w

©O© 0o ~NO 01 b~

10
11
12
13
14

15
16
17
18
19
20
21

Storage Networking Industry Association SNIA OSD TWG document

Object-Based Storage Devices cross posted to T10
Object Store Security Document T10/03-279r0
Revision: 8

Last Revised: 8/12/2003

Abstract

This document presents the requirements, motivation and a proposal for the security protocol
for object gore. This protocol is based upon the origina Network Attached Storage Device
(NASD) work [8] aswell as other work on secure object stores 9.

Related Documents
- The OSD White Paper offers an introduction to OSD and its gpplications.
The OSD Requirements Document discusses requirements of the OSD applications
discussed in the white paper.
The T10 SCSI Draft Standard for OSD implements the OSD framework for the SCS
architecture moddl.

Meeting
SNIA OSD TWG document cross posted to T10

ENDL
03-279r1

Rust strikeouts identify text that will not be included in OSD r08 because it is inappropriate to a T10 standard. Front matter such as title and table of contents pages also will not be included.

Dark blue strikeouts identify text that will not be included in OSD r08 because it is already present in OSD r07a.

Cyan highlights identify text that is critical to include in OSD r08.

Red or yellow highlights identify substantive changes that will be made as part of including text in OSD r08.

22
23

24

25
26
27
28
29
30
31
32
33

34
35
36
37

38
39
40
41
42
43
44
45
46

47
48
49
50
51
52

Table of Contents

0

1

3

4

REVISION HISTORY ..ottt 4
0.1 REVISION L.ttt sttt bbb 4
0.2 REVISION 2 ...ttt sttt sttt st st an e e nan e s na e sne e e nnnes 4
0.3 REVISIONS ..ottt sttt bbb bbbttt 4
0.4 REVISION 4 ...ttt ettt st e ab e e an e e e nae e snee e nnnes 4
0.5 REVISIOND ..ottt sttt bbb 4
0.6 REVISION B ...ttt sttt sttt b et e e nsn e s na e nne e e nnnes 4
0.7 REVISION 7 ceviieciieeeteecte ettt ettt bbb a bbb s 5
0.8 REVISION B ...ttt sttt sttt b et e e nsn e s na e nne e e nnnes 5

INTRODUCGCTION .ottt e e e e e e nsae e snaeeenaeeennees 6
1.2 LEVELSOF SECURITY ..ceuiiuctriiterissetssssessssssessssessssssessssssessssessssssessssssesssssssssssesanns 10
1.3 REQUIREMENTS SUMMARY.....ceuiiiteritetiesstesssesssssessssssessssesesssessssssesssssssssesanes 12
1.4 LIMITATIONSIN THE PROPOSED VERSION OF OBJECT STORE PROTOCOL 13

STRUCTURE OF CREDENTIALSAND BASIC MESSAGE FLOW................. 14
2.1 INTRODUCTION ..cecvuititisetesesesesssessssssessssssssssessssesessssessssssessssssessssesssssessssesnsnnses 14
2.2 CRYPTOGRAPHIC BUILDING BLOCKS.......ccuiiuiuiiecieieaetessie st sesse s s, 14
2.3 KEY MANAGEMENT OVERVIEWcvvuivriscessssesssesessssessssssessssssessssessssesessssesssnsns 14
24 CAPABILITY ARGUMENT AND CAPABILITY KEY ...cooviueriiirericreieeie s, 15
25 ANONYMOUSOBJIECT CREATIONcuiveriretisesesssesessssessssesessssssssssessssesesssesssnens 18
2.6 MESSAGE FLOW ...ouieiieieiccte ettt sttt 18
2.7 CREDENTIAL INVALIDATION ...coviteuieiterssesssssessssesessssessssssessssssesssessssesesssesnssnens 19
2.8 SECURITY RELATED ERROR STATUScviuivieieetiecieieae s b sesse st sannes 19

LEVEL 1-INTEGRITY OF CAPABILITIES.......coiieeeeeeeiee e 21
3.1 LEVEL1SECURITY WITH AUTHENTICATED CHANNELcceviecveriaeresecrerseesnanee, 21
3.2 LEVEL 1- SECURITY WITHOUT NETWORK SECURITYvuvirireriseressssessssesesnsessanees 23
3.3 ASSUMPTIONSON NETWORK INFRASTRUCTURE FOR END-TO-END SECURITY.......23
34 CLIENT-OBJECT STORE MESSAGE AND FLOWcocviieciicieiiseteisse s, 23
3.5 PERFORMANCE CONSIDERATIONS......cocviuitieiarsecsesssesesssessssssesssessssssesssssesanees 25

