
03-127r0 SPC-3 MSB and LSB labels 9 March 2003

1  

To: T10 Technical Committee
From: Rob Elliott, HP (elliott@hp.com)
Date: 9 March 2003
Subject: 03-127r0 SPC-3 MSB and LSB labels

Revision history
Revision 0 (9 March 2002) First revision

Related documents
spc3r11 - SCSI Primary Commands - 3 revision 11

Endianness background

Endianness affects how processors load data wider than a byte into their registers for processing. Little endian 
processors assume the byte containing the least significant byte is located at the lowest memory address; 
big-endian processors assume the byte containing the most significant byte is located at the highest memory 
address.

Table 1 shows a little-endian 32-bit register (e.g. Intel x86).

Table 2 shows a big-endian 32-bit register with little-endian bit numbering (e.g. Motorola 68K).

Table 3 shows a big-endian 32-bit register with big-endian bit numbering (e.g. Power PC).

The numbering of bits is not a problem; the order of the bytes, however, is.

SCSI endianness background
SCSI data structures are always big endian, meaning that when a field contains more than one byte, the byte 
containing the most significant bit is stored at the lowest address. MSB (most significant bit) and LSB (least 
significant bit) labels are provided for multi-byte quantities to serve as indications that software running on 
little-endian processors needs to reverse those bytes before processing the data.

Table 1 — Little-endian 32-bit register (e.g. Intel x86)

(MSB) 31:24 23:16 15:8 7:0 (LSB)

When 32 bits are loaded from memory address 
0, which memory bytes go into which bytes of 

the register
Byte 3 Byte 2 Byte 1 Byte 0

Table 2 — Big-endian 32-bit register (with little-endian bit numbering) (e.g. Motorola 68K)

(MSB) 31:24 23:16 15:8 7:0 (LSB)

When 32 bits are loaded from memory address 
0, which memory bytes go into which bytes of 

the register
Byte 0 Byte 1 Byte 2 Byte 3

Table 3 — Big-endian 32-bit register (with big-endian bit numbering) (e.g. Power PC)

(MSB) 0:7 8:15 16:23 24:31 (LSB)

When 32 bits are loaded from memory 
address 0, which memory bytes go into which 

bytes of the register
Byte 0 Byte 1 Byte 2 Byte 3



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

2

Table 4 shows a typical SCSI data structure.

The PARAMETER CODE field is a multi-byte quantity. If the field contains 00h in byte 0 and 02h in byte 1, it is 
supposed to mean a value of 0002h (i.e., two) to both big-endian and little-endian software, not a value of 
0200h (i.e., 512). Little endian software must load byte 0 into its normal byte 3 location and load byte 1 into its 
normal byte 2 location to parse the field correctly.

The NUMBER OF PHYS field consumes just one byte. It does have an MSB (bit 7) and LSB (bit 0), but they are 
never labeled in one-byte or smaller fields.

The “First SAS phy log descriptor” field, however, is more complicated. Table 5 shows its definition.

Table 4 — Sample SCSI data structure

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB)
PARAMETER CODE (relative target port identifier)

1 (LSB)

2 DU DS TSD ETC TMC LBIN LP

3 PARAMETER LENGTH (y - 3)

4 Reserved PROTOCOL IDENTIFIER (6h)

5
Reserved

6

7 NUMBER OF PHYS

SAS phy log descriptors

8
First SAS phy log descriptor

55

...

Last SAS phy log descriptor
y



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

3  

When a field really is a set of smaller fields, it is not appropriate to blindly reverse all the bytes (here, there are 
48 of them). The little-endian software has to know the structure of the subfield to parse it correctly, reversing 

Table 5 — SAS phy log descriptor

Byte\Bit 7 6 5 4 3 2 1 0

0 Reserved

1 PHY IDENTIFIER

2
Reserved

3

4 Reserved ATTACHED DEVICE TYPE Reserved

5 Reserved NEGOTIATED PHYSICAL LINK RATE

6 Reserved  SSPI  STPI  SMPI Reserved

7 Reserved  SSPT  STPT  SMPT Reserved

8
SAS ADDRESS

15

16
ATTACHED SAS ADDRESS

23

24 ATTACHED PHY IDENTIFIER

25
Reserved

31

32 (MSB)
INVALID DWORD COUNT

35 (LSB)

36 (MSB)
RUNNING DISPARITY ERROR COUNT

39 (LSB)

40 (MSB)
LOSS OF DWORD SYNCHRONIZATION

43 (LSB)

44 (MSB)
PHY RESET PROBLEM

47 (LSB)



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

4

bytes in any sub-fields that are not single bytes. In this example, the SAS ADDRESS field is itself another set of 
fields, as shown in table 6.

In this case, the fields are not even byte-aligned and require special handling even on big-endian processors.

So, it is important not to label fields with MSB and LSB unless they are truly multi-byte quantities requiring 
byte reversal.

