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1 Introduction 118 

Object storage is a new storage paradigm (in particular for network accessible storage) in which 119 
the abstraction of an array of blocks is replaced with an abstraction of a collection of objects.  120 
In object storage, a client accesses data by specifying the identity of an object along with an 121 
offset in the object, and the implementation of the storage is responsible for mapping the offset 122 
to the actual location on the physical storage.  From a security perspective, the main change 123 
between object storage and today's block storage paradigm is that every command is 124 
accompanied by a cryptographically secure capability.  Thus, object storage provides the means 125 
of having secure, fine-grained access to storage. 126 

This document presents the requirements, motivation and a description of the object store 127 
security protocol.    The goals of this document are multifold.  First, it is intended to specify the 128 
behavior of the high-level protocol in sufficient detail to allow a direct mapping to a standard 129 
specification in a particular transport (e.g., in SCSI).  It is also intended to explain the protocol 130 
in a way that it can be shared with security experts, outside of the OSD community, to allow an 131 
independent review of its correctness.  Finally, it is intended as a general background material to 132 
explain OSD security. 133 

One major goal for OSD security is to work well both on top of a secure network infrastructure 134 
and in environments where there is no such infrastructure.  This requirement has led us to define 135 
multiple of levels of security which reflect the assumptions on the underlying infrastructure and 136 
the protection required. 137 

This document is organized as follows.   This chapter describes the basic security model, and 138 
the requirements we imposed upon ourselves.  The next chapter describes the structure of the 139 
capabilities/credentials and the basic message flow; this structure and flow is common for all 140 
levels of security.  Chapter 3 describes the details of the security level which ensures integrity of 141 
the security mechanism; this level is ideally suited for use on top of a secure network 142 
infrastructure, but it also can be used in environments where there is no concern of network-143 
type attacks.   Chapters 5 and 6 describe two different levels of security intended for use on 144 
insecure networks; they differ in whether or not they secure the data.  Chapters 7 and 8 145 
describe security aspects that are not on the main data path. 146 

1.1.1 Basic Security Model 147 

The object store security model is a credential-based access control system composed of three 148 
active entities: the object store, a security manager, and a client/host. Each entity plays a 149 
different role. 150 

As a credential-based access control system, all requests to the object store must be 151 
accompanied with a valid capability that allows the host to perform the requested operation. A 152 
credential is a cryptographically secured capability and a capability is a set of rights the holder 153 
has on an object (or set of objects). 154 

The role of the security manager is to generate credentials for authorized hosts at the request of 155 
the host. The protocol between the host and the security manager is not defined as part of the 156 



7 

OSD protocol; however, the structure of the credential returned from the security manager to 157 
the host is defined.  In addition, the protocol between the OSD and the security manager is 158 
specified. 159 

The role of the OSD is to validate a capability presented by a host: 160 

1. The requested operation is permitted by the capability based on a) the type of operation 161 
(e.g., read, write) and b) a logical match of the specified attributes 162 

2. The capability has not been tampered with, i.e., it was generated by the security manager 163 
and was rightfully obtained by the host that presents it (either directly or via delegation). 164 

The object store can validate that a host rightfully obtained a capability since a credential 165 
contains both the capability and a secret part (CAP_Key – see section 2), which the host uses 166 
to sign its messages to the object store.  Without this secret part, which should be transferred on 167 
an encrypted channel from the security manager to the host, the host cannot generate validly 168 
signed messages.  Note this protocol does allow delegation of a credential if a host transfers 169 
both the secret part of the credential as well as the public capability arguments. 170 

The role of the host is to follow the protocol. While the host is not trusted to follow the 171 
protocol, the protocol is structured in such a way that it is in the host’s self-interest to follow the 172 
protocol. In other words, if the host does not follow the protocol, it will not receive service from 173 
the OSD. The figure below shows this basic flow. 174 

Host

Object 
Store

Security 
Manager

Shared Secret

Authorization Req

Credential
Credential

 175 

Figure 1. Basic System Structure 176 

We specify seven levels of security, of which only the first three are within the scope of the 177 
current proposal: 178 

 Level 1 – Integrity of capability 179 
 Level 2 – Integrity of arguments 180 
 Level 3 – Integrity of data in transit 181 
 Level 4 – Privacy of arguments 182 
 Level 5 – Privacy of data in transit 183 
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 Level 6 – Integrity of data at rest 184 
 Level 7 – Privacy of data at rest 185 

Levels 2-4 correspond to the security levels defined in the original NASD work [8]. Level 1 is 186 
best suited for the case where the network between the OSD and the host is secured; it can be 187 
used as another layer on top of the network security 9. 188 

With Level 1, only access security is handled within the OSD specification, and network 189 
security is handled by an external, network-specific means (e.g., IPSec or FCS). 190 

In order to implement Level 3 efficiently, the authentication hashes for user data must be carried 191 
by the underlying transports. The structure and interpretation of these hashes will be specified in 192 
this document, but an efficient mapping to a particular network transport layer (e.g., FC or 193 
TCP/IP) is left to external specifications.1 194 

1.1.2 Trust Assumptions 195 

Trust assumptions describe how each element of the system trusts the other elements of the 196 
system. The OSD is a trusted component. This means that once a host authenticates that it is 197 
talking to a specific OSD, it trusts the OSD to: 198 

1. provide integrity  for the data while stored 199 
2. follow the protocol 200 
3. not be controlled by an adversary 201 

The host can authenticate that it is talking to the intended OSD, i.e., the one for which the 202 
security manager has granted it credentials, either via the use of an externally provided 203 
authenticated channel or as part of each command using mechanisms defined in this protocol.  204 

The security manager is also a trusted component. After it is authenticated,2 it is trusted to:  205 

1. safely store long-lived keys 206 
2. compute access controls correctly according to the policy it implements3 207 
3. follow the protocol 208 
4. not be controlled by an adversary 209 

The trust assumption on the host is that a user trusts their own operating system to protect them 210 
from malicious clients on the same machine, e.g., protect its CAP_Key.  We do not trust the 211 
host to correctly follow the protocol; however, the host will not receive service if it does not 212 
follow the protocol. 213 

1.1.3 Security Flow and Channel Requirements 214 

As mentioned above, when a host wishes to access an object (or set of objects), it makes a 215 
request to the security manager for a credential allowing the intended operation.4  In this 216 
                                                 
1 The difficulty is in the ordering of the hashes with respect to the data while in transit and during 
verification at the device. This is discussed further in Section 6.1. 
2 Authentication of the Security Manager by the host is out-of-scope of this protocol. 
3 The definition of this policy is outside of the scope of this proposal. 
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request, the host must specify the OSD and partition (see section 2.3.2) on which it wishes to 217 
perform the operation; the identity of the object(s) it wishes to access; and the operation(s) it 218 
wishes to perform. The security manager upon receiving this request may need to authenticate 219 
the host making the request.5  After authenticating the host, the security manager applies its 220 
policy to determine whether the client is authorized to perform the requested operation(s) on the 221 
indicated object(s). If not, the security manager will fail the request for the credential. 222 
Otherwise, the security manager will generate a credential including the requested capability; this 223 
credential is cryptographically secured by a secret shared between the security manager and the 224 
OSD. The credential is then sent from the security manager to the host over a channel which is 225 
encrypted and authenticated. Other than specifying the structure of the credential returned from 226 
the security manager to the client, the protocol between the client and security manager is not 227 
defined by the OSD protocol. 228 

The host must present a capability on each operation it executes against the OSD.  When the 229 
OSD receives the capability, it verifies that it has not been modified, using the secret it shares 230 
with the security manager.6 If the credential has not been modified (and is properly held by the 231 
requesting client), the OSD will permit the operation based upon the rights encoded in the 232 
capability. 233 

When using Level 1 protection, we assume an existing network infrastructure that provides 234 
secure channels (e.g., IPsec) between the OSD and the host. More precisely, if we are running 235 
over a secure channel, we require both parties of the communication to know that they are 236 
communicating with the parties that originally established the channel (an authenticated but 237 
anonymous channel). We do not imply a requirement for privacy, i.e., we assume it is still 238 
possible for a malicious party to eavesdrop on the channel. 239 

We also assume there is a channel for communication between the OSD and the security 240 
manager. Looking at the bandwidth and latency requirements of the various channels, the 241 
channel between the security manager and the object store has the least stringent requirements. 242 
This channel is used only for a periodic key exchange7 and other administrative security 243 
operations (see chapter 7). We believe that the performance of this channel is not an issue. 244 

The channel between the security manager and host has medium network requirements, since it 245 
is used for a message exchange for each unique credential required by the client. In some 246 
configurations this could become a performance issue, since it is expected this channel be 247 
encrypted. 248 

The channel between the host and the OSD has the most stringent bandwidth requirements as 249 
every request to the OSD flows on this channel. Because of the heavy traffic on this channel, it 250 
is not reasonable to assume that by default this channel is encrypted. 251 

                                                                                                                                                 
4 The host may request a broader set of rights than what is required for the operation it currently wishes to 
perform. 
5 It is conceivable that an authentication is not required, e.g., an object with world-wide read permission. 
6 When caching of credentials is possible, some verification steps can be omitted. 
7 The protocol does not specify this period, but we believe tens of minutes or longer would be reasonable. 
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1.1.4 Layered Approach to Protocol Definition 252 

We take a layered approach to defining the protocol for object store security.   This allows an 253 
implementation to provide only the desired level(s) of (internal) security and to surface the 254 
various layers in a consistent manner.8  We also want to ensure a consistent message exchange 255 
between the elements of the system, regardless of what level of security is supported. 256 

An object store implementation defines the levels of security it supports.  By enriching the 257 
information included in a message a higher level of security can be internally provided, as 258 
opposed to leveraging an external network security mechanism. 259 

In taking this approach, we want to provide flexibility in choosing how to secure the transport, 260 
either internal or external, while allowing an installation to pay only for the level of security 261 
needed. This should enable a simplified solution in certain glass-house environments (where no 262 
network attacks are expected). It also should enable leveraging existing infrastructure for 263 
network security and privacy while avoiding the cost of duplicate mechanisms. At the same 264 
time, we must define a mechanism, which an object store can optionally implement to provide 265 
network security as part of protocol for use where no secure transport exists. 266 

1.2 Levels of Security 267 

We consider several different levels of security that an OSD could provide.  In the first version 268 
of the protocol we only directly provide the first three of these security levels.   Privacy can be 269 
provided through external mechanisms, e.g., running the protocol on an encrypted channel.   270 
The levels are incremental and support all the protections of the level below them. 271 