PER REQUEST NONCESFOR LEVEL 2AND LEVEL 3. 26

4.1 BACKGROUNDutiiiiiiiiesisiiieesssistee s ssiseee s s sssee e s s ssssee s s snsseeeessssneesssssseesssnsseeessanns 26

4.2 REQUIREMENTSttiiittie sttt e sttt stee st et e st e ssae e s nsse e s sne e ssn e e sseeesnneesnbeeesnneees 27
4.3 STRUCTURE OF THE PER COMMAND NONCE-.......ccciitieiiiieeiieeesreeesseesssseesssnes e 27
4.4 USE OF NONCE FORANTI REPLAY ...coiiiiiiiiie ettt 28
4.5 HOST PROTOCOL e iittiieiieiitie sttt e sttt e e s ssse e e s s nsnne e e s snnneeeesnnns 30
4.6 USEOF TIME...iiiiiiiiiie it s 30
4.7 ADDITIONAL ATTRIBUTESON PARTITION OBJECTvvveiiieeciieeesireeesineeesseeesnseeeens 30
5 LEVEL 2—-INTEGRITY OF ARGUMENTS........ccoiiii, 32
51 PERFORMANCE CONSIDERATIONS.cuttiiiuieeeiuieeessresesssesesssesssssesssssessnssnssnsenssnsens 34
6 LEVEL 3—INTEGRITY OF ARGUMENTSAND DATA ..., 35
6.1 IMPLEMENTATION EFFICIENCYcitiiiiiiiiii ittt 37
7 SECURITY MANGER —OSD PROTOCOLcocciriiiiiiinieieee e 38
7.1 INVALIDATION OF CAPABILITIESFOR A SPECIFIC OBECT .cecvveeeiveecieeessieeesnnee s 38
7.2 CLOCKSAND EXPIRY TIME ..eiiutiiiiiieesiiee sttt 38
8 KEY MANAGEMENT ...t 39
8.1 REQUIREMENTSttiiittie sttt e sttt stee sttt e site e s ssae e s s s sae e ssn e e saseeesnneesneeesnneees 39
8.2 KEY HIERARCHY .ttt ittt sttt e sttt e s st e st e e s sbae e e s asnn e e s s nsnseeessnneeeenanns 39
8.3 KEY EXCHANGE PROTOCOLvvtiiiieesirieesiieessiieessitee s s siee s s snee s s s 41
84 USING THE STANDARD PROTOCOL TO SET KEYS.....ciiiiiieiiiee e cees e s 42
85 DRIVE INITIALIZATION. ¢ccttutttesiteeesiteeesiseeesiseessiseesssseessssesssssessssessssessssessseessnseees 43
8.6 STORING LONG LIVED KEYS...iiiiiiiitiieciie e siee s siee s stee s sree s sssses e s snnessnnessnnes 44
8.7 SECURE COMPUTATION ..tiutteeeieeesseeesseessseessssesssssesssssesssssesssssessnssessnssessnseessnses 44
8.8 PARAMETERIZING CRYPTOGRAPHIC PRIMITIVEScciiieeiiieeeieeeesieeessieeesnseee s 44
9 REFERENCES........i s 46
10 APPENDIX ... s a7
10.1 COMPARISON TO ORIGINAL APPROACH.....cccctiiiiteiesiiieesteeesseessseessssesssssessnseeesns 47

8 8BRX

®

8BBR & &

B8 8 R

B8R & &

SRERR B B

ENDL

ENDL

on

Introduct

1

118

&

ENDL

ENDL

ENDL

! The difficulty isin the ordering of the hashes with respect to the datawhile in transit and during
verification at the device. Thisis discussed further in Section 6.1.

2 Authentication of the Security Manager by the host is out-of-scope of this protocol.

% The definition of this policy is outside of the scope of this proposal.

8

ENDL

ENDL

* The host may request a broader set of rights than what is required for the operation it currently wishes to
perform.

® |t is conceivable that an authentication is not required, e.g., an object with world-wide read permission.
® When caching of credentialsis possible, some verification steps can be omitted.
"The protocol does not specify this period, but we believe tens of minutes or longer would be reasonable.

9

ENDL

8 An implementation need not be layered

10

ENDL

ENDL

11

ENDL

ENDL

ENDL

ENDL

® As stated above, the assumption is that the channel between the host and the OSD is not encrypted, and
thusit is possible for amalicious host to eavesdrop on this channel.

13

ENDL

ENDL

2 Structure of Credentials and Basic Message Flow

ENDL

ENDL

ENDL
Repeated in Section 8

444 2.4 Capability Argument and Capability Key

445 Define

446 - | Type of the credentid (4 bits), which must currently al, be zero. Thisisintended to alow
447 future extenson to different types of credentids.

448 - | MAC Functionisafour bit field indicating the cryptographic primitive used to congtruct the
449 credentid. Intheinitid verson of the protocol, the value of this field must be zero and the
450 HMAC SHA-1 must be used (see section 2.2)

15

ENDL
Included in Credential
(I think)

ENDL

ENDL

ENDL
Repeated in Section 8

451
452
453

454
455
456
457
458
459
460
461

462

463
464
465
466
467
468
469

470
471

472
473

474
475

476
477

478
479
480

481
482

483
484
485
486
487

Partion ID isthe identity of the partition for which this capability isbeing generated. Note
we do not include the object store ID in the capability under the assumption thet it is passed
on al commands as part of the addressing.

Capability Nonce to be an I-bits nonce (1=128) chasen uniquely by the security manager
for each credentid. The nonce may be a counter. We do not specify the means of
generating this nonce, leaving the mechanism up to the implementer of the security manager.
The role of thisnonceistwofold: 1) to ensure that every credentia generated by the security
manager is unique; this prevents a host from masguerading as an OSD to another hogt,
which would be possbleif both hogts received the same exact credentials and 2) to serve
as an audit fidd for alowing management applications to track the client which received a
cgpability.

