts the other elements of the 196
system. The OSD is a trusted component. This means that once a host authenticates that it is 197
talking to a specific OSD, it trusts the OSD to: 198

1. provide integrity for the data while stored 199
2. follow the protocol 200
3. not be controlled by an adversary 201

The host can authenticate that it is talking to the intended OSD, i.e., the one for which the 202
security manager has granted it credentials, either via the use of an externally provided 203
authenticated channel or as part of each command using mechanisms defined in this protocol. 204

The security manager is also a trusted component. After it is authenticated,2 it is trusted to: 205

1. safely store long-lived keys 206
2. compute access controls correctly according to the policy it implements3 207
3. follow the protocol 208
4. not be controlled by an adversary 209

The trust assumption on the host is that a user trusts their own operating system to protect them 210
from malicious clients on the same machine, e.g., protect its CAP_Key. We do not trust the 211
host to correctly follow the protocol; however, the host will not receive service if it does not 212
follow the protocol. 213

1.1.3 Security Flow and Channel Requirements 214

As mentioned above, when a host wishes to access an object (or set of objects), it makes a 215
request to the security manager for a credential allowing the intended operation.4 In this 216

1 The difficulty is in the ordering of the hashes with respect to the data while in transit and during
verification at the device. This is discussed further in Section 6.1.
2 Authentication of the Security Manager by the host is out-of-scope of this protocol.
3 The definition of this policy is outside of the scope of this proposal.

9

request, the host must specify the OSD and partition (see section 2.3.2) on which it wishes to 217
perform the operation; the identity of the object(s) it wishes to access; and the operation(s) it 218
wishes to perform. The security manager upon receiving this request may need to authenticate 219
the host making the request.5 After authenticating the host, the security manager applies its 220
policy to determine whether the client is authorized to perform the requested operation(s) on the 221
indicated object(s). If not, the security manager will fail the request for the credential. 222
Otherwise, the security manager will generate a credential including the requested capability; this 223
credential is cryptographically secured by a secret shared between the security manager and the 224
OSD. The credential is then sent from the security manager to the host over a channel which is 225
encrypted and authenticated. Other than specifying the structure of the credential returned from 226
the security manager to the client, the protocol between the client and security manager is not 227
defined by the OSD protocol. 228

The host must present a capability on each operation it executes against the OSD. When the 229
OSD receives the capability, it verifies that it has not been modified, using the secret it shares 230
with the security manager.6 If the credential has not been modified (and is properly held by the 231
requesting client), the OSD will permit the operation based upon the rights encoded in the 232
capability. 233

When using Level 1 protection, we assume an existing network infrastructure that provides 234
secure channels (e.g., IPsec) between the OSD and the host. More precisely, if we are running 235
over a secure channel, we require both parties of the communication to know that they are 236
communicating with the parties that originally established the channel (an authenticated but 237
anonymous channel). We do not imply a requirement for privacy, i.e., we assume it is still 238
possible for a malicious party to eavesdrop on the channel. 239

We also assume there is a channel for communication between the OSD and the security 240
manager. Looking at the bandwidth and latency requirements of the various channels, the 241
channel between the security manager and the object store has the least stringent requirements. 242
This channel is used only for a periodic key exchange7 and other administrative security 243
operations (see chapter 7). We believe that the performance of this channel is not an issue. 244

The channel between the security manager and host has medium network requirements, since it 245
is used for a message exchange for each unique credential required by the client. In some 246
configurations this could become a performance issue, since it is expected this channel be 247
encrypted. 248

The channel between the host and the OSD has the most stringent bandwidth requirements as 249
every request to the OSD flows on this channel. Because of the heavy traffic on this channel, it 250
is not reasonable to assume that by default this channel is encrypted. 251

4 The host may request a broader set of rights than what is required for the operation it currently wishes to
perform.
5 It is conceivable that an authentication is not required, e.g., an object with world-wide read permission.
6 When caching of credentials is possible, some verification steps can be omitted.
7 The protocol does not specify this period, but we believe tens of minutes or longer would be reasonable.

10

1.1.4 Layered Approach to Protocol Definition 252

We take a layered approach to defining the protocol for object store security. This allows an 253
implementation to provide only the desired level(s) of (internal) security and to surface the 254
various layers in a consistent manner.8 We also want to ensure a consistent message exchange 255
between the elements of the system, regardless of what level of security is supported. 256

An object store implementation defines the levels of security it supports. By enriching the 257
information included in a message a higher level of security can be internally provided, as 258
opposed to leveraging an external network security mechanism. 259

In taking this approach, we want to provide flexibility in choosing how to secure the transport, 260
either internal or external, while allowing an installation to pay only for the level of security 261
needed. This should enable a simplified solution in certain glass-house environments (where no 262
network attacks are expected). It also should enable leveraging existing infrastructure for 263
network security and privacy while avoiding the cost of duplicate mechanisms. At the same 264
time, we must define a mechanism, which an object store can optionally implement to provide 265
network security as part of protocol for use where no secure transport exists. 266

1.2 Levels of Security 267

We consider several different levels of security that an OSD could provide. In the first version 268
of the protocol we only directly provide the first three of these security levels. Privacy can be 269
provided through external mechanisms, e.g., running the protocol on an encrypted channel. 270
The levels are incremental and support all the protections of the level below them. 271

The particular level of security to be used for accessing a set of objects will be defined using a 272
mechanism not specified by the initial version of the standard. 273

1.2.1 No Security 274

In the no-security level, the same message structure will be used. However, when an object 275
store is running with no security, the host must place zeros in the message related fields and the 276
object store must not examine these fields. 277

This is not considered a security level and its support is optional. 278

1.2.2 Level 1 – Integrity of Capability (Access Control Security) 279

Access Control Security is the common component to all the levels. 280

Integrity of capabilities by itself is most useful when the channel between the object store and 281
client is externally secured. In this case, e.g., where we have an authenticated IPSec channel, 282
we still need a mechanism that prevents a host from forging or otherwise modifying a credential 283
and/or replaying a credential over a different authenticated channel. In addition, we need to 284
verify that the host rightfully possesses the credential it is presenting. Without a secure network, 285

8 An implementation need not be layered

11

using only integrity of capability leaves an installation susceptible to certain network attacks, 286
e.g., man-in-the-middle, replay, etc. 287

Support for this security level is optional. However, its functionality must be supported in 288
conjunction with all other security levels. 289

1.2.3 Level 2 – Integrity of Command and Arguments 290

Integrity of command and arguments is most useful when the channel between the object store 291
and the client is not externally secured and where providing integrity (hashes) for both 292
commands and data would be too expensive. 293

With integrity of arguments, malicious hosts cannot replay command parameters, even when 294
running on unsecured networks, but they can use network attacks on the data portion of the 295
messages exchanged between the client and the OSD. 296

Integrity of arguments prevents a malicious host from accessing a portion of object which was 297
not accessed by some client with a valid credential for the object, or changing a read operation 298
into a write, but it does not prevent a malicious host from modifying the data read from or 299
written to the object. 300

Support for this security level is optional. If supported, it must be supported in conjunction with 301
the functionality of integrity of capability. 302

1.2.4 Level 3 – Integrity of Data (Access Control and Internal End-To-End 303
Security) 304

We assume that integrity of the data includes integrity of the command, i.e., there is no point in 305
protecting the data if the command parameters describing to which object the datum belongs is 306
not also protected. This level of security provides security similar to integrity of capability when 307
the channel between the object store and the client is authenticated. The exact comparison 308
between the two depends on the level of network security that is provided by the external 309
security mechanism. The difference is that this level of the security internally secures the network 310
as an integral part of the object store protocol, thereby defining an end-to-end solution at the 311
storage layer as opposed to building upon pre-existing mechanisms for secure network 312
channels. 313

Support for this security level is optional. If supported, it must be supported in conjunction with 314
the functionality of the two prior levels. 315

1.2.5 Privacy 316

Providing privacy, i.e., encryption, to the command and data, either in flight or at rest is beyond 317
the scope of the current proposal. This includes Levels 4 and 5. Note, there is nothing in this 318
proposal that precludes building upon external mechanisms for encryption. 319

12

1.2.6 Summary of Security Levels 320

All of the security levels are summarized in the table below. The table shows each level on its 321
own as well as each layer when combined with a network security mechanism (such as IPSec) 322
providing integrity and (separately) encryption as well as integrity. 323

 324
 w/o a secure network w/ a secure network

(integrity)
W/ a secure network

(encryption)
None No Security No security Network-level

integrity
Network-level privacy

Level 1 Access Security End-to-end verification
of credentials

+ Protection from
network attacks

+ Protection from
network snooping

Level 2 + Command Integrity Protection from
mistakes

+ Protection from
network attacks

(some duplicated
work)

+ Protection from
network snooping

Level 3 + Data Integrity End-to-end verification
of requests

Duplicated work + Protection from
network snooping

Level 4 + Command Privacy Protection from traffic
analysis on commands

Duplicated work + Protection from
snooping of data

Level 5 + Data Privacy End-to-end protection
from snooping of data

Duplicated work Duplicated work

Level 6 + Data Integrity at Rest Protection from
modification of data on

physical attack

Duplicated work Duplicated work

Level 7 + Data Privacy at Rest Protection from leaking
of data on physical

attack

Duplicated work Duplicated work

1.3 Requirements Summary 325

We have defined a set of requirements for the OSD security model; these requirements attempt 326
to address a range of target platforms for implementing OSD. 327