The particular level of security to be used for accessing a set of objects will be defined using a 272 
mechanism not specified by the initial version of the standard. 273 

1.2.1 No Security 274 

In the no-security level, the same message structure will be used.  However, when an object 275 
store is running with no security, the host must place zeros in the message related fields and the 276 
object store must not examine these fields.   277 

This is not considered a security level and its support is optional. 278 

1.2.2 Level 1 – Integrity of Capability (Access Control Security) 279 

Access Control Security is the common component to all the levels. 280 

Integrity of capabilities by itself is most useful when the channel between the object store and 281 
client is externally secured.  In this case, e.g., where we have an authenticated IPSec channel, 282 
we still need a mechanism that prevents a host from forging or otherwise modifying a credential 283 
and/or replaying a credential over a different authenticated channel.  In addition, we need to 284 
verify that the host rightfully possesses the credential it is presenting. Without a secure network, 285 

                                                 
8 An implementation need not be layered 
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using only integrity of capability leaves an installation susceptible to certain network attacks, 286 
e.g., man-in-the-middle, replay, etc. 287 

Support for this security level is optional.  However, its functionality must be supported in 288 
conjunction with all other security levels. 289 

1.2.3 Level 2 – Integrity of Command and Arguments 290 

Integrity of command and arguments is most useful when the channel between the object store 291 
and the client is not externally secured and where providing integrity (hashes) for both 292 
commands and data would be too expensive. 293 

With integrity of arguments, malicious hosts cannot replay command parameters, even when 294 
running on unsecured networks, but they can use network attacks on the data portion of the 295 
messages exchanged between the client and the OSD. 296 

Integrity of arguments prevents a malicious host from accessing a portion of object which was 297 
not accessed by some client with a valid credential for the object, or changing a read operation 298 
into a write, but it does not prevent a malicious host from modifying the data read from or 299 
written to the object. 300 

Support for this security level is optional.  If supported, it must be supported in conjunction with 301 
the functionality of integrity of capability. 302 

1.2.4 Level 3 – Integrity of Data (Access Control and Internal End-To-End 303 
Security) 304 

We assume that integrity of the data includes integrity of the command, i.e., there is no point in 305 
protecting the data if the command parameters describing to which object the datum belongs is 306 
not also protected. This level of security provides security similar to integrity of capability when 307 
the channel between the object store and the client is authenticated. The exact comparison 308 
between the two depends on the level of network security that is provided by the external 309 
security mechanism. The difference is that this level of the security internally secures the network 310 
as an integral part of the object store protocol, thereby defining an end-to-end solution at the 311 
storage layer as opposed to building upon pre-existing mechanisms for secure network 312 
channels.  313 

Support for this security level is optional.  If supported, it must be supported in conjunction with 314 
the functionality of the two prior levels.  315 

1.2.5 Privacy 316 

Providing privacy, i.e., encryption, to the command and data, either in flight or at rest is beyond 317 
the scope of the current proposal. This includes Levels 4 and 5.  Note, there is nothing in this 318 
proposal that precludes building upon external mechanisms for encryption. 319 
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1.2.6 Summary of Security Levels 320 

All of the security levels are summarized in the table below. The table shows each level on its 321 
own as well as each layer when combined with a network security mechanism (such as IPSec) 322 
providing integrity and (separately) encryption as well as integrity. 323 

 324 
  w/o  a secure network w/ a secure network 

(integrity) 
W/ a secure network 

(encryption) 
None No Security No security Network-level 

integrity 
Network-level privacy 

Level 1 Access Security End-to-end verification 
of credentials  

+ Protection from 
network attacks 

+ Protection from 
network snooping 

Level 2 + Command Integrity Protection from 
mistakes 

+ Protection from 
network attacks 

(some duplicated 
work) 

+ Protection from 
network snooping 

Level 3 + Data Integrity End-to-end verification 
of requests  

Duplicated work + Protection from 
network snooping 

Level 4  + Command Privacy Protection from traffic 
analysis  on commands 

Duplicated work + Protection from 
snooping of data 

Level 5 + Data Privacy End-to-end protection 
from snooping of data 

Duplicated work Duplicated work 

Level 6  + Data Integrity at Rest Protection from 
modification of data on 

physical attack 

Duplicated work Duplicated work 

Level 7 + Data Privacy at Rest Protection from leaking 
of data on physical 

attack 

Duplicated work Duplicated work 

1.3 Requirements Summary 325 

We have defined a set of requirements for the OSD security model; these requirements attempt 326 
to address a range of target platforms for implementing OSD. 327 

On the one hand we believe it is important to enable efficient implementations of the object 328 
storage interface in storage controllers; such storage controllers are relatively resource rich, and 329 
it is reasonable to envision them containing support for standard network security, e.g., 330 
hardware support for IPSec. We wish to be able to use an existing network security 331 
infrastructure (when practical) to take advantage of the development and design effort, as well 332 
as the administrative and support tools developed for such an infrastructure, i.e., we do not 333 
want to (needlessly) reinvent the wheel. 334 

On the other hand there is a requirement to enable efficient implementation in low-end storage 335 
devices. These devices are resource poor and the developers of these devices do not want to 336 
add additional hardware without a clear justification. These devices will not always support 337 
standard network security and in such environments it is necessary to provide end-to-end 338 
security against attacks without depending on an external mechanism to secure the network. 339 

We have defined the following set of requirements that must be met by the OSD security model. 340 
We distinguish in defining these requirements between access control security (security which is 341 
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directly tied to the semantics of object storage) and network security (security which is related 342 
primarily to network protocols and could be handled separately from the semantics of OSD). 343 
The requirements we define are: 344 

• Must prevent against attacks on individual objects. Such attacks include both intentional and 345 
inadvertent access to an object in a way not authorized by the security manager.  In 346 
particular, we must address malicious hosts forging or modifying a credential, a host stealing 347 
a credential from the channel between the object store and client,9 etc. 348 

• Must enable protection against attacks on the network such as man-in-the-middle (e.g., a 349 
computer posing as an object store), replay, etc. 350 

• Must provide a stand-alone solution that works in the event there is no existing network 351 
security infrastructure or for whatever reasons the implementer desires not to use an 352 
externally secured network. 353 

• Must provide a solution that can use an existing standard network security infrastructure. 354 

• Must not duplicate the cost of security, where it can be avoided. e.g., if the host is running 355 
over a secure network with Level 1, it should not incur a higher overhead than a host 356 
running over a non-secure network with Level 3. 357 

• Must allow low cost implementation of the critical path. 358 

• Must be simple. In particular, we should use the same structures and same message flow 359 
across all the protocol levels. 360 

• Should allow efficient implementation on existing network transports. 361 

1.4 Limitations in the Proposed Version of Object Store 362 
Protocol 363 

The version of the protocol defined in the following sections of this document is a first step 364 
towards OSD security. As such, it has the following limitations: 365 

• It does not internally support privacy on the channel between the object store and the client 366 

• It does not support privacy for the data at rest 367 

• It requires a communication channel between the object store and the security manager.  368 
This channel must be capable of carrying authenticated and encrypted messages. 369 

• Ability to define capabilities that apply to multiple objects where the object to which a 370 
capability applies is defined by a predicate on the object's attributes.  Note this is not the 371 
same as commands which apply to multiple objects. 372 

• Ability to define a capability which applies to only a portion of an object or to only certain 373 
object attributes. 374 

• It does not provide a means of determining from the object store what security level should 375 
be used. 376 

                                                 
9 As stated above, the assumption is that the channel between the host and the OSD is not encrypted, and 
thus it is possible for a malicious host to eavesdrop on this channel. 
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2 Structure of Credentials and Basic Message Flow  377 

2.1 Introduction 378 

To enforce legitimate use of capabilities, the client receives from the security manager (over a 379 
secure channel) both the capability (CAP_Args) and some associated secret information, a 380 
capability key (CAP_Key). Together the capability and capability key are the credential.  The 381 
client sends a capability to the object store as part of each request. The client uses the capability 382 
key to compute a validation tag, which it appends to each request. The structure of this 383 
validation tag depends upon whether an existing network security infrastructure is being used, or 384 
whether the network security is provided internally by the protocol.   Among other semantics 385 
depending upon the security level, the validation tag ensures the capability has not been 386 
modified.  Using the protocol appropriate for the security level, the object store validates the 387 
validation tag and checks whether the operation requested by the command is indeed 388 
permissible.  Note that the object store does not need to authenticate the client or to have a 389 
notion of "client identity''.   390 

2.2 Cryptographic Building Blocks   391 

The cryptographic primitive that is used throughout this protocol is a keyed message 392 
authentication code. The protocol uses an HMAC-SHA1 [9][10] whose output is 160 bits 393 
long. When applicable, the final output of 160 bits is truncated into 96 bits. The HMAC-SHA1 394 
key is 160 bits long. The means by which the HMAC-SHA1 key is generated is not specified 395 
by the protocol.  Later versions of this protocol may allow an object store to specify alternate 396 
cryptographic primitives (see section 8.8). 397 

2.3 Key Management Overview 398 

The credential is based on a secret key that is shared between the object store and the security 399 
manager. For each object store sj, K secret key_j is an authentication key shared between sj and the 400 
security manager. For clarity, when concentrating on a specific object store we omit the index j 401 
where no ambiguity arises. In particular, K secret key is a 160-bits long SHA1 key.   More 402 
accurately, there is a hierarchy of keys shared between the object store and the security 403 
manager. 404 

This protocol exchanges a secret key between the object store and the security manager:  405 

1. The security manager sends a secret key to the object store along with the key’s version 406 
number. 407 

2. The object store updates its key, removes any cached credentials established with the 408 
previous key, and acknowledges receipt of key. 409 

In chapter 8, we elaborate on the hierarchy of keys and the protocol for exchanging keys. 410 

In a later version of the protocol we may define a mechanism for piggybacking the exchanges of 411 
keys over the client-object store channel without requiring a separate channel for the 412 
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communication between the object store and security manager.  As we describe below, since a 413 
channel between the object store and security manager is needed for other reasons, we take 414 
advantage of this channel for the key exchange.  415 

