
Page 1

T10/03-222r0

Data Integrity Usage ModelsData Integrity Usage Models

Bob Sheffield
Walter Rassbach

June 30, 2003

2

T10/03-222r0

DIF Structure ReviewDIF Structure Review

Standard block of data
(e.g. 512 bytes)

Data Block GuardMeta TagReference TagExcl.
2-byte checksum or
CRC (Data only)

Fixed data – 2-
bytes.

Increments on a per-block
basis. 4-bytes

4-byte
incr.

CDBSpecifies to use Primary, Alternate, or Guard Only check controls from Mode PageCHK_OPTN
CDBExpected values for reads and planted values for writes.META_TAG & REF_TAG

CDB (32-byte)CMD-by-CMD specification of check options for REF_TAG and GuardREF_CHK & GUARD_CHK

DI Mode PageDefault value assumed for META TAG when not specified in CDB.META TAG DEFAULT
DI Mode PageOwnership Masks for primary, alternate, and legacy META_TAG handlingMETA TAG MASK (p,a,l)

DI Mode PageBytes to exclude from guard in main data-block (for stacked DIFs)EXCL_BYTES
DI Mode PageControls for checking REF, META, & GUARDPri/Alt/Legacy CK opts

DI Mode PageSpecifies whether initiator or target owns META_TAG field.META_ECHO
DI Mode PageSpecifies checksum or CRC.GUARD_METHOD
DI Mode PageSpecifies LBA-Locked or incrementing from base specified in CDBREF_METHOD

CDB (32-byte)CMD-by-CMD specification of META_TAG field splitMETA_TAG_MASK

DI Mode PageSpecifies planting ‘0’ or terminal values in REF & Guard fields on legacy writesZAP_REF & MRK_GRD

DI Mode PageGlobal DIF Enable (also reported in FMT page (03)STOR_DIF
Inquiry byte-5 bit-0Indicates support of Data Integrity Mode Page and DIF media format.DI Mode Page Supported
LocationDescriptionKey Control

3

T10/03-222r0

Basic Initiator TargetBasic Initiator Target

Initiator
• Generate Guard
• Generate LBA
• Both on Read & Write
• DIF is opaque to legacy

commands.

Data+LBA+Guard

Data+LBA+Guard

Target
• Verify Guard
• Verify LBA
• Both on Read &

Write
• Option to zero

or gen DIF on
legacy
commands

• LBA-Locked Incrementing Tag – used by Initiator to verify disk
returns correct block. Works with legacy commands.

• Initiator-generated CRC protects against corruption by HBA.

4

T10/03-222r0

Basic External RAIDBasic External RAID--5 with pass5 with pass--thru DIFthru DIF

D1 D2P

G=x
R=i
M=0
Di

Initiator (Host)

RAID Controller

Di+K ..D I+2K-1Di..Di+K-1

G=y
R=i+K
M=0
Di+K

G=x ⊕⊕⊕⊕ y
R = i⊕⊕⊕⊕ (i+K)

M=0
Di⊕⊕⊕⊕ Di+K

⊕⊕⊕⊕

DIF appended / checked
by initiator:

• Meta Tag (M),
• Reference Tag (R),
• Guard (G – CRC or

Checksum)

Inbound DIF checked
by RAID controller on
Write. Returned intact
on Read.

• REF is LBA-locked for
Legacy Read/Write

DIF for parity block
is bit-wise XOR of
DIFs from
constituent data
blocks.

Reference Tag may be
Host LBA-locked (or not
if specified in CDB).

Avoid consuming extra
8-bytes for back-end DIF
by carrying-through host
DIF to media unchanged.

Disks check all DIF
fields on data blocks
(start-value for Inc. Tag
specified in CDB).
Guard check only on
parity blocks (for CRC).

RAID Controller may ‘plant’
unexpected M to flag
‘special’ blocks.

Or… for Parity
blocks replace w/
R-Tag meaningful
to RAID controller.

5

T10/03-222r0

Basic External RAIDBasic External RAID--5 with pass5 with pass--thru DIFthru DIF
DIF Sub-Field usage (example):
• Data Blocks:

• REF Tag: Virtual LBA used by the host to access the block.
• Guard: Checksum-based (to obtain full stripe guard characteristics).
• META Tag: Upper byte normally zero (0) indicating a normal data block.

Lower byte contains the virtual LUN number
• Use Primary Verification controls, checking both REF Tag and Guard value.

• Parity Block:
• REF Tag: Lowest virtual LBA in stripe (or equivalent with easy mapping).
• Guard: The XOR of the data block Guard values (stripe protection).