On the one hand we believe it is important to enable efficient implementations of the object 328
storage interface in storage controllers; such storage controllers are relatively resource rich, and 329
it is reasonable to envision them containing support for standard network security, e.g., 330
hardware support for IPSec. We wish to be able to use an existing network security 331
infrastructure (when practical) to take advantage of the development and design effort, as well 332
as the administrative and support tools developed for such an infrastructure, i.e., we do not 333
want to (needlessly) reinvent the wheel. 334

On the other hand there is a requirement to enable efficient implementation in low-end storage 335
devices. These devices are resource poor and the developers of these devices do not want to 336
add additional hardware without a clear justification. These devices will not always support 337
standard network security and in such environments it is necessary to provide end-to-end 338
security against attacks without depending on an external mechanism to secure the network. 339

We have defined the following set of requirements that must be met by the OSD security model. 340
We distinguish in defining these requirements between access control security (security which is 341

13

directly tied to the semantics of object storage) and network security (security which is related 342
primarily to network protocols and could be handled separately from the semantics of OSD). 343
The requirements we define are: 344

• Must prevent against attacks on individual objects. Such attacks include both intentional and 345
inadvertent access to an object in a way not authorized by the security manager. In 346
particular, we must address malicious hosts forging or modifying a credential, a host stealing 347
a credential from the channel between the object store and client,9 etc. 348

• Must enable protection against attacks on the network such as man-in-the-middle (e.g., a 349
computer posing as an object store), replay, etc. 350

• Must provide a stand-alone solution that works in the event there is no existing network 351
security infrastructure or for whatever reasons the implementer desires not to use an 352
externally secured network. 353

• Must provide a solution that can use an existing standard network security infrastructure. 354

• Must not duplicate the cost of security, where it can be avoided. e.g., if the host is running 355
over a secure network with Level 1, it should not incur a higher overhead than a host 356
running over a non-secure network with Level 3. 357

• Must allow low cost implementation of the critical path. 358

• Must be simple. In particular, we should use the same structures and same message flow 359
across all the protocol levels. 360

• Should allow efficient implementation on existing network transports. 361

1.4 Limitations in the Proposed Version of Object Store 362
Protocol 363

The version of the protocol defined in the following sections of this document is a first step 364
towards OSD security. As such, it has the following limitations: 365

• It does not internally support privacy on the channel between the object store and the client 366

• It does not support privacy for the data at rest 367

• It requires a communication channel between the object store and the security manager. 368
This channel must be capable of carrying authenticated and encrypted messages. 369

• Ability to define capabilities that apply to multiple objects where the object to which a 370
capability applies is defined by a predicate on the object's attributes. Note this is not the 371
same as commands which apply to multiple objects. 372

• Ability to define a capability which applies to only a portion of an object or to only certain 373
object attributes. 374

• It does not provide a means of determining from the object store what security level should 375
be used. 376

9 As stated above, the assumption is that the channel between the host and the OSD is not encrypted, and
thus it is possible for a malicious host to eavesdrop on this channel.

14

2 Structure of Credentials and Basic Message Flow 377

2.1 Introduction 378

To enforce legitimate use of capabilities, the client receives from the security manager (over a 379
secure channel) both the capability (CAP_Args) and some associated secret information, a 380
capability key (CAP_Key). Together the capability and capability key are the credential. The 381
client sends a capability to the object store as part of each request. The client uses the capability 382
key to compute a validation tag, which it appends to each request. The structure of this 383
validation tag depends upon whether an existing network security infrastructure is being used, or 384
whether the network security is provided internally by the protocol. Among other semantics 385
depending upon the security level, the validation tag ensures the capability has not been 386
modified. Using the protocol appropriate for the security level, the object store validates the 387
validation tag and checks whether the operation requested by the command is indeed 388
permissible. Note that the object store does not need to authenticate the client or to have a 389
notion of "client identity''. 390

2.2 Cryptographic Building Blocks 391

The cryptographic primitive that is used throughout this protocol is a keyed message 392
authentication code. The protocol uses an HMAC-SHA1 [9][10] whose output is 160 bits 393
long. When applicable, the final output of 160 bits is truncated into 96 bits. The HMAC-SHA1 394
key is 160 bits long. The means by which the HMAC-SHA1 key is generated is not specified 395
by the protocol. Later versions of this protocol may allow an object store to specify alternate 396
cryptographic primitives (see section 8.8). 397

2.3 Key Management Overview 398

The credential is based on a secret key that is shared between the object store and the security 399
manager. For each object store sj, K secret key_j is an authentication key shared between sj and the 400
security manager. For clarity, when concentrating on a specific object store we omit the index j 401
where no ambiguity arises. In particular, K secret key is a 160-bits long SHA1 key. More 402
accurately, there is a hierarchy of keys shared between the object store and the security 403
manager. 404

This protocol exchanges a secret key between the object store and the security manager: 405

1. The security manager sends a secret key to the object store along with the key’s version 406
number. 407

2. The object store updates its key, removes any cached credentials established with the 408
previous key, and acknowledges receipt of key. 409

In chapter 8, we elaborate on the hierarchy of keys and the protocol for exchanging keys. 410

In a later version of the protocol we may define a mechanism for piggybacking the exchanges of 411
keys over the client-object store channel without requiring a separate channel for the 412

15

communication between the object store and security manager. As we describe below, since a 413
channel between the object store and security manager is needed for other reasons, we take 414
advantage of this channel for the key exchange. 415

2.3.1 Maintaining two valid keys K secret key simultaneously 416

A key refresh event between the object store and the security manager invalidates all credentials 417
at once. This results in heavy communication traffic between all clients and the security 418
manager; moreover, all new credentials must be explicitly validated (via MAC calculation) 419
before being cached. This phenomenon may cause undesired performance degradation after the 420
key refresh. To mediate this effect, we allow an object store to declare the last two (or more 421
generally n) refreshed versions of K secret key as valid, instead of just the latest one. As a result, 422
the process of validating a credential requires a key_version field in the credential to enable the 423
object store to know which key to use in validating the credential. 424

The number of key versions used is configured between the OSD and the security manager. 425
The OSD implementation can specify the maximum number of key versions it supports; one is a 426
legal value. The maximum number of key versions supported by the protocol is 16. 427

2.3.2 Partitions 428

An object store is divided into multiple partitions, each of which carries its own keys for security 429
purposes. Instead of having a separate secret key for each object store sj, there is a distinct 430
secret key for each two-tuple of object store sj and partition pk. 431

All commands other than key exchange commands (see chapter 8) come with credentials which 432
are protected by the key associated with a specific partition. For most commands, e.g., those 433
that operate on a specific object, the partition used is the partition containing the object being 434
operated upon. For those commands which operate at the level of an entire object store, e.g., 435
the commands for formatting the object store or creating/removing partitions, we use the keys 436
associated with partition zero. Since the commands that operate at the level of the object store 437
and not at the level of individual objects are by their nature very powerful, we want to limit the 438
use of the keys associated with credentials used to execute these commands. We thus define 439
that partition zero should not contain user objects; in addition, to solve the problem of 440
bootstrapping, an object store must always contain a partition zero (e.g., to allow formatting the 441
object store). We note that a realization of the object store standard can define an identity 442
between the root object and partition zero. 443

2.4 Capability Argument and Capability Key 444

Define: 445

• Type of the credential (4 bits), which must currently all, be zero. This is intended to allow 446
future extension to different types of credentials. 447

• MAC Function is a four bit field indicating the cryptographic primitive used to construct the 448
credential. In the initial version of the protocol, the value of this field must be zero and the 449
HMAC SHA-1 must be used (see section 2.2) 450

16

• Partion ID is the identity of the partition for which this capability is being generated. Note 451
we do not include the object store ID in the capability under the assumption that it is passed 452
on all commands as part of the addressing. 453

• Capability Nonce to be an l-bits nonce (l=128) chosen uniquely by the security manager 454
for each credential. The nonce may be a counter. We do not specify the means of 455
generating this nonce, leaving the mechanism up to the implementer of the security manager. 456
The role of this nonce is twofold: 1) to ensure that every credential generated by the security 457
manager is unique; this prevents a host from masquerading as an OSD to another host, 458
which would be possible if both hosts received the same exact credentials and 2) to serve 459
as an audit field for allowing management applications to track the client which received a 460
capability. 461

This nonce has the following structure 462

• Audit tag is a 32 bit value which the security manager uses in an implementation 463
defined way to associate a credential with the client to which it granted the 464
credential. The correctness of the system will not be dependent upon the value the 465
security manager places in this audit tag. However, the overall performance and 466
usability of the system can be improved if this field is used as a audit tag. This field 467
can be used for purposes of auditing and report generation. It can also be used by 468
an object store to better manage nonces in level 2 and level 3 of the protocol. 469

• Random bits a 96 bit value which must be unique across all credentials with the 470
same audit tag and values for the other fields. 471

• Rights string specifies the rights and object(s) to which they apply. At this point we 472
propose the following structure for the rights string:10 473

• Type – the implementation of the rights string; this is four bits with the following 474
values 475

• 0 – a specific object and set of operations is specified 476
• 1-15 – reserved 477

• Operations – a bitmap with one bit per OSD command; this bitmap should contain 478
additional reserved bits for potential extension, without requiring a change in the size 479
of credentials. 480

• If the type == 0, then the following additional field is defined 481

• Object – the local ID of the object to which this command applies.11 482

• Object Version Tag – a k-bits value (k=32) that is maintained as an attribute for each 483
object. It is used to invalidate credentials, which have been issued earlier for the same 484
object. If the security manager wishes to invalidate all credentials it had previously 485
generated for an object, it modifies the value of the attribute associated with the object (see 486
section 7.1); the new value should never have been previously used in a credential for this 487

10 The size of the rights string is the sum of the sizes of its component fields with any necessary padding.
11 The space required to encode the local ID will be used for pattern matching on attributes for future types
of credentials to be defined.