This nonce has the following Structure

Audit tag isa 32 bit vaue which the security manager usesin an implementation
defined way to associate a credentia with the client to which it granted the
credentid. The correctness of the system will not be dependent upon the vaue the
Security maneger placesin thisaudit tag. However, the overdl performance and
usability of the system can be improved if thisfidd isused asaaudit tag. Thisfidd
can be used for purposes of auditing and report generation. It can aso be used by
an object store to better manage noncesin level 2 and leve 3 of the protocal.

Random bitsa 96 bit vaue which must be unique across al credentids with the
same audit tag and values for the other fidds.

Rights string specifies the rights and object(s) to which they apply. At this point we
propose the following structure for the rights string:*

Type — the implementation of the rights string; thisisfour bits with the following
vaues

0 — a specific object and set of operationsis specified
1-15 —reserved

[Operations—abitmap with one bit per OSD command; this bitmap should contain
additiona reserved bits for potentia extension, without requiring achange in the size
of credentials.

If the type == 0, then the following additiond field is defined
[Object —thelocd ID of the object to which this command applies™

Object Version Tag — a k-hits vaue (k=32) that is maintained as an attribute for each
object. It isused to invaidate credentias, which have been issued earlier for the same
object. If the security manager wishesto invdidate dl credentids it had previoudy
generated for an object, it modifies the vaue of the attribute associated with the object (see
section 7.1); the new vaue should never have been previoudy used in a credentid for this

! The size of therights string is the sum of the sizes of its component fields with any necessary padding.
" The space required to encode the local 1D will be used for pattern matching on attributes for future types
of credentialsto be defined.

16

ENDL
Included
in CDB
Capability

ENDL
Included
in
Capability

ENDL

ENDL

ENDL

ENDL
32 bits will be reserved in the credential format for a Version Tag. However, version tagging is not to be included in OSD r08 so the use of the bits will not be defined.

ENDL
Included in Credential

ENDL
See also 2.5 below

ENDL

488
489

490
491
492
493
494

495
496
497

498
499
500
501
502
503

505

object ID. To dlow resumed access to the object, the security manager should use this
new vauein future credentids it generates for this object .

Creation Time — the time the object was created provided as an attribute by the object
store. If object IDs are reused, then two creates for an object in a given partition which use
the same ID mugt have different vaues for the createtime. Note, it is clearly acceptable for
this vaue to be unique for every object created in an object store. The sSize and resolution
of thisvaue will be as defined for the creetion time attribute of objects.

Key_version —afour bit index indicating the key verson of K o« ke, The key versonis st
a every key refresh between the object store and the security manager. See also section
2.3.1 and chapter 8.

[} Expiry Time — a48 bit field giving the time the credential expiresin milliseconds since
January 1, 1970. The security manager should generate thistime. By using an expiry time
we alow the security manager to give different lifetimesto different credentids. We assume
aweskly synchronized clock between the security manager and the object store. No
assumptions are made on the client’s clocks. The OSD should not accept a capability with
an expiry time in the past.

The credentid C that the security manager issues for a client is comprised of two components, a
“public token” CAP_Args and a“secret extrainformation” CAP_Key.

CAP_Args © [rightsstring, Key version, Nonce, Object Version Tag, creation time,
expiry time, partition 1D, object store D]
CAP_Key°® MAC_K e key (CAP_Args)

We note that not al of the fields in the CAP_Args need to be passed expliatly on thewire. In
pa’tlcular since the object store knows the creation time and desired vers ontag for each

Inagmilar van, the partition ID and object store ID do not need to be passed as part of the
capability for each command. Fhi by A

17

ENDL
Included in
Credential
(see highlight on next page)

ENDL
Included
in
Capability

ENDL

ENDL

ENDL
included in Credential

ENDL
output of the HMAC-SHA1 computation on CAP_Args along
with the implicit parameters of the object store ID and partition ID. Note that CAP_Key cannot 510
be truncated (to 96 bits) as it is used later in the protocol as a key to another MAC 511
computation. It is the host’s responsibility to keep CAP_Key secret; if CAP_Key is 512
compromised, than it is possible for an adversary to issue requests using the capability if it 513
determines CAP_Args, which are passed on the wire between the OSD and host in the clear. 514

ENDL
Based on this information, several fields are being moved from the standard defined Capability to the Credential.

ENDL

ENDL

ENDL

ENDL
The new subclause defining the Credential will include text explaining that several Credential fields should be thought of as being part of the Capability but are omitted from the Capability in each CDB because it is possible for the device server to derive their values from other information.

ENDL

ENDL

ENDL
See also 2.5 below

546

547
548
549
550
551
552
553

To addressthis, if acredentid generated by the security manager uses zero for the versien
hen when calculating the CAP_Args the object store should not take into
account the actud vaue of the respective attribute associated with the object but rather will use

zero (of the epproprlate number of blts) Wheorused-\ﬁlfh%hev&semag—thsmﬁdky

2.5 Anonymous Object Creation

To support creating an object where the OSD provides the object 1D, the security manager
should generate a capability in which the object ID embedded in the rights string is zero and the
only right specified in the operations bitmap is object cregtion. The OSD mugt not dlow such a
capability to be used more thanonce. To minimize the memory requirements the OSD must
dedicate to ensuring that such capabilities are used & most once, it is strongly recommended
that the security manager construct such capabilities with expiry times very close to the current
time.

ENDL

ENDL

ENDL

ENDL

ENDL
version
tag/ 535

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL
Add this to definition of Credential creation time field.