•Note: Guard check on parity is disabled since XOR(G) != G(XOR)
• META Tag: Upper byte is normally 0x80 indicating a normal parity block.

Lower byte is virtual LBA of the REF-tag block.
• Use Secondary Verification controls, checking REF Tag but not the Guard.

The upper byte of the META tag is used to indicate the type of block (data or
parity) and to hold flags indicating special blocks (e.g., blocks to be explicitly
marked as bad) in the lower 7 bits of the upper META Tag byte.
The mask values in the mode page are set to check all bits of the META Tag. A
read of a data block will specify 0x00 in the upper byte and the virtual LUN number
in the lower byte, while a read of a parity block will specify 0x80 in the upper byte.

6

T10/03-222r0

Basic External RAIDBasic External RAID--5 with pass5 with pass--thru DIFthru DIF
Types of errors detected* by DIF checking in this model:
• Buffer address calculation errors (e.g., in a scatter/gather list)
• Wild stores to cache or buffer
• Buffer/cache block mis-selections
• Incorrect buffer/cache content (not loaded properly or overwritten)
• During regenerate/rebuild operations: Detection of stripe inconsistencies (e.g.,

stale data of parity block, possibly due to the RAID 5 “Write hole”) – This is a
particular property of a checksum guard (and is why it is used).

Many errors are detected only during a Read operation, but checking the DIF
during a Write operation will catch a significant portion of these errors. Note that
various buffer errors will be detected during destaging operations from cache to
the backend and thus their propagation is limited.
This model requires that the host/application must accept a REF Method of 00 (I.e.,
REF Tags equal to LBA) and that the META Echo control is active (because the
RAID controller uses those sub-fields). If the host/application cannot accept those
restrictions, then the controller will be forced to “stack” the DIF information.
The model also uses the checksum-based Guard calculation as a means to cover
the RAID-5 write-hole.

*Note: no error detection method can detect all manifestations of a given error type, and there is no
“guarantee” that all instances of these errors will be detected, but the majority are detected.

7

T10/03-222r0

Bad Block TrackingBad Block Tracking

Parity BlockData Block XData Block 0

The disk where Data Block X is mapped to a replacement disk, and data for that disk
is being rebuilt from the good disk(s) and parity.
Data-Block zero suffers a grown defect and draws an uncorrectable ECC error.
Issue Read Raw to get as much good data as possible and use that instead.

⊕⊕⊕⊕
���� ?

On subsequent read of Data Block X, the RAID controller needs to:
• Determine the block contains invalid data (trash ECC?)
• Distinguish the block from a defective block (trashing ECC loses distinction

– want to bypass reassign/rewrite algorithms – requires VU Write Long)
• Trash Guard – but how do you know it’s not a real Guard error?

• Special Guard value (0 for checksum, special syndrome for CRC-based)
• But you lose ability to Read Raw Data Block X

• Use meta-tag that can’t be confused with a nominal tag

Disk 0 Disk 1 Disk 2

8

T10/03-222r0

LogLog--Structured File System modelStructured File System model
Basic operation of a log-structured file system:
• Storage is not pre-allocated or assigned (dynamic mapping).
• Write operations allocated and fill free-space blocks rather than

overwriting previous version of block.
• Old block images eventually garbage collected and slots added to

the free-space lists.
• Read operations to never-written blocks return a default block (or,

an error if so configured) – Provide special handling for Write Same.
• Provides automatic “snapshot” capabilities – Older versions of files

or data can be obtained at any time until purged/garbage collected.
• Combines well with RAID-style protection – Tends to avoid RAID 5

read-modify-write penalties, generally performing full-stripe physical
write operations. Very low seek overheads due to write cursor.

9

T10/03-222r0

LogLog--Structured File System modelStructured File System model
Because log-structure is generally combined with RAID-style data
protection, the model described here assumes such protection.

Write
Cursor

Parity Data Data Data Data

The stripe at the write-cursor may be only partial, with the META Tag in the
parity block indicating how many blocks are included. The next write fills the
stripe and (then) updates the parity block, and then starts the next stripe(s).
Blocks containing mapping data are interspersed as special data blocks.

free

used

10

T10/03-222r0

LogLog--Structured File System modelStructured File System model
DIF usage for log-structured file system:
• Data blocks:

• REF Tag: Virtual LBA – NOTE: An implementation might use an index
into the mapping tables for sequentiality

• META Tag: Virtual LUN and control flags
• Guard: Preferably checksum-based

• Parity blocks:
• REF Tag: Stripe index (rolling counter)
• META Tag: Stripe-width and control flags
• Guard: XOR of data block guard values

Blocks containing mapping information are generally interspersed as special
data blocks with META Tags that indicate their usage.
Write operations are generally delayed via write-back cache to allow gathering
of contiguous writes before destaging.