ENDL Texas

ENDL Texas

17

object ID. To allow resumed access to the object, the security manager should use this 488
new value in future credentials it generates for this object . 489

• Creation Time – the time the object was created provided as an attribute by the object 490
store. If object IDs are reused, then two creates for an object in a given partition which use 491
the same ID must have different values for the create time. Note, it is clearly acceptable for 492
this value to be unique for every object created in an object store. The size and resolution 493
of this value will be as defined for the creation time attribute of objects. 494

• Key_version – a four bit index indicating the key version of K secret key. The key version is set 495
at every key refresh between the object store and the security manager. See also section 496
2.3.1 and chapter 8. 497

• Expiry Time – a 48 bit field giving the time the credential expires in milliseconds since 498
January 1, 1970. The security manager should generate this time. By using an expiry time 499
we allow the security manager to give different lifetimes to different credentials. We assume 500
a weakly synchronized clock between the security manager and the object store. No 501
assumptions are made on the client’s clocks. The OSD should not accept a capability with 502
an expiry time in the past. 503

The credential C that the security manager issues for a client is comprised of two components, a 504
“public token” CAP_Args and a “secret extra information” CAP_Key. 505

CAP_Args ≡ [rights string, Key_version, Nonce, Object Version Tag, creation time, 506
expiry time, partition ID, object store ID] 507

CAP_Key ≡ MAC_K secret key (CAP_Args) 508

CAP_Key is the 160-bits long output of the HMAC-SHA1 computation on CAP_Args along 509
with the implicit parameters of the object store ID and partition ID. Note that CAP_Key cannot 510
be truncated (to 96 bits) as it is used later in the protocol as a key to another MAC 511
computation. It is the host’s responsibility to keep CAP_Key secret; if CAP_Key is 512
compromised, than it is possible for an adversary to issue requests using the capability if it 513
determines CAP_Args, which are passed on the wire between the OSD and host in the clear. 514

We note that not all of the fields in the CAP_Args need to be passed explicitly on the wire. In 515
particular, since the object store knows the creation time and desired version tag for each 516
object, it is not necessary to pass these values. Instead, given the object ID, the object store 517
can determine which object version tag and creation time to use in calculating the CAP_Key. If 518
the host had a credential created using different values for these fields, a MAC calculation 519
would fail and the command would be rejected. 520

In a similar vein, the partition ID and object store ID do not need to be passed as part of the 521
capability for each command. This is because these fields are part of addressability and will 522

ENDL Texas

18

need to be passed as part of the basic command (even if running with no security). In other 523
words, there is no need to pass partition ID and object store ID twice. 524

The precise treatment of the object version tag, creation time, partition ID and object store ID 525
will be defined by each realization of a concrete object store standard, however, we 526
recommend that they not be passed as part of a capability on each command. 527

Since the credential includes information which is stored as attributes for the objects (namely the 528
creation time and version tag), we may have a problem of bootstrapping, in particularly if the 529
security manager does not have this information in its memory. How does the security manager 530
generate a credential to read these attributes if it does not know these attributes? In addition, in 531
certain usage scenarios, e.g., all object IDs assigned by an external cataloging entity, the use of 532
the creation time may require additional message exchanges and provide no benefit. 533

To address this, if a credential generated by the security manager uses zero for the version 534
tag/creation time, then when calculating the CAP_Args the object store should not take into 535
account the actual value of the respective attribute associated with the object but rather will use 536
zero (of the appropriate number of bits). When used with the version tag, this essentially 537
creates a credential which cannot be invalidated (other than by a key exchange which invalidates 538
all credentials for the partition generated with the same working key). Note that if a realization 539
of this work as a concrete standard does not pass the complete values of version tag or creation 540
time with each command (see above), it must pass an indication of whether or not these fields 541
should be treated as zero. 542

To delegate a credential C to another host, a host must transfer both the CAP_Args and 543
CAP_Key. While beyond the scope of this protocol, to ensure security, such delegation should 544
be done over an encrypted channel. 545

2.5 Anonymous Object Creation 546

To support creating an object where the OSD provides the object ID, the security manager 547
should generate a capability in which the object ID embedded in the rights string is zero and the 548
only right specified in the operations bitmap is object creation. The OSD must not allow such a 549
capability to be used more than once. To minimize the memory requirements the OSD must 550
dedicate to ensuring that such capabilities are used at most once, it is strongly recommended 551
that the security manager construct such capabilities with expiry times very close to the current 552
time. 553

2.6 Message Flow 554

Prior to sending an object store command to a target, the client must request the credential from 555
the security manager and in return the security manager sends back both the public part of the 556
credential, CAP_Args, as well as the private part, CAP_Key. CAP_Key should be sent to the 557
client over an authenticated and encrypted, channel to maintain its secrecy. To establish this 558
channel (and also to let the security manager identify the client), the client and the security 559
manager should authenticate each other in a preliminary step. The implementation of this channel 560
and its protocol are not part of the object store protocol. 561

ENDL Texas

ENDL Texas

19

When the client executes the actual object store command, the object store should validate: 562

1. The integrity of the public credential CAP_Args 563
2. That the public credential CAP_Args is used by a client that legitimately received it. 564
3. The integrity of the command itself (command and data), as required by the security 565

level. 566

For that, the client sends, along with the command, the public credential CAP_Args along with 567
a MAC-based validation tag, which is computed using CAP_Key. Since CAP_Key can be 568
computed from CAP_Args and the secret shared between the security manager and the object 569
store, the validation tag is also computable by the object store. 570

The structure of the validation tag and its usage depends on the security level being used. 571
Section 3 describes the validation tag if we assume an external mechanism for the integrity of 572
data and command, namely an authenticated channel such as an IPSec authenticated channel. In 573
Sections 5and 6 no such external mechanism is assumed and therefore the validation tag as well 574
as its validation at the object store is more elaborate. 575

2.7 Credential Invalidation 576

As described above, the object store protocol provides two means for invalidating a credential. 577
By the use of object version tag in each credential, we can invalidate all of the outstanding 578
credentials for an object. By a key exchange between the security manager and the object 579
store we can invalidate all credentials a security manager had generated for a particular object 580
store partition. Note, by explicit decision, we have decided not to support an efficient means of 581
externally invalidating all of the credentials given to a particular host by the security manager (but 582
see section 4.4). 583

2.8 Security Related Error Status 584

The following error responses related to security can be returned by the OSD to the host. 585
Some of these responses are limited to specific security levels as indicated: 586

• NOT_SUPPORTED_CREDENTIAL_TYPE – the type of the credential is not supported 587
by the object store. 588

• CAPABILITY_MISMATCH – the requested operation is not allowed by the rights string 589

• INVALID_MAC – the message authentication code (MAC) included in the request is not 590
consistent with the credential included in the message; in other words, the CAP_Key 591
calculated based upon the credential cannot be used to compute the same MAC as the one 592
included in the message. In the event that the MAC is invalid either this error or 593
INVALID_KEY must be returned (regardless of other errors detected). 594

• INVALID_VERSION – the request includes a credential with a object version tag which is 595
no longer being accepted 596

• INVALID_KEY – the key as indicated by key_version in the credential is no longer valid; 597
the host must retrieve a new credential from the security manager prior to retrying the 598

ENDL Texas

20

operation. An OSD implementation does not need to be able to distinguish this situation 599
from the situation reported by INVALID_MAC; in which case it should report 600
INVALID_MAC. 601

• EXPIRED_CREDENTIAL – based upon the expiry time, the credential has expired. 602

• INVALID_NONCE – the nonce does not contain a valid timestamp; a recommended time 603
stamp will be returned with this code. This may only be returned for level 2 or level 3. 604

• NONCE_NOT_UNIQUE – a message with this per request nonce has previously been 605
seen by this object store. This may only be returned for level 2 or level 3. 606

• CAPABILITY_BLOCKED – The capability was blocked, e.g., based on the capability 607
audit tag. Note that the reason for the “blockade” is not given. This may only be returned 608
for level 2 or level 3. 609

In addition to these error responses which are specific to security, the following additional 610
errors, which we are not specifically related to security, can be returned: 611

• INSUFFICIENT_RESOURCES – a temporary condition exists which does not allow 612
processing this request due to a lack of resources 613

• INVALID_MESSAGE_STRUCTURE – the structure of the message is not syntactically 614
valid. 615

21

3 Level 1 – Integrity of Capabilities 616

This security level is useful in two scenarios: 1) where no network attacks are expected to take 617
place (such as a ‘glass house’ scenario) and 2) where an authenticated channel between the 618
host and the OSD is assumed. The mechanism for establishing this channel is beyond the scope 619
of the OSD protocol. 620

3.1 Level 1 Security with Authenticated Channel 621

For Level 1 security with an authenticated channel, the channel provides integrity of messages as 622
well as an anti-replay mechanism (for the given channel). The OSD-specific protocol prevents 623
copying messages from one channel to another by tying the message to the channel via a 624
validation tag; this tag is computed as MACCAP_key(ChannelID), where ChannelID identifies 625
the communication channel. Given that the OSD knows the channel on which a request was 626
received, the OSD can validate that the MACCAP_key(ChannelID) included in a message is for 627
the ChannelID associated with the channel on which the message was received. The same 628
validation tag can be used with all requests based upon a given credential. 629

We do not need this validation tag on OSD responses since 1) the authenticated channel 630
ensures the host any responses it receives are received from the intended OSD and 2) we trust 631
the OSDs to not copy messages between channels (see section 1.1.2). 632

The ChannelID is a name for the channel that is unique to this channel between the client and 633
the object store and is known to both ends. The size of the ChannelID is transport dependent. 634
The lifetime of the ChannelID is no greater than the lifetime of the channel;14 the lifetime of the 635
ChannelID is independent of the lifetime of the key K secret key. See section 3.3 for a more 636
precise definition of the assumptions on the channel and ChannelID. 637

Most likely, a value that can be used as a ChannelID already exists and was created at the time 638
the channel was established. Otherwise, it requires another message exchange between the 639
client and target, where: 640

1. Client requests 'open security window' with the object store. 641
2. Object store responds with a randomly chosen m-bit channel name ChannelID.15 642

At this point we do not architect such a flow to explicitly have the object store provide the 643
ChannelID but rather we assume the channel provides the ChannelID. 644

Below is the protocol flow of messages along with a table that explains the messages and their 645
corresponding arguments. Note that the OpenWindow message is not needed for every 646
ReqCap message. Furthermore, it may not be needed at all if a ChannelID is already 647
exchanged. 648

14 Note it would be permissible to change the ChannelID for an existing channel; this would invalidate
cached credentials.
15 Analogously, a ‘close security window’ clears knowledge of the session at the object store.