ENDL

erealeﬁﬂds%elealoreb}eet— By a key exchange between the secunty manager and the object
sore we can invaidate dl credentlals asecurlty manager had generated for a pa‘ucular object

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

CAPABILITY_BLOCKED - The capahility was blocked, e.g., based on the capability
audit tag. Note that the reason for the “blockade’ is not given. This may only be returned
for level 2 or levd 3.

20

ENDL

ENDL

ENDL
request ASC/ASCQ 24h/04h as SECURITY WORKING KEY FROZEN

“ Note it would be permissible to change the Channel I D for an existing channel; this would invalidate
cached credentials.
> Analogously, a‘ close security window’ clears knowledge of the session at the object store.

21

ENDL

g
................
"""
' P _Key\) X

. S— 1

22

ENDL

18 As discussed above, this MAC is not necessary —isit only used for symmetry with level 2 and level 3
security

23

ENDL

1 % = MAGsorroney (CAP argaments)
2= ¥ = MAG{EhanneHb)
3Y=2 RegMAEC

Y This check can be implicit in checking the validation tag as the object version tag is part of the CAP_Args
and if the version tag isincorrect, the object store will not be using the same CAP_Key asthe host. This
comment applies aswell to the creation time. It also appliesto the other security levels. It isnot repeated.

24

ENDL

25

ENDL

732

733
734
735
736
737
738
739
740
741
742
743

744
745

4 Per Request Nonces for Level 2 and Level 3

qulw The requirements for correctness of a noncebased approach to preventl ng replay ae
asfollows

The object store must not accept the same nonce more than once.

The object store must not accept a nonce that was regjected in the

4.1 Background

We define a system running level 2 or level 3 security as well-behaved if & any giventimet, the
tota number of far-in-the-future messages (messages with anonce whose time is grester than
t + d) which have been sent to an object store from dl clients, islessthan k, for
implementation-defined valuesd and k. In other words, a system iswell-behaved if the number
of far-in-the-future messages, which an object store hasreceived, isbounded. Smilaly a
client running level 2 or level 3 security is defined as well-behaved if it does not send any
nonces for atime greater than t + d wheret isthe current time of the target object store. An
ill-behaved client and ill-behaved system have the obvious definitions. Mdiciousintent is not
required for aclient to beill-behaved. Also notethat if thereis mdicious intent, the
maiciousnessis not necessarily directly from theill-behaved client; for insgtance, amalicious
time-server can causes clients to be ill-behaved.

In the worst case, with the time-based nonces, an object store implementation must ensure that
it has sufficient memory™ to remember the nonce from each message it could receive in the

'8 This holds regardless of the reason the message was rejected

26

ENDL

ENDL

ENDL
This holds regardless of the reason the message was rejected

ENDL
include footnote

ENDL

ENDL
Implementations are always allowed to reject requrets in SCSI.

ENDL

ENDL
may be useful in specifying the new Security Nonce attributes page (see 4.7)

746
747
748
749
750
751
752
753
754
755

756
757
758
759
760
761
762

775

776
e
778

period between working key exchanges. Thisisto prevent messages from being replayed: the
implementation must aso ensure that any message which has ever been rgected will never
become vdid in the future. In other words, given an object sore which can handle n messages a
second and a key exchange every e seconds, the object store needs to be able to remember ne
nonces® This, admittedly unlikely worst case, would occur if every message received was for
the end of the period in which the key wasvaid. Note an dternative would beto dlocate a
fixed amount of memory, much lessthan for ne nonces and if this memory fills up, for the object
goreto force akey exchange. Thisleaves open adenid of service (DOS) attack in which dl
exiding capahilities areinvaidated. The god of our modifications to a pure-time-based nonce
protocal isto reduce the easy of this DOS attack

One way to mitigate the amount of memory required to handle ill-behaved systems? isto design
the messages in such away that the object store would be able to reduce its memory
requirements by organizing the noncesinto groups. If the far-in-the-future messages are limited
to a subset of the groups of nonces, the implementation can decide to reect nonces belonging to
the problematic groups, while continuing to accept other nonces. Clearly, the efficiency of such
an gpproach depends on the accuracy of the grouping. We leverage the audit tag field of the
nonce® inthe CAP_Args for this purpose; see section 2.4.

4.3 Structure of the Per Command Nonce

When working with the time-based nonces, on each request, the host generates a nonce by
combining a48-hit time representing the number of milliseconds since January 1, 1970. The
nonce aso includes a 48- bit random number.

9 Clearly various compression techniques could be used; for example see [11].

® This s the number of nonces that must be remembered; the memory that is required isimplementation
dependent and may need to take into account compression techniques.

2 Although there are still scenariosin which correct behavior entails either remembering all nonces or
forcing akey exchange.

% Not to be confused with the per command nonce described in this section

27

ENDL
may be useful in specifying the new Security Nonce attributes page (see 4.7)

ENDL

808
809
810
811
812

4.4 Use of Nonce for Anti Replay E

When the object store receives arequest in leve 2 or levd 3 with anonce in the current interva,
the object store must remember the nonce inacurrent mtervaJ nonce list.** Whitethe-only

If the noncein arequest isfor atimethat i |s ol der than the current intervd, the object sore
rejects the request withed 4

HWAHD-NONCE response |ncl udesthe current time of the object Sore, d lowing the cllert to
try again with anonce that will fal in the current mtervd The object store does not need to
remember the nonce.) A y

object-store-for-future messagesH-sends:

Findly, if the nonce in arequest is afar-in-the-future nonce, the object store must remember
the nonce in the far-in-the-future nonce list.*® The object store implementation may reject the
command with-erHNVAEHB—NONEE-Status or it may decide to process the request as

described for messages received with anonce in the current interval, as long as the nonce
uniqueness is guaranteed.?’” H-an-HNVAHHD—NONEE response is returned, as-sbeve-itwith

23 Note we assume that if the clock of an object store is set backwards, akey exchange with the security
manager will also take place.