2.3.1 Maintaining two valid keys K secret key simultaneously  416 

A key refresh event between the object store and the security manager invalidates all credentials 417 
at once.  This results in heavy communication traffic between all clients and the security 418 
manager; moreover, all new credentials must be explicitly validated (via MAC calculation) 419 
before being cached. This phenomenon may cause undesired performance degradation after the 420 
key refresh. To mediate this effect, we allow an object store to declare the last two (or more 421 
generally n) refreshed versions of K secret key as valid, instead of just the latest one. As a result, 422 
the process of validating a credential requires a key_version field in the credential to enable the 423 
object store to know which key to use in validating the credential. 424 

The number of key versions used is configured between the OSD and the security manager.  425 
The OSD implementation can specify the maximum number of key versions it supports; one is a 426 
legal value.  The maximum number of key versions supported by the protocol is 16. 427 

2.3.2 Partitions 428 

An object store is divided into multiple partitions, each of which carries its own keys for security 429 
purposes.  Instead of having a separate secret key for each object store sj, there is a distinct 430 
secret key for each two-tuple of object store sj and partition pk.   431 

All commands other than key exchange commands (see chapter 8) come with credentials which 432 
are protected by the key associated with a specific partition.  For most commands, e.g., those 433 
that operate on a specific object, the partition used is the partition containing the object being 434 
operated upon.   For those commands which operate at the level of an entire object store, e.g., 435 
the commands for formatting the object store or creating/removing partitions, we use the keys 436 
associated with partition zero.  Since the commands that operate at the level of the object store 437 
and not at the level of individual objects are by their nature very powerful, we want to limit the 438 
use of the keys associated with credentials used to execute these commands.  We thus define 439 
that partition zero should not contain user objects; in addition, to solve the problem of 440 
bootstrapping, an object store must always contain a partition zero (e.g., to allow formatting the 441 
object store).  We note that a realization of the object store standard can define an identity 442 
between the root object and partition zero.   443 

2.4 Capability Argument and Capability Key 444 

Define: 445 

• Type of the credential (4 bits), which must currently all, be zero.  This is intended to allow 446 
future extension to different types of credentials. 447 

• MAC Function is a four bit field indicating the cryptographic primitive used to construct the 448 
credential.  In the initial version of the protocol, the value of this field must be zero and the 449 
HMAC SHA-1 must be used (see section 2.2)    450 
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• Partion ID is the identity of the partition for which this capability is being generated.  Note 451 
we do not include the object store ID in the capability under the assumption that it is passed 452 
on all commands as part of the addressing. 453 

• Capability Nonce to be an l-bits nonce (l=128) chosen uniquely by the security manager 454 
for each credential. The nonce may be a counter.  We do not specify the means of 455 
generating this nonce, leaving the mechanism up to the implementer of the security manager.  456 
The role of this nonce is twofold: 1) to ensure that every credential generated by the security 457 
manager is unique; this prevents a host from masquerading as an OSD to another host, 458 
which would be possible if both hosts received the same exact credentials and 2) to serve 459 
as an audit field for allowing management applications to track the client which received a 460 
capability.    461 

This nonce has the following structure 462 

• Audit tag is a 32 bit value which the security manager uses in an implementation 463 
defined way to associate a credential with the client to which it granted the 464 
credential.  The correctness of the system will not be dependent upon the value the 465 
security manager places in this audit tag.  However, the overall performance and 466 
usability of the system can be improved if this field is used as a audit tag.   This field 467 
can be used for purposes of auditing and report generation.  It can also be used by 468 
an object store to better manage nonces in level 2 and level 3 of the protocol. 469 

• Random bits a 96 bit value which must be unique across all credentials with the 470 
same audit tag and values for the other fields. 471 

• Rights string specifies the rights and object(s) to which they apply.  At this point we 472 
propose the following structure for the rights string:10 473 

• Type – the implementation of the rights string; this is four bits with the following 474 
values 475 

• 0 – a specific object and set of operations is specified 476 
• 1-15 – reserved 477 

• Operations – a bitmap with one bit per OSD command; this bitmap should contain 478 
additional reserved bits for potential extension, without requiring a change in the size 479 
of credentials. 480 

• If the type == 0, then the following additional field is defined 481 

• Object – the local ID of the object to which this command applies.11 482 

• Object Version Tag – a k-bits value (k=32) that is maintained as an attribute for each 483 
object.  It is used to invalidate credentials, which have been issued earlier for the same 484 
object.  If the security manager wishes to invalidate all credentials it had previously 485 
generated for an object, it modifies the value of the attribute associated with the object (see 486 
section 7.1); the new value should never have been previously used in a credential for this 487 

                                                 
10 The size of the rights string is the sum of the sizes of its component fields with any necessary padding. 
11 The space required to encode the local ID will be used for pattern matching on attributes for future types 
of credentials to be defined. 
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object ID.   To allow resumed access to the object, the security manager should use this 488 
new value in future credentials it generates for this object . 489 

• Creation Time – the time the object was created provided as an attribute by the object 490 
store.  If object IDs are reused, then two creates for an object in a given partition which use 491 
the same ID must have different values for the create time.  Note, it is clearly acceptable for 492 
this value to be unique for every object created in an object store.  The size and resolution 493 
of this value will be as defined for the creation time attribute of objects. 494 

• Key_version – a four bit index indicating the key version of K secret key. The key version is set 495 
at every key refresh between the object store and the security manager.  See also section 496 
2.3.1 and chapter 8. 497 

• Expiry Time – a 48 bit field giving the time the credential expires in milliseconds since 498 
January 1, 1970.  The security manager should generate this time.  By using an expiry time 499 
we allow the security manager to give different lifetimes to different credentials.  We assume 500 
a weakly synchronized clock between the security manager and the object store. No 501 
assumptions are made on the client’s clocks.  The OSD should not accept a capability with 502 
an expiry time in the past. 503 

The credential C that the security manager issues for a client is comprised of two components, a 504 
“public token” CAP_Args and a “secret extra information” CAP_Key.  505 

CAP_Args  ≡ [rights string, Key_version, Nonce, Object Version Tag, creation time, 506 
expiry time, partition ID, object store ID]  507 

CAP_Key ≡ MAC_K secret key (CAP_Args) 508 

CAP_Key is the 160-bits long output of the HMAC-SHA1 computation on CAP_Args along 509 
with the implicit parameters of the object store ID and partition ID. Note that CAP_Key cannot 510 
be truncated (to 96 bits) as it is used later in the protocol as a key to another MAC 511 
computation.  It is the host’s responsibility to keep CAP_Key secret; if CAP_Key is 512 
compromised, than it is possible for an adversary to issue requests using the capability if it 513 
determines CAP_Args, which are passed on the wire between the OSD and host in the clear. 514 

We note that not all of the fields in the CAP_Args need to be passed explicitly on the wire.   In 515 
particular, since the object store knows the creation time and desired version tag for each 516 
object, it is not necessary to pass these values.  Instead, given the object ID, the object store 517 
can determine which object version tag and creation time to use in calculating the CAP_Key.  If 518 
the host had a credential created using different values for these fields, a MAC calculation 519 
would fail and the command would be rejected.   520 

In a similar vein, the partition ID and object store ID do not need to be passed as part of the 521 
capability for each command.  This is because these fields are part of addressability and will 522 
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need to be passed as part of the basic command (even if running with no security).  In other 523 
words, there is no need to pass partition ID and object store ID twice. 524 

The precise treatment of the object version tag, creation time, partition ID and object store ID 525 
will be defined by each realization of a concrete object store standard, however, we 526 
recommend that they not be passed as part of a capability on each command. 527 

Since the credential includes information which is stored as attributes for the objects (namely the 528 
creation time and version tag), we may have a problem of bootstrapping, in particularly if the 529 
security manager does not have this information in its memory.  How does the security manager 530 
generate a credential to read these attributes if it does not know these attributes?  In addition, in 531 
certain usage scenarios, e.g., all object IDs assigned by an external cataloging entity, the use of 532 
the creation time may require additional message exchanges and provide no benefit. 533 

To address this, if a credential generated by the security manager uses zero for the version 534 
tag/creation time, then when calculating the CAP_Args the object store should not take into 535 
account the actual value of the respective attribute associated with the object but rather will use 536 
zero (of the appropriate number of bits).  When used with the version tag, this essentially 537 
creates a credential which cannot be invalidated (other than by a key exchange which invalidates 538 
all credentials for the partition generated with the same working key).  Note that if a realization 539 
of this work as a concrete standard does not pass the complete values of version tag or creation 540 
time with each command (see above), it must pass an indication of whether or not these fields 541 
should be treated as zero. 542 

To delegate a credential C to another host, a host must transfer both the CAP_Args and 543 
CAP_Key.  While beyond the scope of this protocol, to ensure security, such delegation should 544 
be done over an encrypted channel.  545 

2.5 Anonymous Object Creation 546 

To support creating an object where the OSD provides the object ID, the security manager 547 
should generate a capability in which the object ID embedded in the rights string is zero and the 548 
only right specified in the operations bitmap is object creation.  The OSD must not allow such a 549 
capability to be used more than once.  To minimize the memory requirements the OSD must 550 
dedicate to ensuring that such capabilities are used at most once, it is strongly recommended 551 
that the security manager construct such capabilities with expiry times very close to the current 552 
time. 553 

2.6 Message Flow 554 

Prior to sending an object store command to a target, the client must request the credential from 555 
the security manager and in return the security manager sends back both the public part of the 556 
credential, CAP_Args, as well as the private part, CAP_Key. CAP_Key should be sent to the 557 
client over an authenticated and encrypted, channel to maintain its secrecy. To establish this 558 
channel (and also to let the security manager identify the client), the client and the security 559 
manager should authenticate each other in a preliminary step. The implementation of this channel 560 
and its protocol are not part of the object store protocol. 561 
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When the client executes the actual object store command, the object store should validate: 562 

1. The integrity of the public credential CAP_Args  563 
2. That the public credential CAP_Args is used by a client that legitimately received it.  564 
3. The integrity of the command itself (command and data), as required by the security 565 

level. 566 

For that, the client sends, along with the command, the public credential CAP_Args along with 567 
a MAC-based validation tag, which is computed using CAP_Key.  Since CAP_Key can be 568 
computed from CAP_Args and the secret shared between the security manager and the object 569 
store, the validation tag is also computable by the object store. 570 

The structure of the validation tag and its usage depends on the security level being used. 571 
Section 3 describes the validation tag if we assume an external mechanism for the integrity of 572 
data and command, namely an authenticated channel such as an IPSec authenticated channel. In 573 
Sections 5and 6 no such external mechanism is assumed and therefore the validation tag as well 574 
as its validation at the object store is more elaborate. 575 