22

Sec Mgr Host ObSOpen Window

Response: Channel IDReq. Cap: Obj ID, ObS ID

Response: Cap Args, Cap
Key

Read: Command, Cap Args,
Channel ID, MACCAP_Key(0, ChannelID)

Response: Status,
MACCAP_Key(0, ChannelID)

Req. Cap

Response Read

Response

Read: ... MACCAP_Key(0, ChannelID)

649
 650

Figure 2. Flow of Messages for Level 1 Security. The establishment of the authenticated channel 651
is not shown. The OpenWindow exchange will not be required for most channels. 652

 653
Message Argument Explanation

ReqCap ObjID Object identifier
 Partition ID Partition ID
 ObSID Object Store identifier

ReqReturn Version
 Rights
 Expiration
 Partition ID
 Creation
 Capability Nonce
 CAP_Key MACsecret_key(CAP_Arguments)

OpenWindow

WindowReturn ChannelID

ReadData ObjID
 Partition ID Partition ID
 ObSID Object Store identifier
 CAP-Args

CAP-Args

23

 Offset
 Length
 Nonce Ignored (all zeros)
 ReqMac MACCAP_Key(ChannelID)

ReadReturn Status
 RetMac16 MACCAP_Key(ChannelID)
 654

3.2 Level 1- security without network security 655

As noted above, this level of security is also useful when no network attacks are expected to 656
take place. In the event no secure network infrastructure is used, level 1 security protects the 657
integrity of the capability. The protocol is identical to the one described above. However, since 658
the ChannelID is not in practice tied to a channel and there is no true means for tying a message 659
to the channel. An OSD implementation cannot, however, ignore the value of the validation tag 660
if level 1 is being used without a secure network infrastructure since the validation tag is also 661
used to validate the capability has not been modified. In this case, zero should be used as the 662
value of the ChannelID. 663

3.3 Assumptions on Network Infrastructure for End-to-End 664
Security 665

We place the following requirements on the channel and ChannelID if we want to ensure and 666
end-to-end security solution using level 1 of OSD security: 667

• Within the lifetime of a key, K secret key, all channels established with a given object store from 668
any host must receive unique channel IDs. 669

• There must be a means for the host and OSD to associate a received message with the 670
ChannelID for the channel on which the message was received. 671

• Assuming that the channel provides the value of the ChannelID, this value must be non-672
forgeable. 673

• The channel must be authenticated (although it may be anonymous) in the sense that it must 674
ensure both parties can be guaranteed all messages in a session come from the same party. 675

The channel must ensure message integrity, i.e., non-modification of message contents by the 676
network. 677

3.4 Client-Object Store Message and Flow 678

1. Client sends a command to the object store, along with the public token CAP_Args 679
(defined above) and a 96-bits long validation tag V = MACCAP_key (ChannelID). V is 680
computed using HMAC-SHA1 on the ChannelID, truncated to 96 bits. 681

16 As discussed above, this MAC is not necessary – is it only used for symmetry with level 2 and level 3
security

24

2. Verification at object store: 682

1. The validation tag V equals MACCAP_key (ChannelID), where CAP_Key is obtained 683
as MAC K_secret key (CAP_Args). 684

2. The rights string in the CAP_Args allows the requested operation 685
3. The key_version is current. 686
4. The capability’s Version Tag is either zero or equal to the version tag attribute of the 687

object. 17 688
5. The capability's Creation Time is either zero or equal to the creation time attribute of 689

the object. 690

If any of the checks fails, the request is denied. If checks (a) and (c) pass, the object 691
store may cache the token CAP-Args associated with channel ChannelID. 692

An object store implementation may cache the validation calculations. In particular, if 693
CAP_Args has ever been presented to the object store on this channel within the lifetime of 694
current ChannelID, the request may be granted without re-validation (i.e., without redoing 695
step 1). The authenticated channel assures that another client is not replaying CAP_Args on 696
this channel, rather it is currently presented by the same entity that presented it in the past, and 697
hence a re-validation is not necessary. 698

File Manager & OSD
share a secret key

Secret Key

Secret Key

Client

OSD

4 OSD verifies request
1. X = MACsecret-key (CAP arguments)
2. Y = MACx(ChannelID)
3. Y =? ReqMAC

3

1 Client/FM communication
over security channel

2

OSD returns:
1. CAP arguments
2. CAP-key

CAP arguments = {rights string, version, nonce, expiry time . . .
CAP-key = MACsecret-key (CAP arguments)

Client sends
1. Command
2. CAP Arguments
3. ReqMAC = MACCAP-key(ChannelID))

 699
Figure 3. Flow for Level 1 Security 700

17 This check can be implicit in checking the validation tag as the object version tag is part of the CAP_Args
and if the version tag is incorrect, the object store will not be using the same CAP_Key as the host. This
comment applies as well to the creation time. It also applies to the other security levels. It is not repeated.

25

3.5 Performance Considerations 701

For level 1 security, we have the following performance considerations: 702

• A client does not need to request a new credential on every command; rather the client can 703
reuse the CAP_Args and CAP_Key on multiple commands for the same object(s). 704

• The client does not need to recalculate the ReqMAC on each command; rather, this needs 705
to be calculated only once per credential. 706

• The object store does not need to recalculate X and Y on each exchange with a client. 707
Rather since we assume a secure channel, these values need to only be calculated the first 708
time object store sees a given capability. 709

26

4 Per Request Nonces for Level 2 and Level 3 710

Level 2 and Level 3 of the security protocol use Nonces included in each request to prevent 711
replay. The requirements for correctness of a nonce-based approach to preventing replay are 712
as follows: 713

• The object store must not accept the same nonce more than once. 714

• The object store must not accept a nonce that was rejected in the past.18 715

In addition, it is acceptable for an implementation to reject valid requests with unseen nonces if 716
necessary to ensure that the two basic requirements are met. 717

There are three main means of generating nonces: 718

• Random 719
• Session based 720
• Time based 721

We believe it is fairly easy to argue that the time-based protocol has better performance and 722
space requirements than either a session-based or random generation protocol if all entities in 723
the system are well-behaved. On the other hand, the time-based protocol can have extremely 724
large memory requirements or require frequent changes of the secret keys if enough clients in the 725
system are not well-behaved. In addition, assumptions on strong clock synchronization 726
between the clients and object store are problematic both from a practical and security 727
perspective. 728

The approach to nonces we define is a time-based approach modified to have only weak 729
dependencies upon client clocks and augments to minimize the impact of poorly behaved 730
entities. 731

4.1 Background 732

We define a system running level 2 or level 3 security as well-behaved if at any given time t, the 733
total number of far-in-the-future messages (messages with a nonce whose time is greater than 734
t + d) which have been sent to an object store from all clients, is less than k, for 735
implementation-defined values d and k. In other words, a system is well-behaved if the number 736
of far-in-the-future messages, which an object store has received, is bounded. Similarly a 737
client running level 2 or level 3 security is defined as well-behaved if it does not send any 738
nonces for a time greater than t + d where t is the current time of the target object store. An 739
ill-behaved client and ill-behaved system have the obvious definitions. Malicious intent is not 740
required for a client to be ill-behaved. Also note that if there is malicious intent, the 741
maliciousness is not necessarily directly from the ill-behaved client; for instance, a malicious 742
time-server can causes clients to be ill-behaved. 743

In the worst case, with the time-based nonces, an object store implementation must ensure that 744
it has sufficient memory19 to remember the nonce from each message it could receive in the 745

18 This holds regardless of the reason the message was rejected

27

period between working key exchanges. This is to prevent messages from being replayed: the 746
implementation must also ensure that any message which has ever been rejected will never 747
become valid in the future. In other words, given an object store which can handle n messages a 748
second and a key exchange every e seconds, the object store needs to be able to remember ne 749
nonces.20 This, admittedly unlikely worst case, would occur if every message received was for 750
the end of the period in which the key was valid. Note an alternative would be to allocate a 751
fixed amount of memory, much less than for ne nonces and if this memory fills up, for the object 752
store to force a key exchange. This leaves open a denial of service (DOS) attack in which all 753
existing capabilities are invalidated. The goal of our modifications to a pure-time-based nonce 754
protocol is to reduce the easy of this DOS attack 755