Note, the reference to a current internal nonce list is for explanatory purposes only; an implementation
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met.
% After any compression techniques

% Note, the reference to a far-in-the-future nonce list is for explanatory purposes only; an implementation
may choose any mechanism to remember previously seen nonce as long as the basic requirements are met.
7 But this does not enable the client to be informed that it should update its clock

28

ENDL
Valid nonces must have a time in this range.

ENDL
d1 and d2 are attributes defined in 4.7.

ENDL

ENDL
Since timestamps outside this range will be rejected for other reasons, this is the range in which nonces must be remembered to prevent duplicates.

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL
require use of descriptor sense data format and placement of the time in bytes 4-9 of the Command-specific information sense data descriptor

ENDL

ENDL

ENDL

ENDL
A well-behaved client will (logically) reset its clock to be that of the
object store for future messages it sends. 807

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL
If rejection include time as above.

ENDL

ENDL

821
822

823
824
825
826

827
828
829
830
831
832
833

834
835
836
837

838
839
840
841
842
843

845
846
847

We define the size of the far-in-the-future nonce list to be large enough to hold some number,
k, of nonces?® where k isimplementation dependent, not specified by the protocol, and may
vary a different times for a given implementation.

To verify that a nonce has not previoudy been seen, the object store must ook in both the
current and far-in-the-future nonce lists#

If the object store receives more than k far in the future nonces, i.e., the object store has run out
of resources to remember far-in-the-future nonce, the object store implementation has severa
options, aslong as it guarantees the basic requirements of not accepting the same nonce more
than once and not accepting a nonce that was previoudy rejected.

One option, the "big hammer" option, isfor the object Sore to refuse to accept any more
messages using the same working key which was used for the cgpabilitiesin the messages with
the far in the future nonces. In this case, the object store may return an indication of
INVALID_KEY when it receives requests with thisworking key. It isimplementation
dependent as to how the security manager is notified that the working key needs updating.
Optionsinclude (but are neither limited to, nor required to include) having the security manager
poll the object store and having the client pass on an indication to the security manager.

The drawback of the "big hammer” option isthat it invaidates al capabilities whose
corresponding credentia was created with the given working key. In other words, dl clients
which have capabilities for the given object store partition created with the same verson of the
working key are impacted.

To mitigate the likelihood an implementation needs to resort to the big hammer, the
implementation can organize the far-in-the-future nonce list based upon the architected audit tag
that the security manager placesin the credential.* One option an implementation can choose is
to partition this nonce list based upon the audit tag. For instance, if the object store receives
more than ¢ far-in-the-future nonces with a given audit tag created by the same working key,
the object store can refuse to receive additiona requests with the given audit tag until the oldest
request in the far-in-the-future nonce lig for this audit tag is older than the start of the current
interval. If the object store isrefusing to receive requests with a given audit tag or capability, it
should return CAPABILITY BLOCKED. For thisto work, the object sore must dways
remember the ¢ newest far-in-the-future nonces received with a given audit tag. In this case, the

% Again, thismay be after compression

The description of separate current and far-in-the-future nonces lists is for explanatory reasons only; an
implementation that ensures the basic requirements need not have separate lists.

¥ The implementation may arrange the far in the future setin any manner, e.g., it according to the nonce
hash value. However using audit tagsis a reasonabl e choice as they identify the “source” of the attack.

29

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL
There appear to be two error recovery algorithms here, both of which are options and both of which have support featured baked into the standard.

In increasing order of severity the algorithms are:
 1) Use Audit in the Credential Nonce to block all Capabilities whose
 Credential contains the affected Audit value and return a unique
 additional sense code indicating the action.
 2) Use the working key used to compute the Credential integrity check
 value (known to the device sever by the Key Version field in the
 Capability) to invalidate all Capabilities whose Credential integrity
 check value is computed using that key, the so called "big hammer".
 Use of this algorithm is indicated by the Working Key Frozen attribute
 (see section 4.7), but does not have a unique additional sense code
 assigned in this document (one will be assigned anyway.

These two algorithms (maybe methods) will be specified in increasing order of severity. Colorful phrases such as "big hammer" will be omitted. Algorithms that are internal to the device server will not be incorporated. The focus will be on describing results as observed by the application client.

848
849

850
851
852
853

865

866
867

868
869
870

872
873
874
875
876
877

878
879
880

object store only needsto "drop the hammer" if more than k/c clients are not well behaved.
Other implementations are clearly possibly as long as they meet the base requirements.

We require that ¢ be avauethat isvigbleto aclient. Clients may send a batch of requests
without waiting for aresponse. In this case, aclient needs to be able to determine how many
outstanding requests it can send to an object store without risking having the object store decide
itisill-behaved and thus refusing to accept requests from it.