2.7 Credential Invalidation 576 

As described above, the object store protocol provides two means for invalidating a credential.  577 
By the use of object version tag in each credential, we can invalidate all of the outstanding 578 
credentials for an object.  By a key exchange between the security manager and the object 579 
store we can invalidate all credentials a security manager had generated for a particular object 580 
store partition.  Note, by explicit decision, we have decided not to support an efficient means of 581 
externally invalidating all of the credentials given to a particular host by the security manager (but 582 
see section 4.4). 583 

2.8 Security Related Error Status 584 

The following error responses related to security can be returned by the OSD to the host.  585 
Some of these responses are limited to specific security levels as indicated: 586 

• NOT_SUPPORTED_CREDENTIAL_TYPE – the type of the credential is not supported 587 
by the object store. 588 

• CAPABILITY_MISMATCH – the requested operation is not allowed by the rights string 589 

• INVALID_MAC – the message authentication code (MAC) included in the request is not 590 
consistent with the credential included in the message; in other words, the CAP_Key 591 
calculated based upon the credential cannot be used to compute the same MAC as the one 592 
included in the message.  In the event that the MAC is invalid either this error or 593 
INVALID_KEY must be returned (regardless of other errors detected). 594 

• INVALID_VERSION – the request includes a credential with a object version tag which is 595 
no longer being accepted 596 

• INVALID_KEY – the key as indicated by key_version in the credential is no longer valid; 597 
the host must retrieve a new credential from the security manager prior to retrying the 598 
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operation.  An OSD implementation does not need to be able to distinguish this situation 599 
from the situation reported by INVALID_MAC; in which case it should report 600 
INVALID_MAC.  601 

• EXPIRED_CREDENTIAL – based upon the expiry time, the credential has expired. 602 

• INVALID_NONCE – the nonce does not contain a valid timestamp; a recommended time 603 
stamp will be returned with this code.  This may only be returned for level 2 or level 3. 604 

• NONCE_NOT_UNIQUE – a message with this per request nonce has previously been 605 
seen by this object store. This may only be returned for level 2 or level 3. 606 

• CAPABILITY_BLOCKED – The capability was blocked, e.g., based on the capability 607 
audit tag.  Note that the reason for the “blockade” is not given.  This may only be returned 608 
for level 2 or level 3. 609 

In addition to these error responses which are specific to security, the following additional 610 
errors, which we are not specifically related to security, can be returned: 611 

• INSUFFICIENT_RESOURCES – a temporary condition exists which does not allow 612 
processing this request due to a lack of resources 613 

• INVALID_MESSAGE_STRUCTURE – the structure of the message is not syntactically 614 
valid. 615 
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3 Level 1 – Integrity of Capabilities 616 

This security level is useful in two scenarios: 1) where no network attacks are expected to take 617 
place (such as a ‘glass house’ scenario) and 2) where an authenticated channel between the 618 
host and the OSD is assumed. The mechanism for establishing this channel is beyond the scope 619 
of the OSD protocol. 620 

3.1 Level 1 Security with Authenticated Channel 621 

For Level 1 security with an authenticated channel, the channel provides integrity of messages as 622 
well as an anti-replay mechanism (for the given channel).  The OSD-specific protocol prevents 623 
copying messages from one channel to another by tying the message to the channel via a 624 
validation tag; this tag is computed as MACCAP_key(ChannelID), where ChannelID identifies 625 
the communication channel.  Given that the OSD knows the channel on which a request was 626 
received, the OSD can validate that the MACCAP_key(ChannelID) included in a message is for 627 
the ChannelID associated with the channel on which the message was received.   The same 628 
validation tag can be used with all requests based upon a given credential.   629 

We do not need this validation tag on OSD responses since 1) the authenticated channel 630 
ensures the host any responses it receives are received from the intended OSD and 2) we trust 631 
the OSDs to not copy messages between channels (see section 1.1.2). 632 

The ChannelID is  a name for the channel that is unique to this channel between the client and 633 
the object store and is known to both ends.  The size of the ChannelID is transport dependent. 634 
The lifetime of the ChannelID is no greater than the lifetime of the channel;14 the lifetime of the 635 
ChannelID is independent of the lifetime of the key K secret key.  See section 3.3 for a more 636 
precise definition of the assumptions on the channel and ChannelID. 637 

Most likely, a value that can be used as a ChannelID already exists and was created at the time 638 
the channel was established. Otherwise, it requires another message exchange between the 639 
client and target, where: 640 

1. Client requests 'open security window' with the object store. 641 
2. Object store responds with a randomly chosen m-bit channel name ChannelID.15 642 

At this point we do not architect such a flow to explicitly have the object store provide the 643 
ChannelID but rather we assume the channel provides the ChannelID. 644 

Below is the protocol flow of messages along with a table that explains the messages and their 645 
corresponding arguments. Note that the OpenWindow message is not needed for every 646 
ReqCap message. Furthermore, it may not be needed at all if a ChannelID is already 647 
exchanged. 648 

                                                 
14 Note it would be permissible to change the ChannelID for an existing channel; this would invalidate 
cached credentials. 
15 Analogously, a ‘close security window’ clears knowledge of the session at the object store.   
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Sec Mgr Host ObSOpen Window

Response: Channel IDReq. Cap: Obj ID, ObS ID

Response: Cap Args, Cap 
Key

Read: Command, Cap Args, 
Channel ID, MACCAP_Key(0, ChannelID)

Response: Status, 
MACCAP_Key(0, ChannelID)

Req. Cap

Response Read

Response

Read: ... MACCAP_Key(0, ChannelID)

649 
 650 

Figure 2. Flow of Messages for Level 1 Security.  The establishment of the authenticated channel 651 
is not shown.  The OpenWindow exchange will not be required for most channels. 652 

 653 
Message Argument Explanation 

   
ReqCap ObjID Object identifier 
 Partition ID Partition ID 
 ObSID Object Store identifier 
   
ReqReturn Version  
 Rights  
 Expiration  
 Partition ID  
 Creation  
 Capability Nonce  
 CAP_Key MACsecret_key(CAP_Arguments) 
   
OpenWindow   
   
WindowReturn ChannelID  
   
ReadData ObjID  
 Partition ID Partition ID 
 ObSID Object Store identifier 
 CAP-Args  

CAP-Args 
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 Offset  
 Length  
 Nonce Ignored (all zeros) 
 ReqMac MACCAP_Key(ChannelID) 
   
ReadReturn Status  
 RetMac16 MACCAP_Key(ChannelID) 
 654 

3.2 Level 1- security without network security 655 

As noted above, this level of security is also useful when no network attacks are expected to 656 
take place.  In the event no secure network infrastructure is used, level 1 security protects the 657 
integrity of the capability. The protocol is identical to the one described above.  However, since 658 
the ChannelID is not in practice tied to a channel and there is no true means for tying a message 659 
to the channel.  An OSD implementation cannot, however, ignore the value of the validation tag 660 
if level 1 is being used without a secure network infrastructure since the validation tag is also 661 
used to validate the capability has not been modified.  In this case, zero should be used as the 662 
value of the ChannelID. 663 

3.3 Assumptions on Network Infrastructure for End-to-End 664 
Security 665 

We place the following requirements on the channel and ChannelID if we want to ensure and 666 
end-to-end security solution using level 1 of OSD security: 667 

• Within the lifetime of a key, K secret key, all channels established with a given object store from 668 
any host must receive unique channel IDs.  669 

• There must be a means for the host and OSD to associate a received message with the 670 
ChannelID for the channel on which the message was received. 671 

• Assuming that the channel provides the value of the ChannelID, this value must be non-672 
forgeable. 673 

• The channel must be authenticated (although it may be anonymous) in the sense that it must 674 
ensure both parties can be guaranteed all messages in a session come from the same party. 675 

The channel must ensure message integrity, i.e., non-modification of message contents by the 676 
network.  677 

3.4 Client-Object Store Message and Flow 678 

1. Client sends a command to the object store, along with the public token CAP_Args 679 
(defined above) and a 96-bits long validation tag V = MACCAP_key (ChannelID). V is 680 
computed using HMAC-SHA1 on the ChannelID, truncated to 96 bits. 681 

                                                 
16 As discussed above, this MAC is not necessary – is it only used for symmetry with level 2 and level 3 
security 
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2. Verification at object store: 682 

1. The validation tag V equals MACCAP_key (ChannelID), where CAP_Key is obtained 683 
as MAC K_secret key (CAP_Args). 684 

2. The rights string in the CAP_Args allows the requested operation  685 
3. The key_version is current.  686 
4. The capability’s Version Tag is either zero or equal to the version tag attribute of the 687 

object. 17 688 
5. The capability's Creation Time is either zero or equal to the creation time attribute of 689 

the object. 690 

If any of the checks fails, the request is denied. If checks (a) and (c) pass, the object 691 
store may cache the token CAP-Args associated with channel ChannelID. 692 

An object store implementation may cache the validation calculations.  In particular, if 693 
CAP_Args has ever been presented to the object store on this channel within the lifetime of 694 
current ChannelID, the request may be granted without re-validation (i.e., without redoing 695 
step 1).  The authenticated channel assures that another client is not replaying CAP_Args on 696 
this channel, rather it is currently presented by the same entity that presented it in the past, and 697 
hence a re-validation is not necessary.  698 

File Manager & OSD 
share a secret key

Secret Key

Secret Key

Client

OSD

4 OSD verifies request
1. X = MACsecret-key (CAP arguments)
2. Y = MACx(ChannelID)
3. Y =? ReqMAC

3

1 Client/FM communication 
over security channel

2

OSD returns:
1. CAP arguments
2. CAP-key

CAP arguments = {rights string, version, nonce, expiry time . . .
CAP-key = MACsecret-key (CAP arguments)

Client sends 
1. Command
2. CAP Arguments 
3. ReqMAC = MACCAP-key(ChannelID))

 699 
Figure 3. Flow for Level 1 Security 700 

                                                 
17 This check can be implicit in checking the validation tag as the object version tag is part of the CAP_Args 
and if the version tag is incorrect, the object store will not be using the same CAP_Key as the host.   This 
comment applies as well to the creation time.  It also applies to the other security levels.  It is not repeated. 
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3.5 Performance Considerations 701 

For level 1 security, we have the following performance considerations: 702 

• A client does not need to request a new credential on every command; rather the client can 703 
reuse the CAP_Args and CAP_Key on multiple commands for the same object(s). 704 

• The client does not need to recalculate the ReqMAC on each command; rather, this needs 705 
to be calculated only once per credential. 706 