One way to mitigate the amount of memory required to handle ill-behaved systems21 is to design 756
the messages in such a way that the object store would be able to reduce its memory 757
requirements by organizing the nonces into groups. If the far-in-the-future messages are limited 758
to a subset of the groups of nonces, the implementation can decide to reject nonces belonging to 759
the problematic groups, while continuing to accept other nonces. Clearly, the efficiency of such 760
an approach depends on the accuracy of the grouping. We leverage the audit tag field of the 761
nonce22 in the CAP_Args for this purpose; see section 2.4. 762

4.2 Requirements 763

In addition to the general requirements listed above, we place the following requirements on the 764
protocol: 765

• The changes to allow better behavior in ill-behaved systems should incur no additional cost 766
in the case of a well-behaved system. 767

• An implementation that chooses so must be able to bound the amount of memory required 768
for correct behavior independent of the frequency in which the key is exchanged between 769
the object store and security manager (i.e., safety with bounded memory), while sill ensuring 770
liveness for well-behaved clients in many scenarios where there are ill-behaved clients. 771

• We must allow freedom to the object store implementer to trade-off between 772
implementation complexity and overall system behavior in the event that clients are not well-773
behaved. 774

4.3 Structure of the Per Command Nonce 775

When working with the time-based nonces, on each request, the host generates a nonce by 776
combining a 48-bit time representing the number of milliseconds since January 1, 1970. The 777
nonce also includes a 48-bit random number. 778

19 Clearly various compression techniques could be used; for example see [11].
20 This is the number of nonces that must be remembered; the memory that is required is implementation
dependent and may need to take into account compression techniques.
21 Although there are still scenarios in which correct behavior entails either remembering all nonces or
forcing a key exchange.
22 Not to be confused with the per command nonce described in this section

28

4.4 Use of Nonce for Anti Replay 779

Define the current interval for an object store whose clock currently is at time t as the period 780
of time beginning with t-d1 and ending with t+d2, where d1 and d2 are values determined by the 781
object store implementation. The current interval defines the time-based nonces the object 782
store expects to receive from well-behaved clients. The object store can accept any valid 783
request received in this time range. To prevent replay, the object store must have sufficient 784
resources to remember all nonces seen in this range. Messages received with nonces less than 785
t-d1 do not need to be remembered.23 Define as far-in-the-future a nonce for a time greater 786
than t+d2. By definition, such nonces will only be sent by ill-behaved clients. 787

When the object store receives a request in level 2 or level 3 with a nonce in the current interval, 788
the object store must remember the nonce in a current interval nonce list.24 While the only 789
requirement from the protocol is that anti-replay be provided, the space allocated to the current 790
interval nonce list should be sufficient25 to hold the number of nonces that can be received by the 791
object store during the time of the current interval, i.e., a function of the size of a nonce (12 792
bytes) times the number of messages the object store can receive in time d1 + d2. 793

Note, the object store must remember the nonce even if the message fails verification of the 794
MAC. This is required to prevent the following, replay-like attack. Assume an adversary 795
hijacks a request to the object store, modifies the command portion of the request and forwards 796
the request to the object store. The object store will send an INVALID_MAC error response 797
to the client. The client may then decide to regenerate the request with a new nonce and MAC. 798
Assuming this request is executed, the adversary can now replay the original request. We 799
should point out that a client should be suspicious of an INVALID_MAC response which does 800
not itself contain a valid MAC. 801

If the nonce in a request is for a time that is older than the current interval, the object store 802
rejects the request without further processing with an INVALID_NONCE error message. The 803
INVALID_NONCE response includes the current time of the object store, allowing the client to 804
try again with a nonce that will fall in the current interval. The object store does not need to 805
remember the nonce. A well-behaved client will (logically) reset its clock to be that of the 806
object store for future messages it sends. 807

Finally, if the nonce in a request is a far-in-the-future nonce, the object store must remember 808
the nonce in the far-in-the-future nonce list.26 The object store implementation may reject the 809
command with an INVALID_NONCE status or it may decide to process the request as 810
described for messages received with a nonce in the current interval, as long as the nonce 811
uniqueness is guaranteed.27 If an INVALID_NONCE response is returned, as above, it will 812

23 Note we assume that if the clock of an object store is set backwards, a key exchange with the security
manager will also take place.
24 Note, the reference to a current internal nonce list is for explanatory purposes only; an implementation
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met.
25 After any compression techniques
26 Note, the reference to a far-in-the-future nonce list is for explanatory purposes only; an implementation
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met.
27 But this does not enable the client to be informed that it should update its clock

29

include the current time of the object store and a well-behaved client will logically reset its clock 813
to be that of the object store. 814

We define the size of the far-in-the-future nonce list to be large enough to hold some number, 815
k, of nonces,28 where k is implementation dependent, not specified by the protocol, and may 816
vary at different times for a given implementation. Clearly, a nonce can be removed from the 817
far-in-the-future nonce list when the nonce represents a time prior to the start of the current 818
interval. If an implementation ensures the basic requirements, a nonce can be removed from the 819
far-in-the-future nonce list at other times. 820

To verify that a nonce has not previously been seen, the object store must look in both the 821
current and far-in-the-future nonce lists.29 822

If the object store receives more than k far in the future nonces, i.e., the object store has run out 823
of resources to remember far-in-the-future nonce, the object store implementation has several 824
options, as long as it guarantees the basic requirements of not accepting the same nonce more 825
than once and not accepting a nonce that was previously rejected. 826

One option, the "big hammer" option, is for the object store to refuse to accept any more 827
messages using the same working key which was used for the capabilities in the messages with 828
the far in the future nonces. In this case, the object store may return an indication of 829
INVALID_KEY when it receives requests with this working key. It is implementation 830
dependent as to how the security manager is notified that the working key needs updating. 831
Options include (but are neither limited to, nor required to include) having the security manager 832
poll the object store and having the client pass on an indication to the security manager. 833

The drawback of the "big hammer" option is that it invalidates all capabilities whose 834
corresponding credential was created with the given working key. In other words, all clients 835
which have capabilities for the given object store partition created with the same version of the 836
working key are impacted. 837

To mitigate the likelihood an implementation needs to resort to the big hammer, the 838
implementation can organize the far-in-the-future nonce list based upon the architected audit tag 839
that the security manager places in the credential.30 One option an implementation can choose is 840
to partition this nonce list based upon the audit tag. For instance, if the object store receives 841
more than c far-in-the-future nonces with a given audit tag created by the same working key, 842
the object store can refuse to receive additional requests with the given audit tag until the oldest 843
request in the far-in-the-future nonce list for this audit tag is older than the start of the current 844
interval. If the object store is refusing to receive requests with a given audit tag or capability, it 845
should return CAPABILITY_BLOCKED. For this to work, the object store must always 846
remember the c newest far-in-the-future nonces received with a given audit tag. In this case, the 847

28 Again, this may be after compression
29 The description of separate current and far-in-the-future nonces lists is for explanatory reasons only; an
implementation that ensures the basic requirements need not have separate lists.
30 The implementation may arrange the far in the future set in any manner, e.g., it according to the nonce
hash value. However using audit tags is a reasonable choice as they identify the “source” of the attack.

30

object store only needs to "drop the hammer" if more than k/c clients are not well behaved. 848
Other implementations are clearly possibly as long as they meet the base requirements. 849

We require that c be a value that is visible to a client. Clients may send a batch of requests 850
without waiting for a response. In this case, a client needs to be able to determine how many 851
outstanding requests it can send to an object store without risking having the object store decide 852
it is ill-behaved and thus refusing to accept requests from it. 853

4.5 Host Protocol 854

To prevent replay of responses, hosts must maintain nonce lists in the same way the object store 855
supports nonce lists 856

4.6 Use of Time 857

The only requirement for the time used to determine nonce timestamps is that it be 858
monotonically increasing, although weakly synchronized clocks between the OSD and hosts will 859
avoid additional messages. This time must never go backwards without a key exchange. In 860
order to catch the time up to an external “real time”, the OSD may choose to accelerate or 861
decelerate the passage of time until it has caught up or the “real time” has caught up. Any OSD 862
that is unsure of the time, or concerned about a time-based attack, may choose to expand the 863
size of its nonce lists as it sees fit. This may slow performance, but does not affect security. 864

4.7 Additional Attributes on Partition Object 865

To allow implementing a complete solution, an object store implementing level 2 or level 3 866
security, must define the following attributes on a partition object: 867

• NUM_REQS_BEFORE_BAD – the minimum number of requests which are far-in-the-868
future which a client may send, prior to the object store determining that the client is ill-869
behaved.31 This guarantee will only hold if there are not too many clients sending 870
NUM_REQS_BEFORE_BAD at the same time. Note that one and zero are legal values. 871

• WORKING_KEY_FROZEN(i) – an array of n=16 Boolean attributes, where the i'th 872
attribute is true if an object store needs to "drop the hammer" and refuse any credentials 873
created with the i'th version of the working key (as indicated in the key_version) field of the 874
credential. An OSD sets bit i when it, of its own initiative, invalidates working key i and an 875
OSD unsets bit i when it receives and accepts a key management command that defines a 876
new value for working key i. 877

• OLDEST_VALID_NONCE – the minimum number of milliseconds older than the object 878
store's current time a nonce that is received will be considered valid; this attribute maps to 879
the value d1 defined above. Zero is a legal value implying the absence of information. 880

31 This is the "maximum" number of requests that a client trying to be well-behaved can issue without
receiving a response from any, and be confident that the OSD will not invalidate the associated working key
in the case that its nonces are in fact far-in-the-future relative to the OSD clock.