4.7 Additional Attributes on Partition Object

To dlow implementing a complete solution, an object store implementing level 2 or level 3
security, must define the following attributes on a partition object:

NUM_REQS BEFORE_BAD — the minimum number of requests which are far-in-the-
future which aclient may send prlor to the object dore determlnlng that thecllent isill-
behaved.? Fhi N

WORKING_KEY FROZEN(i) —an array of n=16 Boolean attributes, where thei'th
attribute is true if an object store needs to "drop the hammer” and refuse any credentias
created with the i'th verson of the working key (asindicated in the key version) fied of the
credentiad. An OSD sets bit i whenit, of itsown initigtive, invaidatesworking key i and an
OSD unsets bit i when it receives and accepts a key management command that defines a
new vaue for working key i.

OLDEST _VALID_NONCE - the minimum number of milliseconds older than the object
store's current time a nonce that is received will be consdered vaid; this attribute maps to
the value d; defined above. Zeroisalegd vaue implying the absence of information.

3 Thisis the "maximum" number of requests that a client trying to be well-behaved can issue without
receiving aresponse from any, and be confident that the OSD will not invalidate the associated working key
in the case that its nonces are in fact far-in-the-future relative to the OSD clock.

30

ENDL
assume all attributes are not host settable

ENDL

ENDL
freezing the working key associated with those requests.

ENDL

ENDL
that the device sever may accept

ENDL

ENDL

ENDL
This wil be on 16-bit attribute to simplify the task of determining if any working keys are disabled.

ENDL
see notes on previous page

881
882
883
884
885

NEWEST_VALID_NONCE — the minimum number of milliseconds newer than the object
store's current time a nonce that is received will be considered vaid; note an object store
implementation may decide to treat as valid nonces that are even newer than this. This
attribute maps to the vaue d, defined above. Zero isalegd vaue implying the absence of
informetion.

31

ENDL
assume all attributes are not host settable

¥ The Message Authentication Code (MAC) has the Computation - Resistance property [1], namely, given
text-MAC pairs (x_i, h_k(x_i)), itis computationally infeasible to compute any other text-MAC pair (X_j,
h_k(x_j)) for any new input x_j [3] .

32

ENDL

m_ / ||||||| Yo e

RegCap

RegReturr | Versien

ReodBata | OB{D

ReadReturn | Statds

3| 3|
9 3| 3|
o] & &

[(p]

$ [

> o

q B

) >

SR)

4))

a8l (Bal0id Bl

33

ENDL

ENDL

ENDL

Readbatal)
ReagReturn()

m_ -II-/IIIJI IIII,—FII IIII_ T

|
1
!
1
_

OobSib

CAPKey

w
»
-
q
| d
al 2
o P~
D n_
o InM
F
)]
A
P

W

Message = | Arguments
RegCap

RegReturr | Version

Reedbata | OB{tD

ReadReturn | Statds

WriteData | Emd-Args

36

ENDL

%_ [—————————— T T ——E - —a——————

Readbata()

WriteReturn | Status

37

ENDL

ENDL

976

977
978

979
980
981
982

7 Security Manger — OSD protocol

While the precise behavior and policies gpplied by the security manager are not defined by this
protocol, the interactions between the security manager and the OSD are defined.

The OSD treats commands from the security manager in the same way it processes commands
received from ahogt. In other words, these commands must contain a valid capability
authorizing the operation. A security manager must use the appropriate level of security as
specified for the partition with which it isinteracting.

7.2 Clocks and Expiry Time

The OSD mugt reject any capabilities that have expired. Since the time placed in the capability
comes from the security manager’s clock, for the OSD to be able to properly interpret the
expiry time in the cgpability, we require some degree of synchronization between the clocks of
the OSD and Security manager.

The protocol for synchronl zing the clocks is not specrfl ed as pa’t of the object store protocol

We-do,-hewever-assdrme-theat this protocol will be implemented in a secure manner, i.e., we do
not Want an adversary to beableto change the timefor the OSD or Securlty Manager Sdeh

38

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

ENDL

1006

1007
1008
1009

1028

1029
1030

1031
1032
1033
1034

1036
1037
1038
1039

8 Key Management

The credential is based on a secret key that is shared between the object store and the security
manager. In order to prevent an adversary from obtaining too many credentias generated with
the same key, keys must be refreshed regularly. Thus, akey management scheme s required.

8.2 Key Hierarchy

We suggest using the key hierarchy proposed by Gobioff in [7]. Thekey hierarchy is
comprised of 4 layers as described below:

Master key —held by the disk owner. Used to initidize the drive and to create the
drive key. This key does not change unless the drive owner is changed. Asthe top
most key in the hlerarchy it should be used aslittleas possble in order to reduce its
exposure, and -

dwedee—net—ehaageewaer&

Drive key — held by the disk owner, used to divide the drive into multiple partitions
and to create the partition keys. Thiskey is used very rarely and is changed only if
either it is (suspected to be) compromised, or the drive owner changes, or a (rare)
key refresh operation is carried in order to increase security.

39

ENDL

ENDL

1040
1041
1042

1043
1044
1045

1046

1047
1048
1049
1050
1051

1052

1053
1054
1055
1056
1057

1058

1059
1060
1061
1062

1063

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1076

Partition keys — held by the (partition’s) security manager. Used soldly to creste
the working keys. The partition keys are changed infrequently, but in aregular
manner to increase security.