• The object store does not need to recalculate X and Y on each exchange with a client.  707 
Rather since we assume a secure channel, these values need to only be calculated the first 708 
time object store sees a given capability. 709 
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4 Per Request Nonces for Level 2 and Level 3 710 

Level 2 and Level 3 of the security protocol use Nonces included in each request to prevent 711 
replay.  The requirements for correctness of a nonce-based approach to preventing replay are 712 
as follows: 713 

• The object store must not accept the same nonce more than once. 714 

• The object store must not accept a nonce that was rejected in the past.18 715 

In addition, it is acceptable for an implementation to reject valid requests with unseen nonces if 716 
necessary to ensure that the two basic requirements are met.  717 

There are three main means of generating nonces: 718 

• Random 719 
• Session based 720 
• Time based 721 

We believe it is fairly easy to argue that the time-based protocol has better performance and 722 
space requirements than either a session-based or random generation protocol if all entities in 723 
the system are well-behaved.   On the other hand, the time-based protocol can have extremely 724 
large memory requirements or require frequent changes of the secret keys if enough clients in the 725 
system are not well-behaved.   In addition, assumptions on strong clock synchronization 726 
between the clients and object store are problematic both from a practical and security 727 
perspective. 728 

The approach to nonces we define is a time-based approach modified to have only weak 729 
dependencies upon client clocks and augments to minimize the impact of poorly behaved 730 
entities. 731 

4.1 Background 732 

We define a system running level 2 or level 3 security as well-behaved if at any given time t, the 733 
total number of far-in-the-future messages (messages with a nonce whose time is greater than 734 
t + d) which have been sent to an object store from all clients, is less than k, for 735 
implementation-defined values d and k.  In other words, a system is well-behaved if the number 736 
of far-in-the-future messages, which an object store has received, is bounded.    Similarly a 737 
client running level 2 or level 3 security is defined as well-behaved if it does not send any 738 
nonces for a time greater than t + d where t is the current time of the target object store.   An 739 
ill-behaved client and ill-behaved system have the obvious definitions.   Malicious intent is not 740 
required for a client to be ill-behaved.   Also note that if there is malicious intent, the 741 
maliciousness is not necessarily directly from the ill-behaved client; for instance, a malicious 742 
time-server can causes clients to be ill-behaved.   743 

In the worst case, with the time-based nonces, an object store implementation must ensure that 744 
it has sufficient memory19 to remember the nonce from each message it could receive in the 745 
                                                 
18 This holds regardless of the reason the message was rejected 
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period between working key exchanges.  This is to prevent messages from being replayed: the 746 
implementation must also ensure that any message which has ever been rejected will never 747 
become valid in the future. In other words, given an object store which can handle n messages a 748 
second and a key exchange every e seconds, the object store needs to be able to remember ne 749 
nonces.20   This, admittedly unlikely worst case, would occur if every message received was for 750 
the end of the period in which the key was valid.   Note an alternative would be to allocate a 751 
fixed amount of memory, much less than for ne nonces and if this memory fills up, for the object 752 
store to force a key exchange.   This leaves open a denial of service (DOS) attack in which all 753 
existing capabilities  are invalidated.  The goal of our modifications to a pure-time-based nonce 754 
protocol is to reduce the easy of this DOS attack  755 

One way to mitigate the amount of memory required to handle ill-behaved systems21 is to design 756 
the messages in such a way that the object store would be able to reduce its memory 757 
requirements by organizing the nonces into groups. If the far-in-the-future messages are limited 758 
to a subset of the groups of nonces, the implementation can decide to reject nonces belonging to 759 
the problematic groups, while continuing to accept other nonces.  Clearly, the efficiency of such 760 
an approach depends on the accuracy of the grouping.  We leverage the audit tag field of the 761 
nonce22 in the CAP_Args for this purpose; see section 2.4. 762 

4.2 Requirements 763 

In addition to the general requirements listed above, we place the following requirements on the 764 
protocol: 765 

• The changes to allow better behavior in ill-behaved systems should incur no additional cost 766 
in the case of a well-behaved system. 767 

• An implementation that chooses so must be able to bound the amount of memory required 768 
for correct behavior independent of the frequency in which the key is exchanged between 769 
the object store and security manager (i.e., safety with bounded memory), while sill ensuring 770 
liveness for well-behaved clients in many scenarios where there are ill-behaved clients.  771 

• We must allow freedom to the object store implementer to trade-off between 772 
implementation complexity and overall system behavior in the event that clients are not well-773 
behaved. 774 

4.3 Structure of the Per Command Nonce 775 

When working with the time-based nonces, on each request, the host generates a nonce by 776 
combining a 48-bit time representing the number of milliseconds since January 1, 1970.   The 777 
nonce also includes a 48-bit random number.     778 

                                                                                                                                                 
19 Clearly various compression techniques could be used; for example see [11]. 
20 This is the number of nonces that must be remembered; the memory that is required is implementation 
dependent and may need to take into account compression techniques. 
21 Although there are still scenarios in which correct behavior entails either remembering all nonces or 
forcing a key exchange. 
22 Not to be confused with the per command nonce described in this section 
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4.4 Use of Nonce for Anti Replay 779 

Define the current interval for an object store whose clock currently is at time t as the period 780 
of time beginning with t-d1 and ending with t+d2, where d1 and d2 are values determined by the 781 
object store implementation.   The current interval defines the time-based nonces the object 782 
store expects to receive from well-behaved clients.   The object store can accept any valid 783 
request received in this time range.  To prevent replay, the object store must have sufficient 784 
resources to remember all nonces seen in this range.  Messages received with nonces less than 785 
t-d1 do not need to be remembered.23   Define as far-in-the-future a nonce for a time greater 786 
than t+d2.  By definition, such nonces will only be sent by ill-behaved clients.   787 

When the object store receives a request in level 2 or level 3 with a nonce in the current interval, 788 
the object store must remember the nonce in a current interval nonce list.24  While the only 789 
requirement from the protocol is that anti-replay be provided, the space allocated to the current 790 
interval nonce list should be sufficient25 to hold the number of nonces that can be received by the 791 
object store during the time of the current interval, i.e., a function of the size of a nonce (12 792 
bytes) times the number of messages the object store can receive in time d1 + d2. 793 

Note, the object store must remember the nonce even if the message fails verification of the 794 
MAC.  This is required to prevent the following, replay-like attack.  Assume an adversary 795 
hijacks a request to the object store, modifies the command portion of the request and forwards 796 
the request to the object store.  The object store will send an INVALID_MAC error response 797 
to the client.  The client may then decide to regenerate the request with a new nonce and MAC.  798 
Assuming this request is executed, the adversary can now replay the original request.  We 799 
should point out that a client should be suspicious of an INVALID_MAC response which does 800 
not itself contain a valid MAC. 801 

If the nonce in a request is for a time that is older than the current interval, the object store 802 
rejects the request without further processing with an INVALID_NONCE error message.   The 803 
INVALID_NONCE response includes the current time of the object store, allowing the client to 804 
try again with a nonce that will fall in the current interval.  The object store does not need to 805 
remember the nonce.  A well-behaved client will (logically) reset its clock to be that of the 806 
object store for future messages it sends. 807 

Finally, if the nonce in a request is a far-in-the-future nonce, the object store must remember 808 
the nonce in the far-in-the-future nonce list.26  The object store implementation may reject the 809 
command with an INVALID_NONCE status or it may decide to process the request as 810 
described for messages received with a nonce in the current interval, as long as the nonce 811 
uniqueness is guaranteed.27  If an INVALID_NONCE response is returned, as above, it will 812 

                                                 
23 Note we assume that if the clock of an object store is set backwards, a key exchange with the security 
manager will also take place. 
24 Note, the reference to a current internal nonce list is for explanatory purposes only; an implementation 
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met. 
25 After any compression techniques 
26 Note, the reference to a far-in-the-future nonce list is for explanatory purposes only; an implementation 
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met. 
27 But this does not enable the client to be informed that it should update its clock 
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include the current time of the object store and a well-behaved client will logically reset its clock 813 
to be that of the object store. 814 

We define the size of the far-in-the-future nonce list to be large enough to hold some number, 815 
k, of nonces,28 where k is implementation dependent, not specified by the protocol, and may 816 
vary at different times for a given implementation.   Clearly, a nonce can be removed from the 817 
far-in-the-future nonce list when the nonce represents a time prior to the start of the current 818 
interval.  If an implementation ensures the basic requirements, a nonce can be removed from the 819 
far-in-the-future nonce list at other times. 820 

To verify that a nonce has not previously been seen, the object store must look in both the 821 
current and far-in-the-future nonce lists.29 822 

If the object store receives more than k far in the future nonces, i.e., the object store has run out 823 
of resources to remember far-in-the-future nonce, the object store implementation has several 824 
options, as long as it guarantees the basic requirements of not accepting the same nonce more 825 
than once and not accepting a nonce that was previously rejected. 826 

One option, the "big hammer" option, is for the object store to refuse to accept any more 827 
messages using the same working key which was used for the capabilities in the messages with 828 
the far in the future nonces.   In this case, the object store may return an indication of 829 
INVALID_KEY when it receives requests with this working key.  It is implementation 830 
dependent as to how the security manager is notified that the working key needs updating.  831 
Options include (but are neither limited to, nor required to include) having the security manager 832 
poll the object store and having the client pass on an indication to the security manager. 833 

The drawback of the "big hammer" option is that it invalidates all capabilities  whose 834 
corresponding credential was created with the given working key.  In other words, all clients 835 
which have capabilities for the given object store partition created with the same version of the 836 
working key are impacted. 837 

To mitigate the likelihood an implementation needs to resort to the big hammer, the 838 
implementation can organize the far-in-the-future nonce list based upon the architected audit tag 839 
that the security manager places in the credential.30  One option an implementation can choose is 840 
to partition this nonce list based upon the audit tag.  For instance, if the object store receives 841 
more than c far-in-the-future nonces with a given audit tag created by the same working key, 842 
the object store can refuse to receive additional requests with the given audit tag until the oldest 843 
request in the far-in-the-future nonce list for this audit tag is older than the start of the current 844 
interval.   If the object store is refusing to receive requests with a given audit tag or capability, it 845 
should return CAPABILITY_BLOCKED.  For this to work, the object store must always 846 
remember the c newest far-in-the-future nonces received with a given audit tag.  In this case, the 847 