31

• NEWEST_VALID_NONCE – the minimum number of milliseconds newer than the object 881
store's current time a nonce that is received will be considered valid; note an object store 882
implementation may decide to treat as valid nonces that are even newer than this. This 883
attribute maps to the value d2 defined above. Zero is a legal value implying the absence of 884
information. 885

32

5 Level 2 – Integrity of Arguments 886

This security level does not make any assumption about the security of the underlying network 887
and internally provides end-to-end protection for the arguments at the level of the OSD 888
protocol. 889

The Host makes a request for a capability to the Manager and the manager returns the 890
credential composed of CAP_Args as well as the CAP_Key. 891

The Host then presents the command, including the CAP_Args and the Cmd_Args, along with 892
the ReqMac to the OSD. The ReqMac is a MAC using the CAP_Key of the Cmd_Args and a 893
nonce constructed as described in the prior chapter. This ensures that the Cmd_Args are not 894
modified in transit. The Nonce ensures that the command is not being replayed from some point 895
in the past. 896

The OSD then verifies that: 897

1. the Nonce is fresh, i.e., it has not been seen before 898
2. the Cmd_Args are compatible with the CAP_Args (i.e., the rights string permits the 899

operation) 900
3. the Version Tag and Creation Time are valid 901
4. CapY matches ReqMac as sent by the host 902

Where CapY is calculated using 903

CapX = a MAC computed using the secret_key on the CAP_Args (this is the CAP_Key) 904
CapY = a MAC using CapX on the Cmd_Args and the Nonce 905

If any of these conditions cannot be verified, the request is rejected and no further command 906
processing is performed other than processing related to the nonce as described above. 907
Nonce related failures are handled as described in the prior section. Other failures are reported 908
with a Status as described in Section 2.8. 909

In all cases: 910

1. A RetMac is computed using CapX on the Status and the Nonce (from the original 911
request) to allow the host to verify the response 912

Note we can safely apply this MAC to all messages, including with a status of INVALID_MAC 913
without becoming susceptible to a black box attack due to the properties of HMAC we are 914
using.32 See section 2.2. 915

32 The Message Authentication Code (MAC) has the Computation - Resistance property [1], namely, given
text -MAC pairs (x_i, h_k(x_i)), it is computationally infeasible to compute any other text -MAC pair (x_j,
h_k(x_j)) for any new input x_j [3] .

33

Manager Host OSD

ReqCap()

ReqReturn()

ReadData()

ReadReturn()

916
 917
 918

Message Arguments Explanation

ReqCap ObjID Object identifier
 Partition ID Partition identifier
 ObSID Object Store identifier

ReqReturn Version
 Rights
 Expiration
 Partition ID
 Creation
 Capability Nonce Capability nonce
 CAP_Key MACsecret_key(CAP_Arguments)

ReadData ObjID
 Partition
 Offset
 Length
 Nonce Per command nonce
 CapArgumentsCAP_Args
 ReqMac MACCapKeyCAP_Key(ObjID, Offset, Length, Nonce)

ReadReturn Status return code from the request, success or failure
 RetMac MACCapKeyCAP_Key(Status, Nonce)
 919

CAP-Args

CmdArguments

34

5.1 Performance Considerations 920

For level 2 security, we have the following performance considerations: 921

• A client does not need to request a new credential on every command; rather the client can 922
reuse the CAP_Args and CAP_Key on multiple commands for the same object(s). 923

• The object store does not need to recalculate CapX on each exchange with a client. 924

35

6 Level 3 – Integrity of Arguments and Data 925

This security level does not make any assumption about the security of the underlying network 926
and provides end-to-end protection at the level of the OSD protocol. In addition to the 927
protection of Level 2, this level also includes integrity checking of the data portion of the 928
command. 929

The Host makes a request for a capability to the Security Manager and the host returns a 930
credential, namely the CAP_Args as well as the CAP_Key. As in level 2, the Host then 931
presents the command, including the CAP_Args and the Cmd_Args, along with the ReqMac to 932
the OSD. The ReqMac is a MAC using the CAP_Key of the Cmd_Args and the Nonce. 933

In addition, the DataMac is a MAC using the CAP_Key of the Data and the Nonce. On a 934
WRITE command, the DataMac is computed by the Host, on a READ it is calculated by the 935
OSD. 936

The OSD then verifies that: 937

1. the Nonce is fresh, it has not been seen before 938
2. the Cmd_Args are compatible with the CAP_Args (i.e., the rights string permits the 939

operation) 940
3. the Version Tag and Creation Time are valid 941
4. CapY matches ReqMac as sent by the host 942

Where CapY is calculated using 943

CapX = a MAC computed using the secret_key on the CAP_Args (this is the CAP_Key) 944
CapY = a MAC using CapX on the Cmd_Args and the Nonce 945

In addition for Writes the OSD verifies 946

5. (WRITE) DataZ matches DataMac as sent by the Host 947

Where 948

DataZ = a MAC computed using CAP_Key on the Data and Nonce 949

If any of these conditions cannot be verified, the request is rejected and no further command 950
processing is performed other than processing related to the nonce as described above. 951
Nonce related failures are handled as described in the section 4. Other failures are reported 952
with a Status as described in Section 2.8. 953

In all cases: 954

1. a RetMac is computed using CapX on the Status and the Nonce 955

In addition for successful read commands, the OSD returns 956

2. a DataMac is computed using CAP_Key on the Data and Nonce 957

36

to allow the host to verify the response. 958

Manager Host OSD

ReqCap()

ReqReturn()

ReadData()

ReadReturn()

WriteData()

WriteReturn()

959
 960
Message Arguments Explanation

ReqCap ObjID Object identifier
 Partition ID Partition Id
 ObSID Object Store identifier

ReqReturn Version
 Rights
 Expiration
 Partition ID
 Creation
 Capability Nonce Capability nonce
 CAP_Key MACsecret_key(CAP_Args)

ReadData ObjID
 Partition
 ObSID
 Offset
 Length
 Nonce Time-based nonce
 CAP_Args
 ReqMac MACCAP_Key(Cmd_Args, Nonce)

ReadReturn Status return code from the request, success or failure
 DataMac MACCAP_Key(Data, Nonce)
 RetMac MACCAP_Key(Status, Nonce)

WriteData Cmd_Args

Cmd_Args

CAP_Args

37

 Nonce Time-based nonce
 CAP_Args
 ReqMac MACCAP_Key(Cmd_Args, Nonce)
 DataMac MACCAP_Key(Data, Nonce)

WriteReturn Status
 RetMac MACCAP_Key(Status, Nonce)
 961

6.1 Implementation Efficiency 962

The efficient computation of the DataMac is straightforward in the case of READ. As data is 963
read from the media, the MAC is computed and it is sent as part of the status message at the 964
end of the command. 965

The case of WRITE is more difficult. If the DataMac is sent in the same message as the 966
command, then the Host must make two passes over the data – one to compute the MAC and 967
a second to send the data. In order to avoid this, there must be an additional message as shown 968
in the following. 969

 970

Manager Host OSD

ReqCap()

ReqReturn()

ReadData()

ReadReturn()

WriteData()

WriteReturn()

ReadVerify()

WriteVerify()

971
 972
ReadVerify DataMac MACCAP_Key(Data, Nonce)

WriteVerify DataMac MACCAP_Key(Data, Nonce)
 973

Implementation of this additional message must be supported by the underlying transport in 974
order to achieve the necessary efficiency. 975

38

7 Security Manger – OSD protocol 976

While the precise behavior and policies applied by the security manager are not defined by this 977
protocol, the interactions between the security manager and the OSD are defined. 978

The OSD treats commands from the security manager in the same way it processes commands 979
received from a host. In other words, these commands must contain a valid capability 980
authorizing the operation. A security manager must use the appropriate level of security as 981
specified for the partition with which it is interacting. 982

7.1 Invalidation of capabilities for a Specific Object 983

The security manager can invalidate all previously issued capabilities for a given object by 984
informing the OSD that it should only accept capabilities for the object with a given object 985
version tag . The parameters that must be provided in this command include: 986

• Object – the identity of the object to which this command applies. This should include the 987
partition ID and local ID 988

• Object Version Tag - the value below which no capability will be accepted for this object. 989

This function will be realized as a set attribute on the indicated object. In addition to allowing 990
set attributes, the capabilitiy provided for this function must include administrative rights. 991

7.2 Clocks and Expiry Time 992

The OSD must reject any capabilities that have expired. Since the time placed in the capability 993
comes from the security manager’s clock, for the OSD to be able to properly interpret the 994
expiry time in the capability, we require some degree of synchronization between the clocks of 995
the OSD and Security manager. 996

The protocol for synchronizing the clocks is not specified as part of the object store protocol. 997
The expectation is that a standard clock synchronization protocol will be used; we also believe it 998
makes sense to allow multiple such protocols to be implemented. The specification of the 999
protocol is beyond the scope of this document. 1000

We do, however, assume that this protocol will be implemented in a secure manner, i.e., we do 1001
not want an adversary to be able to change the time for the OSD or Security Manager. Such 1002
an action could constitute an attack, which increased the effective lifetime of legitimately issued 1003
capabilities. Depending upon the implementation, it could also extent the time during which a 1004
secret key is used. 1005

39

8 Key Management 1006

The credential is based on a secret key that is shared between the object store and the security 1007
manager. In order to prevent an adversary from obtaining too many credentials generated with 1008
the same key, keys must be refreshed regularly. Thus, a key management scheme is required. 1009

8.1 Requirements 1010

• The security manager should be able to replace the object store keys in a secure manner 1011
even if the channel it has with the object store is not secure. 1012

• The security manager (or a higher level authority) should be able to divide the drive into 1013
multiple partitions. Each partition should carry its own keys for security purposes. Thus, a 1014
credential generated for one partition cannot be valid for another. 1015

• A key refresh should invalidate all the credentials generated by that key. 1016