Working keys — held by the (partition’s) security manager. Used to generate the
cap-keys. Theworking keys are refreshed frequently (e.g., on an hourly or daily
basis) in order to limit the number of credentidsthat are generated by the same key.

8.2.1 Master Key

The master key isthe topmost key in the hierarchy. It dlows unrestricted access to the drive.
Itslossis considered a catastrophic event. Due to the importance of the master key, it is desired
to limit its use as much as possible. Thus, the only use of the master key isto initidize the drive
and to set the drive key. This master key does not change unless the drive owner is changed,
e.g., the driveis sold. We denote the Master key by Km.

8.2.2 Drive Key

Thedrive key provides an unresiricted access to the drive, very much like the master key,
except that it cannot be used either to initidize the drive or to set another master key or anew
drive key. Oncethe drive key is st it can be used to divide the drive into partitions and to set
the partitions' keys. The drive key can be changed in case it was compromised, or as part of a
scheduled update operation in order to maintain security. We denote the drive key by Kd.

8.2.3 Partition Key

An object store can be divided into multiple partitions, formerly known as security classes,
which carry their own keys for security purposes. From the perspective of the security
maneger, it will have adigtinct secret key for each two-tuple of object store 5 and partition ¢
We denote the key of partition j by Kp.

8.2.4 Working Key

The working keys are used to generate the capability keysfor a particular partition; hence they
should be refreshed very frequently, e.g., on an hourly basis. However, since akey refresh
event between the object store and the security manager invalidates dl credentids generated by
that key & once, asmplistic scheme which keeps only a single working key for each partition
would result in an undesired performance degradation as al the clients would be required to
communicate with the security manager in order to get new credentials, moreover, al new
credentials must be explicitly vaidated (viaMAC caculation) before being cached by the object
dore. To mitigate the undesired effects of a key refresh, the following optimization, as suggested
in[8], can be used: an object store may declare the last two (or more generdly n) refreshed
versonsof theworking key asvdid, instead of just the latest one. As aresult, the process of
vaidating a capability requiresakey version fied to be incorporated in the cgpability indicating
which key should be used in the validation process.®

% For more details on this mechanism, see the object store security document

40

1077
1078
1079
1080
1081
1082

1083

1084

1085
1086

1087

1088
1089
1090

1091
1092

1093
1094

1095
1096
1097

1098
1099
1100
1101
1102

1103
1104

1105
1106
1107
1108
1109
1110

The number of active key versons used is configured between the OSD and the security
manager. When setting a new working key, the security manager tags the key with aversion
number (between 0 and 15); the object store uses this tag to determine which key to usein
vaidating acommand. The OSD implementation can specify the maximum number of key
versonsit supports, oneisalegd vaue. The maximum number of key versons supported by
the protocol is 16.

We denote the working key of partition j with version i by Kw ;.

8.3 Key Exchange Protocol

We present a protocol for key exchange that applies well-known techniques for key updates™
and does not use encryption.

The protocol has the following characterigtics:

Except for the topmost key, keys of one level can be replaced only by using a
higher-level key. We describe how the magter key is set in the Drive Initidization
section.

The compromise of akey a agiven level does not reved information on keysin
higher levels, or on other keys (if multiple key versons exis) at the same leve.

The exchange of akey a agiven leve invaidates dl keys at lower levels (eg., anew
partition key invalidates dl working keys).

We propose that the drive use a pseudo random number generator to generate the keysusing a
random string (a seed) which is sent to it by the drive owner / security manager. Note that the
security manager and the drive must use the same generation procedure.

A cryptographic pseudo random number generator may be congtructed either from a good
MAC function, e.g., SHA1, or ablock cipher function, e.g., AES. The specific cryptographic
pseudorandom number generator we propose is one that utilizes the cryptographic hash SHA-
1, asdefined in FIPS 186, Section 3.3. Upon selecting the seed s, it basicdly appliesthe MAC
function to thevauessand s+ 1 using a shared (secret) key.

Agan, TimeNonce refers to the 12-bytes nonce structure defines in the OSD protocol (a 32-
bits timestamp followed by 64 random bits).

We requirethat a each level, there will be two keys rather then one. Thefirdt key is used for
message authentication and the second for key generation. For example, instead of having one
master key, Km, we have two keys, akeyed MAC key, denoted K, 4, used for message
authentication and a second key for the pseudo random number generator, denoted K, 6, used
for key generation. The same scheme holds for every level. As before, we defer the discussion
on how to set the master keysto the Drive Initialization section.

¥ See for instance section 12.3.1 of [3], Remark 12.19 (pp. 498-490), states that the confidentiality of the key
updateis not necessary, and that it may be avoided by employing instead akey derivation from a
pseudorandom permutation.

41

1111
1112

1113

1114
1115
1116

1117
1118

1119
1120

1121

1122
1123
1124

1125

1126
1127

1128
1129

1130

1131
1132
1133
1134

1135

1136
1137

1138

1139
1140
1141
1142
1143
1144

Note that the protocol does not describe how random seeds are generated. It isthe
responsibility of the security manager to create them as random as possible,

8.3.1 Setting the Drive Key

In order to set the drive key, a SetK ey message is sent (as described below), protected by the
mester key. This command will indudea Seed, which isarandom string of length 160 bits
computed by the drive owner; LSB (least Sgnificant bit) of the seed must be zero.