                                                 
28 Again, this may be after compression 
29 The description of separate current and far-in-the-future nonces lists is for explanatory reasons only; an 
implementation that ensures the basic requirements need not have separate lists. 
30 The implementation may arrange the far in the future set in any manner, e.g., it according to the nonce 
hash value. However using audit tags is a reasonable choice as they identify the “source” of the attack. 
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object store only needs to "drop the hammer" if more than k/c clients are not well behaved.    848 
Other implementations are clearly possibly as long as they meet the base requirements. 849 

We require that c be a value that is visible to a client.  Clients may send a batch of requests 850 
without waiting for a response.  In this case, a client needs to be able to determine how many 851 
outstanding requests it can send to an object store without risking having the object store decide 852 
it is ill-behaved and thus refusing to accept requests from it.  853 

4.5 Host Protocol 854 

To prevent replay of responses, hosts must maintain nonce lists in the same way the object store 855 
supports nonce lists 856 

4.6 Use of Time 857 

The only requirement for the time used to determine nonce timestamps is that it be 858 
monotonically increasing, although weakly synchronized clocks between the OSD and hosts will 859 
avoid additional messages. This time must never go backwards without a key exchange.   In 860 
order to catch the time up to an external “real time”, the OSD may choose to accelerate or 861 
decelerate the passage of time until it has caught up or the “real time” has caught up. Any OSD 862 
that is unsure of the time, or concerned about a time-based attack, may choose to expand the 863 
size of its nonce lists as it sees fit. This may slow performance, but does not affect security. 864 

4.7 Additional Attributes on Partition Object 865 

To allow implementing a complete solution, an object store implementing level 2 or level 3 866 
security, must define the following attributes on a partition object: 867 

• NUM_REQS_BEFORE_BAD – the minimum number of requests which are far-in-the-868 
future which a client may send, prior to the object store determining that the client is ill-869 
behaved.31  This guarantee will only hold if there are not too many clients sending 870 
NUM_REQS_BEFORE_BAD at the same time.  Note that one and zero are legal values.  871 

• WORKING_KEY_FROZEN(i) – an array of n=16 Boolean attributes, where the i'th 872 
attribute is true if an object store needs to "drop the hammer" and refuse any credentials 873 
created with the i'th version of the working key (as indicated in the key_version) field of the 874 
credential.  An OSD sets bit i when it, of its own initiative, invalidates working  key i and an 875 
OSD unsets bit i when it receives and accepts a key management command that defines a 876 
new value for working key i.  877 

• OLDEST_VALID_NONCE – the minimum number of milliseconds older than the object 878 
store's current time a nonce that is received will be considered valid; this attribute maps to 879 
the value d1 defined above.  Zero is a legal value implying the absence of information. 880 

                                                 
31 This is the "maximum" number of requests that a client trying to be well-behaved can issue without 
receiving a response from any, and be confident that the OSD will not invalidate the associated working key 
in the case that its nonces are in fact far-in-the-future relative to the OSD clock. 
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• NEWEST_VALID_NONCE – the minimum number of milliseconds newer than the object 881 
store's current time a nonce that is received will be considered valid; note an object store 882 
implementation may decide to treat as valid nonces that are even newer than this.  This 883 
attribute maps to the value d2 defined above. Zero is a legal value implying the absence of 884 
information. 885 
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5 Level 2 – Integrity of Arguments 886 

This security level does not make any assumption about the security of the underlying network 887 
and internally provides end-to-end protection for the arguments at the level of the OSD 888 
protocol. 889 

The Host makes a request for a capability to the Manager and the manager returns the 890 
credential composed of CAP_Args as well as the CAP_Key.  891 

The Host then presents the command, including the CAP_Args and the Cmd_Args, along with 892 
the ReqMac to the OSD. The ReqMac is a MAC using the CAP_Key of the Cmd_Args and a 893 
nonce constructed as described in the prior chapter. This ensures that the Cmd_Args are not 894 
modified in transit. The Nonce ensures that the command is not being replayed from some point 895 
in the past. 896 

The OSD then verifies that: 897 

1. the Nonce is fresh, i.e., it has not been seen before 898 
2. the Cmd_Args are compatible with the CAP_Args (i.e., the rights string permits the 899 

operation) 900 
3. the Version Tag and Creation Time are valid 901 
4. CapY matches ReqMac as sent by the host 902 

Where CapY is calculated using  903 

CapX  = a MAC computed using the secret_key on the CAP_Args (this is the CAP_Key) 904 
CapY  = a MAC using CapX on the Cmd_Args and the Nonce  905 

If any of these conditions cannot be verified, the request is rejected and no further command 906 
processing is performed other than processing related to the nonce as described above.   907 
Nonce related failures are handled as described in the prior section.  Other failures are reported 908 
with a Status as described in Section 2.8. 909 

In all cases: 910 

1. A RetMac is computed using CapX on the Status and the Nonce (from the original 911 
request) to allow the host to verify the response 912 

Note we can safely apply this MAC to all messages, including with a status of INVALID_MAC 913 
without becoming susceptible to a black box attack due to the properties of HMAC we are 914 
using.32  See section 2.2. 915 

                                                 
32 The Message Authentication Code (MAC) has the Computation - Resistance property [1], namely, given 
text -MAC pairs (x_i, h_k(x_i)), it is computationally infeasible to compute any other text -MAC pair (x_j,   
h_k(x_j)) for any new input x_j [3] . 
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Manager Host OSD

ReqCap()

ReqReturn()

ReadData()

ReadReturn()

916 
 917 
 918 

Message Arguments Explanation 
   
ReqCap ObjID Object identifier 
 Partition ID Partition identifier 
 ObSID Object Store identifier 
   
ReqReturn Version  
 Rights  
 Expiration  
 Partition ID  
 Creation  
 Capability Nonce Capability nonce 
 CAP_Key MACsecret_key(CAP_Arguments) 
   
ReadData ObjID  
 Partition   
 Offset  
 Length  
 Nonce Per command nonce 
 CapArgumentsCAP_Args  
 ReqMac MACCapKeyCAP_Key(ObjID, Offset, Length, Nonce) 
   
ReadReturn Status return code from the request, success or failure 
 RetMac MACCapKeyCAP_Key(Status, Nonce) 
 919 

CAP-Args 

CmdArguments 
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5.1 Performance Considerations 920 

For level 2 security, we have the following performance considerations: 921 

• A client does not need to request a new credential on every command; rather the client can 922 
reuse the CAP_Args and CAP_Key on multiple commands for the same object(s). 923 

• The object store does not need to recalculate CapX  on each exchange with a client.   924 



35 

6 Level 3 – Integrity of Arguments and Data 925 

This security level does not make any assumption about the security of the underlying network 926 
and provides end-to-end protection at the level of the OSD protocol. In addition to the 927 
protection of Level 2, this level also includes integrity checking of the data portion of the 928 
command. 929 

The Host makes a request for a capability to the Security Manager and the host returns a 930 
credential, namely the CAP_Args as well as the CAP_Key.   As in level 2, the Host then 931 
presents the command, including the CAP_Args and the Cmd_Args, along with the ReqMac to 932 
the OSD. The ReqMac is a MAC using the CAP_Key of the Cmd_Args and the Nonce. 933 

In addition, the DataMac is a MAC using the CAP_Key of the Data and the Nonce. On a 934 
WRITE command, the DataMac is computed by the Host, on a READ it is calculated by the 935 
OSD. 936 

The OSD then verifies that: 937 

1. the Nonce is fresh, it has not been seen before 938 
2. the Cmd_Args are compatible with the CAP_Args (i.e., the rights string permits the 939 

operation) 940 
3. the Version Tag and Creation Time are valid 941 
4. CapY matches ReqMac as sent by the host 942 

Where CapY is calculated using  943 

CapX  = a MAC computed using the secret_key on the CAP_Args (this is the CAP_Key) 944 
CapY  = a MAC using CapX on the Cmd_Args and the Nonce  945 

In addition for Writes the OSD verifies  946 

5.  (WRITE) DataZ matches DataMac as sent by the Host 947 

Where 948 

DataZ  =  a MAC computed using CAP_Key on the Data and Nonce 949 

If any of these conditions cannot be verified, the request is rejected and no further command 950 
processing is performed other than processing related to the nonce as described above.   951 
Nonce related failures are handled as described in the section 4.  Other failures are reported 952 
with a Status as described in Section 2.8. 953 

In all cases: 954 

1. a RetMac is computed using CapX on the Status and the Nonce 955 

In addition for successful read commands, the OSD returns  956 

2. a DataMac is computed using CAP_Key on the Data and Nonce 957 
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to allow the host to verify the response. 958 

Manager Host OSD

ReqCap()

ReqReturn()

ReadData()

ReadReturn()

WriteData()

WriteReturn()

959 
 960 
Message Arguments Explanation 
   
ReqCap ObjID Object identifier 
 Partition ID Partition Id 
 ObSID Object Store identifier 
   
ReqReturn Version  
 Rights  
 Expiration  
 Partition ID  
 Creation  
 Capability Nonce Capability nonce 
 CAP_Key MACsecret_key(CAP_Args) 
   
ReadData ObjID  
 Partition  
 ObSID  
 Offset  
 Length  
 Nonce Time-based nonce 
 CAP_Args  
 ReqMac MACCAP_Key(Cmd_Args, Nonce) 
   
ReadReturn Status return code from the request, success or failure 
 DataMac MACCAP_Key(Data, Nonce) 
 RetMac MACCAP_Key(Status, Nonce) 
   
WriteData Cmd_Args  

Cmd_Args 

CAP_Args 
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 Nonce Time-based nonce 
 CAP_Args  
 ReqMac MACCAP_Key(Cmd_Args, Nonce) 
 DataMac MACCAP_Key(Data, Nonce) 
   
WriteReturn Status  
 RetMac MACCAP_Key(Status, Nonce) 
 961 

6.1 Implementation Efficiency 962 

The efficient computation of the DataMac is straightforward in the case of READ. As data is 963 
read from the media, the MAC is computed and it is sent as part of the status message at the 964 
end of the command. 965 

The case of WRITE is more difficult. If the DataMac is sent in the same message as the 966 
command, then the Host must make two passes over the data – one to compute the MAC and 967 
a second to send the data. In order to avoid this, there must be an additional message as shown 968 
in the following. 969 

 970 

Manager Host OSD

ReqCap()

ReqReturn()

ReadData()

ReadReturn()

WriteData()

WriteReturn()

ReadVerify()

WriteVerify()