11

T10/03-222r0

LogLog--Structured File System modelStructured File System model
Types of errors (potentially) detected by DIF checking in this model:
• Buffer address calculation errors (e.g., in a scatter/gather list)
• Wild stores to cache or buffer
• Buffer/cache block mis-selections
• Incorrect buffer/cache content (not loaded properly or overwritten)
• Mapping table errors
• During regenerate operations: Detection of stripe inconsistencies
The use of the REF Tag to hold the virtual LBA is very important in
this model since the placement of a virtual block is dynamic. The
implementation may disable REF Tag checking during operations to
the back-end, but REF Tag checking on the host interface is very
important to ensure that the correct blocks are transferred.\
The offset from start of LUN is assumed to be consistent across
different virtual LUNs to the same device. In other words, all
initiators ascribe the same meaning to the REF_TAG even when the
access the same target LUN via different virtual LUN IDs.

12

T10/03-222r0

Object Oriented File SystemObject Oriented File System
A controller that presents an “Object Oriented” image to the host (providing
an interface that conforms to the pending Object Oriented Device proposals)
may well be implemented with back-end storage media that uses the legacy
block-oriented architecture. Such an implementation would want to use the
DIF in a manner tied to the “object architecture”.
One method might be to conceptually combine and then re-partition the META
and REF Tag sub-fields as follows:

META TagREF Tag

FlgsBlock-in-Object index

The exact split between the Object ID and the block index would depend
on the exact implementation. Note that objects that exceed the limit of the
index field can be assigned multiple Object IDs. Also, note that the REF
Tag field (as overlaid) still increments properly through an object.

Object Number/ID (High)Object Number/ID (Low)

13

T10/03-222r0

Object Oriented File SystemObject Oriented File System
The controller would accept data from the host and break it into blocks for
storage on the back-end. It would attach the object ID and the block-in-object
index to each block as it is accepted from the host (during writes) and check
those tag values as the data is sent to the host (during reads).
This usage of the DIFs helps to ensure that the controller is properly handling
the data and that there are no mapping errors.

Types of errors (potentially) detected by DIF checking in this model:
• Buffer address calculation errors (e.g., in a scatter/gather list)
• Wild stores to cache or buffer
• Buffer/cache block mis-selections
• Incorrect buffer/cache content (not loaded properly or overwritten)
• Mapping table errors

14

T10/03-222r0

Chained ModelsChained Models
Each of the usage models imposes restrictions on the usage and meaning of
the various sub-fields of the DIF. For example, both the simple-RAID and the
Log-Structured controllers require that the REF Tag must hold the virtual LBA
of the block and are likely to want to impose that restriction on their host if the
host is DIF-aware. However, some hosts, e.g., the Object Oriented controller
dealing with its back-end, cannot accept such restrictions. The problem is
that there is a conflict for the usage of the DIF sub-fields. Similar problems
occur if a Log-Structured file system is placed “on top of” (rather than merged
with) a RAID implementation (of the type outlined).

The upper level will want to fill in the DIF according to its needs and then
transmit it to (and later fetch it back unchanged from) the lower level and have
the DIF values checked during the transfer. If the target is really a lower-level
controller that wants to impose restrictions on the DIF sub-fields, there is a
conflict. The (lower level) controller must either provide a mechanism to deal
with this or it will not be compatible/usable in this context.

15

T10/03-222r0

Chained ModelsChained Models
The situation is illustrated below for an object oriented controller over a
simple RAID controller (as described):

Upper level:
Object Oriented

Object ID Block-in-Object

Data (block)

Lower level:
RAID, requiring
REF as LBA and
using META Tag

CONFLICT

Object ID Block-in-Object

Data (block)

Expects: Object ID Block-in-ObjectMETA (echoed) LBA REF Tag

Guard

Guard

Guard

16

T10/03-222r0

Chained ModelsChained Models
The lower level (RAID) controller may provide a solution to this conflict by
extending the overall data block with a “stacked” DIF, as follows:

Data block with
“stacked” DIF

Object ID Block-in-Object

Data (block)

Object ID Block-in-ObjectMETA (echoed) LBA REF Tag
“Stacked” DIF
block extension

Guard
Guard

If the upper-level DIF is excluded from the guard calculation (I.e., the EXCL_Bytes
count is increased by 2) and the same guard calculation method is used, the value in
the two Guard fields will be identical (since they are calculated against exactly the
same data). This makes it much simpler to add the second DIF without having to
completely recalculate the guard value.

The lower-level (RAID) controller will append the stacked DIF as blocks are written to
it abd strip that DIF when blocks are read.