The new drive authentication key and generation key are computed by applying the generator
function on the seed to obtain two digtinct pseudo random numbers as follows:

Kd_G = GKm_G(Seed or OXO].)
Kd_A= GKm_G(%ed)

8.3.2 Setting a Partition Key

In order to set the keys of a specific partition, a SetK ey message is sent (as described below),
protected by the drive key. The command will include a seed as defined above aswell asa
Partition Number, which isthe number of the partition for which the key isto be set.

The new partition authentication key and generation key are computed by:

Kp,partition number G = GKd_G(%ed or 0X01)
K p,partition number A= Gkd_c(Seed)

Note, setting a partition key invaidates dl working keysfor the partition and thus al capability
keysfor the partition.

8.3.3 Setting a Working Key

In order to set the working keys of a specific partition, a SetK ey is sent (as described below),
protected by the partition key, e.g., for partition j, the security manager usesKp,j. The
command will include a seed and partition number as defined above, aswell asaVersion
Number, whichis the verson number of the key to be s&t.

The new working authentication key and generation key are computed by:

Kw,j version number_G = Gk P, _G(Seed or OXOl)
KW,j, version number_A= GK p. _G(Seed)

8.4 Using the standard protocol to Set Keys

Instead of defining a set of gpecific protocol messages to be used for key management, we can
use asingle new SetKey command aong with the basic OSD security mechanisms. We assume
that we have objects (or pseudo objects) with known identifiers representing the object store as
awhole aswell as each partition. The partition and working keys are set by invoking SetKey
on the object for the partition and the drive key by invoking SetKey on the object for the object
store asawhole.

42

ENDL
this is taken to me "with a Capability whose Credential Integrity Check Value is computed using the xxx key"

1145 The parameters of the command are:

1146 - Oredf thefollowing, DriveKey , PatritionKey, or WorkingKey depending upon the
1147 key being set

1148 . an 8-byte string composed of a 1-byte KeyVersior™ followed by 7 bytes that

1149 uniquely identifies the key (a.counter will do). In particular, the key identifier

1150 indicates the Partition number. Thisinformation can be used for auditing and other
1151 reporting purposes.

1152 - theinformation that is needed to infer the next key, i.e,, Vadueis st to be the Seed
1153 that is used to generate the two corresponding keys (message authentication key and
1154 key generation).®

1155 Thecommand is sent using the OSD security protocol as appropriate for the level of security
1156 being used by the object store. For messages sent to set the key for the drive, the object
1157 representing the drive must be queried to determine the appropriate security level. The CAP-
1158 Argsright-string must contain an indication that keys can be set. Note that the CAP_Key that
1159 correspondsto the credentia issued on this command is computed using Krigher a. Specifically,
1160 CAP_key = MAC_Kjighe (CAP-ArQS).

% |n the range 0-15.
% Thereisan assumption for Level 2 security that the attribute value is part of the command parameters and
thus protected by the per command MAC.

43

ENDL
Does not use the SET KEY command and thus must be outside the scope of the standard.

1190

1191
1192
1193
1194
1195
1196

1197
1198

1199

1200
1201

Ko new ="Crmc_previeus (S0EEHOF-6x%01)

8.6 Storing Long Lived Keys

The drive keys are consdered highly secret information. It isimportant to protect them from
being leaked to an adversary. In order to protect the drive the keys should be stored in a
tamper resistant®” nonvolatile manner and maybe even protected by tamper resistant software
shield. Note that only the master key must be remembered in atamper resistant manner. The
seeds that were used to create dl other keys can be saved in a nonvolatile memory and used to
recompute the keys in case of adrive crash.

Note, the object store should not remember the messages sent to set the master key ina
manner that could be externaly accessible®

8.7 Secure Computation

In order to conform with FIPS 140-1 [5] leved 4, storing keys, computing the credentia keys
and the key exchange protocol should be done in a secure coprocessor.

% See Security Engineering - A guide to building dependable distributed systems, by Ross Anderson,
John Wiley & Sons, Inc. pp.277-304.

% The actual requirement for correctness may be slightly weaker than this, but this seemsto be sufficient, if
not completely necessary.

44

ENDL

ENDL

45

ENDL

46

ENDL

1266

Secret Key %7

Client/FM communication
over security channel

OSD returns:
1. CAP arguments

: 2. CAP-key
File Manager & OSD

share a secret key Client

CAP arguments = {ObjID, version, rights, expire, ...
CAP-key = MAC (CAP argument

secret-key
Client sends
1. Command
2. CAP Arguments
3. Nonce
- 4. ReqMAC = MAC_,,.
@ OSD verifies request re(cOMMand, nonce)
1. X=MAC secrerkey (CAP arguments)
2.Y =MAC,(command, nonce)
3.Y=? ReqMAC

@ OSD sends

1. OSD_Nonce
2. RepMAC =MAC ., ,,(reply, OSD_nonce)

A

Secret Key
OSD

47

ENDL

48

ENDL

	1 Introduction
	2 Structure of Credentials and Basic Message Flow
	2.3 Key Management Overview
	2.7 Credential Invalidation

	3 Level 1 – Integrity of Capabilities
	4 Per Request Nonces for Level 2 and Level 3
	5 Level 2 – Integrity of Arguments
	6 Level 3 – Integrity of Arguments and Data
	7 Security Manger – OSD protocol
	8 Key Management