• The key refresh scheme should not necessarily lead to a surge in the communication caused 1017
by clients requesting a new valid credential. 1018

• The security manager has a source for random bits. 1019

• The object store is not required to have a source for generating random bits. 1020

• The drive manufacturer cannot assume to know the identity of the drive purchaser. 1021

• The drive manufacturer should not have control over the drive once it is initialized. i.e., the 1022
manufacturer should not be able to know the secret keys that are used to generate 1023
credentials. 1024

• A drive crash should not necessarily invalidate valid credentials. 1025

• Provisioning a new drive should not require mechanical actions to configure the security 1026
mechanism. 1027

8.2 Key Hierarchy 1028

We suggest using the key hierarchy proposed by Gobioff in [7]. The key hierarchy is 1029
comprised of 4 layers as described below: 1030

• Master key – held by the disk owner. Used to initialize the drive and to create the 1031
drive key. This key does not change unless the drive owner is changed. As the top 1032
most key in the hierarchy it should be used as little as possible in order to reduce its 1033
exposure, and it would be preferable if this key could be immutable as long as the 1034
drive does not change owners. 1035

• Drive key – held by the disk owner, used to divide the drive into multiple partitions 1036
and to create the partition keys. This key is used very rarely and is changed only if 1037
either it is (suspected to be) compromised, or the drive owner changes, or a (rare) 1038
key refresh operation is carried in order to increase security. 1039

40

• Partition keys – held by the (partition’s) security manager. Used solely to create 1040
the working keys. The partition keys are changed infrequently, but in a regular 1041
manner to increase security. 1042

• Working keys – held by the (partition’s) security manager. Used to generate the 1043
cap-keys. The working keys are refreshed frequently (e.g., on an hourly or daily 1044
basis) in order to limit the number of credentials that are generated by the same key. 1045

8.2.1 Master Key 1046

The master key is the topmost key in the hierarchy. It allows unrestricted access to the drive. 1047
Its loss is considered a catastrophic event. Due to the importance of the master key, it is desired 1048
to limit its use as much as possible. Thus, the only use of the master key is to initialize the drive 1049
and to set the drive key. This master key does not change unless the drive owner is changed, 1050
e.g., the drive is sold. We denote the Master key by Km. 1051

8.2.2 Drive Key 1052

The drive key provides an unrestricted access to the drive, very much like the master key, 1053
except that it cannot be used either to initialize the drive or to set another master key or a new 1054
drive key. Once the drive key is set it can be used to divide the drive into partitions and to set 1055
the partitions’ keys. The drive key can be changed in case it was compromised, or as part of a 1056
scheduled update operation in order to maintain security. We denote the drive key by Kd. 1057

8.2.3 Partition Key 1058

An object store can be divided into multiple partitions, formerly known as security classes, 1059
which carry their own keys for security purposes. From the perspective of the security 1060
manager, it will have a distinct secret key for each two-tuple of object store sj and partition ck. 1061
We denote the key of partition j by Kpj. 1062

8.2.4 Working Key 1063

The working keys are used to generate the capability keys for a particular partition; hence they 1064
should be refreshed very frequently, e.g., on an hourly basis. However, since a key refresh 1065
event between the object store and the security manager invalidates all credentials generated by 1066
that key at once, a simplistic scheme which keeps only a single working key for each partition 1067
would result in an undesired performance degradation as all the clients would be required to 1068
communicate with the security manager in order to get new credentials; moreover, all new 1069
credentials must be explicitly validated (via MAC calculation) before being cached by the object 1070
store. To mitigate the undesired effects of a key refresh, the following optimization, as suggested 1071
in [8], can be used: an object store may declare the last two (or more generally n) refreshed 1072
versions of the working key as valid, instead of just the latest one. As a result, the process of 1073
validating a capability requires a key_version field to be incorporated in the capability indicating 1074
which key should be used in the validation process.33 1075

 1076

33 For more details on this mechanism, see the object store security document

41

The number of active key versions used is configured between the OSD and the security 1077
manager. When setting a new working key, the security manager tags the key with a version 1078
number (between 0 and 15); the object store uses this tag to determine which key to use in 1079
validating a command. The OSD implementation can specify the maximum number of key 1080
versions it supports; one is a legal value. The maximum number of key versions supported by 1081
the protocol is 16. 1082

We denote the working key of partition j with version i by Kwj,i. 1083

8.3 Key Exchange Protocol 1084

We present a protocol for key exchange that applies well-known techniques for key updates34 1085
and does not use encryption. 1086

The protocol has the following characteristics: 1087

• Except for the topmost key, keys of one level can be replaced only by using a 1088
higher-level key. We describe how the master key is set in the Drive Initialization 1089
section. 1090

• The compromise of a key at a given level does not reveal information on keys in 1091
higher levels, or on other keys (if multiple key versions exist) at the same level. 1092

• The exchange of a key at a given level invalidates all keys at lower levels (e.g., a new 1093
partition key invalidates all working keys). 1094

We propose that the drive use a pseudo random number generator to generate the keys using a 1095
random string (a seed) which is sent to it by the drive owner / security manager. Note that the 1096
security manager and the drive must use the same generation procedure. 1097

A cryptographic pseudo random number generator may be constructed either from a good 1098
MAC function, e.g., SHA1, or a block cipher function, e.g., AES. The specific cryptographic 1099
pseudorandom number generator we propose is one that utilizes the cryptographic hash SHA-1100
1, as defined in FIPS 186, Section 3.3. Upon selecting the seed s, it basically applies the MAC 1101
function to the values s and s+1 using a shared (secret) key. 1102

Again, TimeNonce refers to the 12-bytes nonce structure defines in the OSD protocol (a 32-1103
bits timestamp followed by 64 random bits). 1104

We require that at each level, there will be two keys rather then one. The first key is used for 1105
message authentication and the second for key generation. For example, instead of having one 1106
master key, Km, we have two keys, a keyed MAC key, denoted Km_A, used for message 1107
authentication and a second key for the pseudo random number generator, denoted Km_G, used 1108
for key generation. The same scheme holds for every level. As before, we defer the discussion 1109
on how to set the master keys to the Drive Initialization section. 1110

34 See for instance section 12.3.1 of [3], Remark 12.19 (pp. 498-490), states that the confidentiality of the key
update is not necessary, and that it may be avoided by employing instead a key derivation from a
pseudorandom permutation.

42

Note that the protocol does not describe how random seeds are generated. It is the 1111
responsibility of the security manager to create them as random as possible. 1112

8.3.1 Setting the Drive Key 1113

In order to set the drive key, a SetKey message is sent (as described below), protected by the 1114
master key. This command will include a Seed, which is a random string of length 160 bits 1115
computed by the drive owner; LSB (least significant bit) of the seed must be zero. 1116

The new drive authentication key and generation key are computed by applying the generator 1117
function on the seed to obtain two distinct pseudo random numbers as follows: 1118

Kd_G = GKm_G(Seed or 0x01) 1119
Kd_A= GKm_G(Seed) 1120

8.3.2 Setting a Partition Key 1121

In order to set the keys of a specific partition, a SetKey message is sent (as described below), 1122
protected by the drive key. The command will include a seed as defined above as well as a 1123
Partition Number, which is the number of the partition for which the key is to be set. 1124

The new partition authentication key and generation key are computed by: 1125

Kp,partition number_G = GKd_G(Seed or 0x01) 1126
Kp,partition number_A= GKd_G(Seed) 1127

Note, setting a partition key invalidates all working keys for the partition and thus all capability 1128
keys for the partition. 1129

8.3.3 Setting a Working Key 1130

In order to set the working keys of a specific partition, a SetKey is sent (as described below), 1131
protected by the partition key, e.g., for partition j, the security manager uses Kp,j. The 1132
command will include a seed and partition number as defined above, as well as a Version 1133
Number, which is the version number of the key to be set. 1134

The new working authentication key and generation key are computed by: 1135

Kw,j,version number_G = GK p,j _G(Seed or 0x01) 1136
Kw,j, version number_A= GK p,j _G(Seed) 1137

8.4 Using the standard protocol to Set Keys 1138

Instead of defining a set of specific protocol messages to be used for key management, we can 1139
use a single new SetKey command along with the basic OSD security mechanisms. We assume 1140
that we have objects (or pseudo objects) with known identifiers representing the object store as 1141
a whole as well as each partition. The partition and working keys are set by invoking SetKey 1142
on the object for the partition and the drive key by invoking SetKey on the object for the object 1143
store as a whole. 1144

43

The parameters of the command are: 1145

• One of the following, DriveKey , PatritionKey, or WorkingKey depending upon the 1146
key being set 1147

• an 8-byte string composed of a 1-byte KeyVersion35 followed by 7 bytes that 1148
uniquely identifies the key (a counter will do). In particular, the key identifier 1149
indicates the Partition number. This information can be used for auditing and other 1150
reporting purposes. 1151

• the information that is needed to infer the next key, i.e., Value is set to be the Seed 1152
that is used to generate the two corresponding keys (message authentication key and 1153
key generation).36 1154

The command is sent using the OSD security protocol as appropriate for the level of security 1155
being used by the object store. For messages sent to set the key for the drive, the object 1156
representing the drive must be queried to determine the appropriate security level. The CAP-1157
Args right-string must contain an indication that keys can be set. Note that the CAP_Key that 1158
corresponds to the credential issued on this command is computed using Khigher_A. Specifically, 1159
CAP_key = MAC_Khigher (CAP-Args). 1160

8.5 Drive Initialization 1161

The protocol gives full power over the drive to the possessor of the master key. Thus, using and 1162
setting the master key should be done in the most secure environment possible. To allow setting 1163
the master key after the drive is obtained from a vendor, we assume that the drive comes from 1164
the manufacturer with an initial master key built-in. This master key is also provided in a secure 1165
manner (e.g., a floppy, a separate email message) to the owner. Before the drive is used for 1166
storing the client data, the drive must be initialized. The initialization is done by replacing the 1167
initial master key with a new one, generated by the security manager / drive owner. Note that 1168

• The manufacturer cannot access the drive if initialization was done properly since the 1169
new Master Key is known only to the owner. 1170

• If the drive has been initialized elsewhere (mistakenly or maliciously) this will be 1171
detected by the owner as the initial Master Key that was provided to the owner will 1172
no longer work. 1173

The following command will be used to set the master key. The message is authenticated using 1174
the previous master key denote by Km_A_old 1175

SetMasterKey msg MKm_A_ previous (SetMasterKey, msg) 1176
Where msg = Seed, TimeNonce 1177

• Seed is a random string of length 160 bits computed by the drive owner; the LSB 1178
(least significant bit) of the seed is zero. 1179

35 In the range 0-15.
36 There is an assumption for Level 2 security that the attribute value is part of the command parameters and
thus protected by the per command MAC.