971 
 972 
ReadVerify DataMac MACCAP_Key(Data, Nonce) 
   
WriteVerify DataMac MACCAP_Key(Data, Nonce) 
 973 

Implementation of this additional message must be supported by the underlying transport in 974 
order to achieve the necessary efficiency. 975 
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7 Security Manger – OSD protocol 976 

While the precise behavior and policies applied by the security manager are not defined by this 977 
protocol, the interactions between the security manager and the OSD are defined.    978 

The OSD treats commands from the security manager in the same way it processes commands 979 
received from a host.  In other words, these commands must contain a valid capability 980 
authorizing the operation.   A security manager must use the appropriate level of security as 981 
specified for the partition with which it is interacting. 982 

7.1 Invalidation of capabilities for a Specific Object 983 

The security manager can invalidate all previously issued capabilities for a given object by 984 
informing the OSD that it should only accept capabilities for the object with a given object 985 
version tag .  The parameters that must be provided in this command include: 986 

• Object – the identity of the object to which this command applies.  This should include the 987 
partition ID and local ID 988 

• Object Version Tag - the value below which no capability will be accepted for this object. 989 

This function will be realized as a set attribute on the indicated object.   In addition to allowing 990 
set attributes, the capabilitiy provided for this function must include administrative rights. 991 

7.2 Clocks and Expiry Time 992 

The OSD must reject any capabilities that have expired.  Since the time placed in the capability 993 
comes from the security manager’s clock, for the OSD to be able to properly interpret the 994 
expiry time in the capability, we require some degree of synchronization between the clocks of 995 
the OSD and Security manager. 996 

The protocol for synchronizing the clocks is not specified as part of the object store protocol.  997 
The expectation is that a standard clock synchronization protocol will be used; we also believe it 998 
makes sense to allow multiple such protocols to be implemented.  The specification of the 999 
protocol is beyond the scope of this document.    1000 

We do, however, assume that this protocol will be implemented in a secure manner, i.e., we do 1001 
not want an adversary to be able to change the time for the OSD or Security Manager.  Such 1002 
an action could constitute an attack, which increased the effective lifetime of legitimately issued 1003 
capabilities.   Depending upon the implementation, it could also extent the time during which a 1004 
secret key is used. 1005 
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8 Key Management 1006 

The credential is based on a secret key that is shared between the object store and the security 1007 
manager. In order to prevent an adversary from obtaining too many credentials generated with 1008 
the same key, keys must be refreshed regularly. Thus, a key management scheme is required.  1009 

8.1 Requirements 1010 

• The security manager should be able to replace the object store keys in a secure manner 1011 
even if the channel it has with the object store is not secure. 1012 

• The security manager (or a higher level authority) should be able to divide the drive into 1013 
multiple partitions. Each partition should carry its own keys for security purposes. Thus, a 1014 
credential generated for one partition cannot be valid for another. 1015 

• A key refresh should invalidate all the credentials generated by that key. 1016 

• The key refresh scheme should not necessarily lead to a surge in the communication caused 1017 
by clients requesting a new valid credential. 1018 

• The security manager has a source for random bits. 1019 

• The object store is not required to have a source for generating random bits. 1020 

• The drive manufacturer cannot assume to know the identity of the drive purchaser.  1021 

• The drive manufacturer should not have control over the drive once it is initialized. i.e., the 1022 
manufacturer should not be able to know the secret keys that are used to generate 1023 
credentials.  1024 

• A drive crash should not necessarily invalidate valid credentials. 1025 

• Provisioning a new drive should not require mechanical actions to configure the security 1026 
mechanism. 1027 

8.2 Key Hierarchy 1028 

We suggest using the key hierarchy proposed by Gobioff in [7].  The key hierarchy is 1029 
comprised of 4 layers as described below: 1030 

• Master key – held by the disk owner. Used to initialize the drive and to create the 1031 
drive key. This key does not change unless the drive owner is changed. As the top 1032 
most key in the hierarchy it should be used as little as possible in order to reduce its 1033 
exposure, and it would be preferable if this key could be immutable as long as the 1034 
drive does not change owners.  1035 

• Drive key – held by the disk owner, used to divide the drive into multiple partitions 1036 
and to create the partition keys. This key is used very rarely and is changed only if 1037 
either it is (suspected to be) compromised, or the drive owner changes, or a (rare) 1038 
key refresh operation is carried in order to increase security.  1039 
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• Partition keys – held by the (partition’s) security manager. Used solely to create 1040 
the working keys. The partition keys are changed infrequently, but in a regular 1041 
manner to increase security.  1042 

• Working keys – held by the (partition’s) security manager. Used to generate the 1043 
cap-keys. The working keys are refreshed frequently (e.g., on an hourly or daily 1044 
basis) in order to limit the number of credentials that are generated by the same key. 1045 

8.2.1 Master Key 1046 

The master key is the topmost key in the hierarchy. It allows unrestricted access to the drive. 1047 
Its loss is considered a catastrophic event. Due to the importance of the master key, it is desired 1048 
to limit its use as much as possible. Thus, the only use of the master key is to initialize the drive 1049 
and to set the drive key. This master key does not change unless the drive owner is changed, 1050 
e.g., the drive is sold. We denote the Master key by Km.  1051 

8.2.2 Drive Key  1052 

The drive key provides an unrestricted access to the drive, very much like the master key, 1053 
except that it cannot be used either to initialize the drive or to set another master key or a new 1054 
drive key. Once the drive key is set it can be used to divide the drive into partitions and to set 1055 
the partitions’ keys. The drive key can be changed in case it was compromised, or as part of a 1056 
scheduled update operation in order to maintain security. We denote the drive key by Kd.  1057 

8.2.3 Partition Key  1058 

An object store can be divided into multiple partitions, formerly known as security classes, 1059 
which carry their own keys for security purposes.  From the perspective of the security 1060 
manager, it will have a distinct secret key for each two-tuple of object store sj and partition ck. 1061 
We denote the key of partition j by Kpj. 1062 

8.2.4 Working Key  1063 

The working keys are used to generate the capability keys for a particular partition; hence they 1064 
should be refreshed very frequently, e.g., on an hourly basis. However, since a key refresh 1065 
event between the object store and the security manager invalidates all credentials generated by 1066 
that key at once, a simplistic scheme which keeps only a single working key for each partition 1067 
would result in an undesired performance degradation as all the clients would be required to 1068 
communicate with the security manager in order to get new credentials; moreover, all new 1069 
credentials must be explicitly validated (via MAC calculation) before being cached by the object 1070 
store. To mitigate the undesired effects of a key refresh, the following optimization, as suggested 1071 
in [8], can be used: an object store may declare the last two (or more generally n) refreshed 1072 
versions of the working key as valid, instead of just the latest one. As a result, the process of 1073 
validating a capability requires a key_version field to be incorporated in the capability indicating 1074 
which key should be used in the validation process.33 1075 

 1076 

                                                 
33 For more details on this mechanism, see the object store security document 
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The number of active key versions used is configured between the OSD and the security 1077 
manager.  When setting a new working key, the security manager tags the key with a version 1078 
number (between 0 and 15); the object store uses this tag to determine which key to use in 1079 
validating a command.  The OSD implementation can specify the maximum number of key 1080 
versions it supports; one is a legal value.  The maximum number of key versions supported by 1081 
the protocol is 16. 1082 

We denote the working key of partition j with version i by Kwj,i.  1083 

8.3 Key Exchange Protocol 1084 

We present a protocol for key exchange that applies well-known techniques for key updates34 1085 
and does not use encryption.   1086 

The protocol has the following characteristics: 1087 

• Except for the topmost key, keys of one level can be replaced only by using a 1088 
higher-level key.  We describe how the master key is set in the Drive Initialization 1089 
section.  1090 

• The compromise of a key at a given level does not reveal information on keys in 1091 
higher levels, or on other keys (if multiple key versions exist) at the same level. 1092 

• The exchange of a key at a given level invalidates all keys at lower levels (e.g., a new 1093 
partition key invalidates all working keys). 1094 

We propose that the drive use a pseudo random number generator to generate the keys using a 1095 
random string (a seed) which is sent to it by the drive owner / security manager. Note that the 1096 
security manager and the drive must use the same generation procedure.  1097 

A cryptographic pseudo random number generator may be constructed either from a good 1098 
MAC function, e.g., SHA1, or a block cipher function, e.g., AES. The specific cryptographic 1099 
pseudorandom number generator we propose is one that utilizes the cryptographic hash SHA-1100 
1, as defined in FIPS 186, Section 3.3. Upon selecting the seed s, it basically applies the MAC 1101 
function to the values s and  s+1 using a shared (secret) key.  1102 

Again, TimeNonce refers to the 12-bytes nonce structure defines in the OSD protocol (a 32-1103 
bits timestamp followed by 64 random bits). 1104 

We  require that at each level, there  will be two keys rather then one. The first key is used for 1105 
message authentication and the second for key generation. For example, instead of having one 1106 
master key, Km, we have two keys, a keyed MAC key, denoted Km_A, used for message 1107 
authentication and a second key for the pseudo random number generator, denoted Km_G, used 1108 
for key generation. The same scheme holds for every level. As before, we defer the discussion 1109 
on how to set the master keys to the Drive Initialization section. 1110 

                                                 
34 See for instance section 12.3.1 of [3], Remark 12.19 (pp. 498-490), states that the confidentiality of the key 
update is not necessary, and that it may be avoided by employing instead a key derivation from a 
pseudorandom permutation. 
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Note that the protocol does not describe how random seeds are generated. It is the 1111 
responsibility of the security manager to create them as random as possible.  1112 

8.3.1 Setting the Drive Key 1113 

In order to set the drive key, a SetKey message is sent (as described below), protected by the 1114 
master key.  This command will include a  Seed, which is a random string of length 160 bits 1115 
computed by the drive owner; LSB (least significant bit) of the seed must be zero.  1116 

The new drive authentication key and generation key are computed by applying the generator 1117 
function on the seed to obtain two distinct pseudo random numbers as follows: 1118 

Kd_G = GKm_G(Seed or 0x01) 1119 
Kd_A= GKm_G(Seed) 1120 

8.3.2 Setting a Partition Key 1121 

In order to set the keys of a specific partition, a SetKey message is sent (as described below), 1122 
protected by the drive key.  The command will include a seed as defined above as well as a 1123 
Partition Number, which is the number of the partition for which the key is to be set.  1124 

