

T10/03-237r1

Hewlett Packard Corporation Filton Road, Stoke Gifford Stoke Gifford Bristol BS34 8QZ United Kingdom Phone +44 117 979 9910 Web www.hp.com

ADT Proposal

Minimum Voltages

Revision History

Revision 1 – expanded Sense connection current limit to -150 μ A.

Introduction

An internal review of the ADT draft standard by HP has revealed that some electrical characteristic definitions do not include a complete specification. Specifically the V_{OL} definition for Sense connections and the V_{OL} and V_{IL} definitions for Signal connections do not include a minimum voltage specification. In order to prohibit ports from using excessive negative voltages, this proposal adds minimum voltage specification in these instances.

Current Text

5.1.3 Sense connection

A Sense connection is a complete uni-directional signal path from one ADT port to a second ADT port. A Sense connection includes:

- a) A current generator connected to the output compliance point of one ADT port,
- b) A transmission medium from the output compliance point of one ADT port to the input compliance point of a second ADT port, and
- c) A current detector connected to the input compliance point of the second ADT port.

Table 4 describes the electrical characteristics of a Sense connection at the output compliance point.

Current	Voltage
I _{OH} < 100 μA	0,7 V _{dd} ^a < V _{OH} < 3,6 V
-100 μA < I _{OL}	V _{OL} < 0,4 V; V _{OL} < 0,2 V _{dd} ^a
^a V _{dd} is the positive supply voltage at the receiving end.	

Table 4 — Sense connection output characteristics

5.1.4 Signal connection

A Signal connection is a complete uni-directional signal path from one ADT port to a second ADT port. A Signal connection includes:

- a) A signal generator connected to the output compliance point of one ADT port,
- b) A transmission medium from the output compliance point of one ADT port to the input compliance point of a second ADT port, and
- c) A signal receiver connected to the input compliance point of the second ADT port.

A signal connection shall use single ended signalling. An ADT port shall include termination for Signal connection inputs.

Single ended signals always exist in one of two states: true (i.e., asserted) or false (i.e., negated). The device that asserts a signal shall actively drive the signal to the true state. A device that negates a signal shall refrain from driving the signal to either state. A nondriven signal goes to the false state because the bias of the terminator pulls the signal false.

Table 5 describes the electrical characteristics of a Signal connection at the output compliance point.

Signal State	Current	Voltage
Asserted	-12 mA < I _{OL}	V _{OL} < 0,4 V; V _{OL} < 0,2 V _{dd} ^a
Negated		V _{OH} <= 3,6 V
^a V _{dd} is the positive supply voltage at the receiving end.		

Table 5 — Signal connection output characteristics

Table 6 describes the electrical characteristics of a Signal connection at the input compliance point.

Table 6 — Signal connection input characteristics

to	Curront	Voltago
	-	-

Signal State	Current	Voltage
Asserted	-12 mA < I _{IL} at 0 V	$V_{IL} < 0.3 V_{dd}^{a}$
Negated		0,7 V _{dd} ^a < V _{IH} <= 3,6 V; 400 mV < V _{hysteresis}
^a V _{dd} is the positive supply voltage at the receiving end.		

Detailed Changes to Draft Technical Standard

5.1.3 Sense connection

A Sense connection is a complete uni-directional signal path from one ADT port to a second ADT port. A Sense connection includes:

- d) A current generator connected to the output compliance point of one ADT port,
- A transmission medium from the output compliance point of one ADT port to the input compliance point of a second ADT port, and
- f) A current detector connected to the input compliance point of the second ADT port.

Table 4 describes the electrical characteristics of a Sense connection at the output compliance point.

Current	Voltage	
I _{OH} < 100 μA	0,7 V _{dd} ^a < V _{OH} < 3,6 V	
-1 <mark>5</mark> 0 μA < Ι _{ΟL}	$-0.2 V < V_{OL} < 0.4 V; V_{OL} < 0.2 V_{dd}^{a}$	
^a V _{dd} is the positive supply voltage at the receiving end.		

Table 4 — Sense connection output characteristics

5.1.4 Signal connection

A Signal connection is a complete uni-directional signal path from one ADT port to a second ADT port. A Signal connection includes:

- d) A signal generator connected to the output compliance point of one ADT port,
- A transmission medium from the output compliance point of one ADT port to the input compliance point of a second ADT port, and
- f) A signal receiver connected to the input compliance point of the second ADT port.

A signal connection shall use single ended signalling. An ADT port shall include termination for Signal connection inputs.

Single ended signals always exist in one of two states: true (i.e., asserted) or false (i.e., negated). The device that asserts a signal shall actively drive the signal to the true state. A device that negates a signal shall refrain from driving the signal to either state. A nondriven signal goes to the false state because the bias of the terminator pulls the signal false.

Table 5 describes the electrical characteristics of a Signal connection at the output compliance point.

Signal State	Current	Voltage
Asserted	-12 mA < I _{OL}	$-0.2 V < V_{OL} < 0.4 V; V_{OL} < 0.2 V_{dd}^{a}$
Negated		V _{OH} <= 3,6 V
^a V _{dd} is the positive supply voltage at the receiving end.		

Table 6 describes the electrical characteristics of a Signal connection at the input compliance point.

Table 6 — Signal connection input characteristi	CS
---	----

Signal State	Current	Voltage
Asserted	-12 mA < I _{IL} at 0 V	-0,2 V < V _{IL} < 0,3 V _{dd} ^a
Negated		0,7 V _{dd} ^a < V _{IH} <= 3,6 V; 400 mV < V _{hysteresis}
^a V _{dd} is the positive supply voltage at the receiving end.		