44

The effect of this command is to set the master key as follows: 1180

Km_G_new = GKm_G_previous (Seed or 0x01) 1181
Km_A_new= GKm_G_previous (Seed) 1182

Note, if one is concerned that an entity may listen on the wire as well as steal the master key 1183
provided by the object store manufacturer, there is nothing that prevents sending these 1184
commands via a direction connection and not over a network. 1185

We point out that this differs from the suggestion in [8] is that the drive comes in an 1186
uninitialized state, where it has no partitions and no valid keys. Here, before the drive is 1187
placed in the general network, the owner initializes it using a secure network, e.g., a cable 1188
directly attached from the owner laptop to the drive. 1189

8.6 Storing Long Lived Keys 1190

The drive keys are considered highly secret information. It is important to protect them from 1191
being leaked to an adversary. In order to protect the drive the keys should be stored in a 1192
tamper resistant37 nonvolatile manner and maybe even protected by tamper resistant software 1193
shield. Note that only the master key must be remembered in a tamper resistant manner. The 1194
seeds that were used to create all other keys can be saved in a nonvolatile memory and used to 1195
recompute the keys in case of a drive crash. 1196

Note, the object store should not remember the messages sent to set the master key in a 1197
manner that could be externally accessible.38 1198

8.7 Secure Computation 1199

In order to conform with FIPS 140-1 [5] level 4, storing keys, computing the credential keys 1200
and the key exchange protocol should be done in a secure coprocessor. 1201

8.8 Parameterizing Cryptographic Primitives 1202

We would like to provide the flexibility of having an object store support multiple 1203
implementations of the cryptographic primitives, i.e., MAC functions. To do this, a root object 1204
will support an attribute which provides the cryptographic primitives an object store prefers; this 1205
will be provided as an ordered and numbered list of primitives, where number zero is the highest 1206
preference. We will allow an object store to support up to sixteen primitives. Note all objects 1207
stores must support an HMAC SHA-1. 1208

37 See Security Engineering - A guide to building dependable distributed systems, by Ross Anderson,
John Wiley & Sons, Inc. pp.277-304.
38 The actual requirement for correctness may be slightly weaker than this, but this seems to be sufficient, if
not completely necessary.

45

When the user gets the initial key for the object store, the key will also specify which 1209
cryptographic primitives to use with the initial key exchange; the number of this combination will 1210
also be specified. 1211

The CAP_Args includes a four bit field indicating the cryptographic primitive used to construct 1212
the credential. The security manager will place in this field the number of the cryptographic 1213
primitives used in constructing thecredential. The security manager will need to take into 1214
account the clients capabilities when it gives a credential to the client. The client will need to use 1215
the cryptographic primitive upon which it agreed with the security manager. The intent of this 1216
approach was to allow a smooth upgrade of a system, in which some clients may not support a 1217
newer cryptographic primitive. 1218

In the first version of the standard we will only support a single MAC function. Later versions 1219
of the standard will need to address the security issues that arise in using multiple MAC 1220
functions with a single key. 1221

 1222

46

9 References 1223

[1] Azagury, R. Canetti, M. Factor, S. Halevi, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, 1224
J. Satran, “A Two Layered Approach for Securing an Object Store Network,” First 1225
IEEE International Security In Storage Workshop, Greenbelt, MD, Dec 2002 1226

[2] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied 1227
Cryptography, CRC Press 1996. pp. 325. 1228

[3] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, Handbook of Applied 1229
Cryptography, by, CRC Press 1996. Section 12.3.1 1230

[4] AES Advanced encryption standard 1231

[5] FIPS 140-1 security standard 1232

[6] FIPS Publication 186, Section 3.3 1233

[7] H. Gobioff, et al., Security for network attached storage devices, Technical report, 1234
CMU-CS-97-185.ps 1235

[8] H. Gobioff, Security for a High Performance Commodity Storage Subsystem, PhD 1236
thesis, Carnegie Mellon University, 1999. 1237

[9] H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed-Hashing for Message 1238
Authentication”, RFC 2104, http://www.ietf.org/rfc/rfc2104.txt 1239

[10] M. Bellare, R. Canetti, H. Krawczyk, “The HMAC Construction”, Cryptobytes Vol. 1240
2, No. 1, Spring 1996. 1241

[11] M.K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D. Andersen, M. 1242
Burrows, T. Mann, C.A. Thekkath, “Block-Level Security for Network-Attached 1243
Disks,” 2nd Usenix Conference on File and Storage Technology, San Francisco, 1244
CA, March 2003. 1245

47

10 Appendix 1246

10.1 Comparison to Original Approach 1247

 1248
We now summarize the original NASD protocol and describe the differences between the 1249
original protocol and the current proposal. 1250
 1251

10.1.1 Original NASD Proposal 1252

As we stated, we want to enable providing only integrity of capabilities (if desired). In the 1253
original NASD work 9, which is the starting point for this work, integrity of capabilities is 1254
intertwined with network security. To access an object, a host receives a credential composed 1255
of a capability and a CAP-key from a Security Manager; the CAP-key is derived from the 1256
capability using a secret shared between the object store and the security manager. On each 1257
request, the CAP-key is used to authenticate the request: the CAP-key is used as key for a 1258
MAC on the nonce and the command/data. The nonce provides anti-replay, i.e., provides a 1259
function of network security. The MAC on the command/data provides integrity of 1260
command/data. The use of the CAP-key for computing the MAC implicitly provides integrity 1261
of capability; if the capability had been modified then the object store would fail in its attempt to 1262
validate the MAC of the command/data. The CAP-key is also used by the object store to 1263
authenticate its reply to the client. 1264
 1265

File Manager & OSD
share a secret key

Secret Key

Secret Key

Client

OSD

4 OSD verifies request
1. X = MACsecret-key (CAP arguments)
2. Y = MACx(command, nonce)
3. Y =? ReqMAC

3

1 Client/FM communication
over security channel

2

OSD returns:
1. CAP arguments
2. CAP-key

CAP arguments = {ObjID, version, rights, expire, …
CAP-key = MACsecret -key (CAP arguments)

Client sends
1. Command
2. CAP Arguments
3. Nonce
4. ReqMAC = MACCAP-

key(command, nonce)

5 OSD sends
1. OSD_Nonce
2. RepMAC = MACCAP-key(reply, OSD_nonce)

 1266

48

This approach requires both the host and the object store to calculate a new MAC for each 1267
command. However, if we have a secure or trusted network, a direct application of original 1268
NASD protocol involves redundant computation. In particular, if we were running on top of an 1269
IPSec authenticated channel we would have: 1270
 1271
• Two mechanisms for anti-replay 1272
• Two mechanisms for integrity of data 1273
 1274
This leads to our challenge: Define integrity of capabilities and integrity of command/data such 1275
that integrity of capabilities uses a subset of the cryptographic structure. 1276
In addition to this major challenge, there are some additional minor issues with the original 1277
definition of the protocol. These issues led to additional changes from the original NASD 1278
protocol in the version of the object store security protocol presented in the following sections. 1279

10.1.2 Ability to Use Either Channel ID or Command Unique Nonce 1280

By replacing the command unique nonce with a channel ID, we are able to extend the original 1281
NASD protocol into a protocol that supports running on an externally secured channel without 1282
incurring unnecessary overhead. Since the channel ID does not change on each command, it is 1283
not necessary to recalculate a MAC that involves this channel ID on each command. 1284
However, since the channel ID is tied to the channel and the channel is authenticated, receipt of 1285
a MAC based upon this channel ID enables the object store to be certain that the capability it is 1286
receiving was legitimately obtained by the client. 1287

10.1.3 Unique Value Added to CAP_Args 1288

To avoid scenarios in which the same CAP_Args and CAP_key is given by the security 1289
manager to different clients requesting the same rights to the same (set of) object(s), we add a 1290
unique value to each CAP_Args. This change closes a potential security hole in the version of 1291
the protocol using internal security. Without this change a client could masquerade as an object 1292
store for another client, if both clients get the same authorization for a given object. 1293

	1 Introduction
	2 Structure of Credentials and Basic Message Flow
	2.3 Key Management Overview
	2.7 Credential Invalidation

	3 Level 1 – Integrity of Capabilities
	4 Per Request Nonces for Level 2 and Level 3
	5 Level 2 – Integrity of Arguments
	6 Level 3 – Integrity of Arguments and Data
	7 Security Manger – OSD protocol
	8 Key Management