The new partition authentication key and generation key are computed by: 1125 

Kp,partition number_G = GKd_G(Seed or 0x01) 1126 
Kp,partition number_A= GKd_G(Seed ) 1127 

Note, setting a partition key invalidates all working keys for the partition and thus all capability 1128 
keys for the partition.   1129 

8.3.3 Setting a Working Key 1130 

In order to set the working keys of a specific partition, a SetKey is sent (as described below), 1131 
protected by the partition key, e.g., for partition j, the security manager uses Kp,j.  The 1132 
command will include a seed and partition number as defined above, as well as a Version 1133 
Number, which is the version number of the key to be set.  1134 

The new working authentication key and generation key are computed by: 1135 

Kw,j,version number_G = GK p,j _G(Seed or 0x01) 1136 
Kw,j, version number_A= GK p,j _G(Seed) 1137 

8.4 Using the standard protocol to Set Keys 1138 

Instead of defining a set of specific protocol messages to be used for key management, we can 1139 
use a single new SetKey command along with the basic OSD security mechanisms.  We assume 1140 
that we have objects (or pseudo objects) with known identifiers representing the object store as 1141 
a whole as well as each partition.  The partition and working keys are set by invoking SetKey 1142 
on the object for the partition and the drive key by invoking SetKey on the object for the object 1143 
store as a whole.  1144 
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The parameters of the command are: 1145 

• One of the following, DriveKey , PatritionKey, or WorkingKey depending upon the 1146 
key being set 1147 

• an 8-byte string composed of a 1-byte KeyVersion35 followed by 7 bytes that 1148 
uniquely identifies the key (a counter will do). In particular, the key identifier 1149 
indicates the Partition number.  This information can be used for auditing and other 1150 
reporting purposes. 1151 

• the information that is needed to infer the next key, i.e., Value is set to be the Seed 1152 
that is used to generate the two corresponding keys (message authentication key and 1153 
key generation).36 1154 

The command is sent using the OSD security protocol as appropriate for the level of security 1155 
being used by the object store.   For messages sent to set the key for the drive, the object 1156 
representing the drive must be queried to determine the appropriate security level.  The CAP-1157 
Args right-string must contain an indication that keys can be set.   Note that the CAP_Key that 1158 
corresponds to the credential issued on this command is computed using Khigher_A. Specifically, 1159 
CAP_key = MAC_Khigher (CAP-Args).  1160 

8.5 Drive Initialization  1161 

The protocol gives full power over the drive to the possessor of the master key. Thus, using and 1162 
setting the master key should be done in the most secure environment possible.  To allow setting 1163 
the master key after the drive is obtained from a vendor, we assume that the drive comes from 1164 
the manufacturer with an initial master key built-in. This master key is also provided in a secure 1165 
manner (e.g., a floppy, a separate email message) to the owner.  Before the drive is used for 1166 
storing the client data, the drive must be initialized. The initialization is done by replacing the 1167 
initial master key with a new one, generated by the security manager / drive owner.  Note that 1168 

• The manufacturer cannot access the drive if initialization was done properly since the 1169 
new Master Key is known only to the owner.  1170 

• If the drive has been initialized elsewhere (mistakenly or maliciously) this will be 1171 
detected by the owner as the initial Master Key that was provided to the owner will 1172 
no longer work.  1173 

The following command will be used to set the master key. The message is authenticated using 1174 
the previous master key denote by   Km_A_old 1175 

SetMasterKey msg MKm_A_ previous (SetMasterKey, msg) 1176 
Where msg = Seed, TimeNonce 1177 

• Seed is a random string of length 160 bits computed by the drive owner; the LSB 1178 
(least significant bit) of the seed is zero.  1179 

                                                 
35 In the range 0-15. 
36 There is an assumption for Level 2 security that the attribute value is part of the command parameters and 
thus protected by the per command MAC. 
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The effect of this command is to set the master key as follows: 1180 

Km_G_new = GKm_G_previous (Seed or 0x01) 1181 
Km_A_new= GKm_G_previous (Seed) 1182 

Note, if one is concerned that an entity may listen on the wire as well as steal the master key 1183 
provided by the object store manufacturer, there is nothing that prevents sending these 1184 
commands via a direction connection and not over a network. 1185 

We point out that this differs from the suggestion in [8] is that the drive comes in an 1186 
uninitialized state, where it has no partitions and no valid keys. Here, before the drive is 1187 
placed in the general network, the owner initializes it using a secure network, e.g., a cable 1188 
directly attached from the owner laptop to the drive.  1189 

8.6 Storing Long Lived Keys  1190 

The drive keys are considered highly secret information. It is important to protect them from 1191 
being leaked to an adversary.  In order to protect the drive the keys should be stored in a 1192 
tamper resistant37 nonvolatile manner and maybe even protected by tamper resistant software 1193 
shield. Note that only the master key must be remembered in a tamper resistant manner.  The 1194 
seeds that were used to create all other keys can be saved in a nonvolatile memory and used to 1195 
recompute the keys in case of a drive crash.    1196 

Note, the object store should not remember the messages sent to set the master key in a 1197 
manner that could be externally accessible.38 1198 

8.7 Secure Computation 1199 

In order to conform with FIPS 140-1 [5] level 4, storing keys, computing the credential keys 1200 
and the key exchange protocol should be done in a secure coprocessor.  1201 

8.8 Parameterizing Cryptographic Primitives 1202 

We would like to provide the flexibility of having an object store support multiple 1203 
implementations of the cryptographic primitives, i.e., MAC functions.  To do this, a root object 1204 
will support an attribute which provides the cryptographic primitives an object store prefers; this 1205 
will be provided as an ordered and numbered list of primitives, where number zero is the highest 1206 
preference.  We will allow an object store to support up to sixteen primitives.  Note all objects 1207 
stores must support an HMAC SHA-1.   1208 

                                                 
37 See Security Engineering - A guide to building dependable distributed systems, by Ross Anderson, 
John Wiley & Sons, Inc. pp.277-304. 
38 The actual requirement for correctness may be slightly weaker than this, but this seems to be sufficient, if 
not completely necessary. 
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When the user gets the initial key for the object store, the key will also specify which 1209 
cryptographic primitives to use with the initial key exchange; the number of this combination will 1210 
also be specified. 1211 

The CAP_Args includes a four bit field indicating the cryptographic primitive used to construct 1212 
the credential.  The security manager will place in this field the number of the cryptographic 1213 
primitives used in constructing thecredential.   The security manager will need to take into 1214 
account the clients capabilities when it gives a credential to the client.  The client will need to use 1215 
the cryptographic primitive upon which it agreed with the security manager.   The intent of this 1216 
approach was to allow a smooth upgrade of a system, in which some clients may not support a 1217 
newer cryptographic primitive. 1218 

In the first version of the standard we will only support a single MAC function.  Later versions 1219 
of the standard will need to address the security issues that arise in using multiple MAC 1220 
functions with a single key. 1221 

 1222 
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10 Appendix 1246 

10.1 Comparison to Original Approach 1247 

 1248 
We now summarize the original NASD protocol and describe the differences between the 1249 
original protocol and the current proposal. 1250 
 1251 

10.1.1 Original NASD Proposal 1252 

As we stated, we want to enable providing only integrity of capabilities (if desired).   In the 1253 
original NASD work 9, which is the starting point for this work, integrity of capabilities is 1254 
intertwined with network security.  To access an object, a host receives a credential composed 1255 
of a capability and a CAP-key from a Security Manager; the CAP-key is derived from the 1256 
capability using a secret shared between the object store and the security manager.  On each 1257 
request, the CAP-key is used to authenticate the request: the CAP-key is used as key for a 1258 
MAC on the nonce and the command/data.    The nonce provides anti-replay, i.e., provides a 1259 
function of network security.   The MAC on the command/data provides integrity of 1260 
command/data.   The use of the CAP-key for computing the MAC implicitly provides integrity 1261 
of capability; if the capability had been modified then the object store would fail in its attempt to 1262 
validate the MAC of the command/data.  The CAP-key is also used by the object store to 1263 
authenticate its reply to the client. 1264 
 1265 

File Manager & OSD 
share a secret key

Secret Key

Secret Key

Client

OSD

4 OSD verifies request
1. X = MACsecret-key (CAP arguments)
2. Y = MACx(command, nonce)
3. Y =? ReqMAC

3

1 Client/FM communication 
over security channel

2

OSD returns:
1. CAP arguments
2. CAP-key

CAP arguments = {ObjID, version, rights, expire, …
CAP-key = MACsecret -key (CAP arguments)

Client sends 
1. Command
2. CAP Arguments
3. Nonce
4. ReqMAC = MACCAP-

key(command, nonce)

5 OSD sends 
1. OSD_Nonce
2. RepMAC = MACCAP-key(reply, OSD_nonce)

 1266 
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This approach requires both the host and the object store to calculate a new MAC for each 1267 
command. However, if we have a secure or trusted network, a direct application of original 1268 
NASD protocol involves redundant computation. In particular, if we were running on top of an 1269 
IPSec authenticated channel we would have: 1270 
 1271 
• Two mechanisms for anti-replay 1272 
• Two mechanisms for integrity of data 1273 
 1274 
This leads to our challenge: Define integrity of capabilities  and integrity of command/data such 1275 
that integrity of capabilities uses a subset of the cryptographic structure. 1276 
In addition to this major challenge, there are some additional minor issues with the original 1277 
definition of the protocol. These issues led to additional changes from the original NASD 1278 
protocol in the version of the object store security protocol presented in the following sections.  1279 

10.1.2 Ability to Use Either Channel ID or Command Unique Nonce 1280 

By replacing the command unique nonce with a channel ID, we are able to extend the original 1281 
NASD protocol into a protocol that supports running on an externally secured channel without 1282 
incurring unnecessary overhead.   Since the channel ID does not change on each command, it is 1283 
not necessary to recalculate a MAC that involves this channel ID on each command.   1284 
However, since the channel ID is tied to the channel and the channel is authenticated, receipt of 1285 
a MAC based upon this channel ID enables the object store to be certain that the capability it is 1286 
receiving was legitimately obtained by the client.  1287 

10.1.3 Unique Value Added to CAP_Args 1288 

To avoid scenarios in which the same CAP_Args and CAP_key is given by the security 1289 
manager to different clients requesting the same rights to the same (set of) object(s), we add a 1290 
unique value to each CAP_Args.  This change closes a potential security hole in the version of 1291 
the protocol using internal security.   Without this change a client could masquerade as an object 1292 
store for another client, if both clients get the same authorization for a given object. 1293 
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