Afflicted fields in SPC-3
The logical unit number is defined in SAM-3 as a 64-bit identifier containing several sub-fields, each of which 
has its own MSB and LSB.

Similarly, any field containing an ASCII string is really an array of 8-bit characters. Strings always have their 
first character in byte 0, second character in byte 1, etc. This is true for both little-endian and big-endian 
processors. Each character has an MSB and LSB; for example, a character containing 0x44 means 
MSB->LSB is 0100.0100b which is the letter D, not LSB->MSB is 0010.0010 which is the “ character.

Logical unit number and ASCII string fields should thus not have MSB and LSB labels.

Fields whose values are just arbitrary chunks of data do not need MSB and LSB labels, since software never 
parses the contents of the fields. These are best treated as arrays of bytes, so little-endian and big-endian 

Table 6 — SAS address format

Byte\Bit 7 6 5 4 3 2 1 0

0 NAA (5h) (MSB)

1
IEEE COMPANY ID

2

3 (LSB) (MSB)

4

VENDOR-SPECIFIC IDENTIFIER
5

6

7 (LSB)

Table 7 — String (pedantic view)

Byte\Bit 7 6 5 4 3 2 1 0

0 (MSB) First character (e.g., ‘S’) (LSB)

1 (MSB) Second character (e.g., ‘C’) (LSB)

2 (MSB) Third character (e.g., ‘S’) (LSB)

3 (MSB) Fourth character (e.g., ‘I’) (LSB)

4 (MSB) Fifth character (e.g., NULL) (LSB)

5 (MSB) Sixth character (e.g., NULL) (LSB)

6 (MSB) Seventh character (e.g., NULL) (LSB)

7 (MSB) Eighth character (e.g., NULL) (LSB)



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

5  

software don’t get confused when exchanging the field contents. IPv4 addresses, proxy tokens, etc. fall into 
this category.

Why bother?

ATA data structures are generally little-endian. With Serial Attached SCSI supporting both ATA and SCSI, 
more precise usage of endianness terms will help avoid confusion. 

Long ago ATA messed up its string variables in the IDENTIFY DEVICE command, which causes every 
operating system to have to include a “fix ATA string” function to convert the model number, serial number, 
and revision number fields into standard string variables. Proper labels should help avoid such problems.

Suggested changes to SPC-3

[Add:]

3.1.xx least significant bit (LSB): In a binary code, the bit or bit position with the smallest numerical 
weighting in a group of bits that, when taken as a whole, represent a numerical value (e.g., in the number 
0001b, the bit that is set to one).

3.1.xx most significant bit (MSB): In a binary code, the bit or bit position with the largest numerical weighting 
in a group of bits that, when taken as a whole, represent a numerical value (e.g., in the number 1000b, the bit 
that is set to one).

3.4 Conventions

[add this to 3.4 or a new “3.x Bit and byte ordering” section:]

In a field in a table consisting of more than one bit that contains a single value (e.g., a number), the least 
significant bit (LSB) is shown on the right and the most significant bit (MSB) is shown on the left (e.g. in a byte, 
bit 7 is the MSB and is shown on the left; bit 0 is the LSB and is shown on the right). The MSB and LSB are not 
labeled if the field consists of 8 or fewer bits.

In a field in a table consisting of more than one byte that contains a single value (e.g., a number), the byte 
containing the MSB is stored at the lowest address and the byte containing the LSB is stored at the highest 
address (i.e., big-endian byte ordering). The MSB and LSB are labeled.

In a field in a table consisting of more than one byte that contains multiple fields each with their own values 
(e.g., a descriptor), there is no MSB and LSB of the field itself and thus there are no MSB and LSB labels. 
Each individual field has an MSB and LSB, but they are not labeled.

Multiple byte fields are represented with only two rows, with the non-sequentially increasing byte number 
indicating the presence of additional bytes.

6.25.2.2.2 Information sense data descriptor

... When a four byte quantity is stored in the INFORMATION field, the most significant four bytes shall be zero.

[However, the information field lacks MSB and LSB labels. Should be “the first four bytes”.]

6.25.2.2.3 Command-specific information sense data descriptor

... When a four byte quantity is stored in the COMMAND-SPECIFIC INFORMATION field, the most significant 
four bytes shall be zero.

[However, the information field lacks MSB and LSB labels. Should be “the first four bytes”.]

6.25.2.2.4.2 Field pointer sense key specific data

... When a multiple-byte field is in error, the field pointer shall point to the most-significant (i.e., left-most) byte 
of the field.

[SCSI never shows bytes left or right of each other. remove the (i.e.)]

7.6.7 Unit Serial Number VPD page



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

6

The PRODUCT SERIAL NUMBER field contains ASCII data that is vendor-assigned serial number. The least 
significant ASCII character of the serial number shall appear as the last byte in the Data-In Buffer. If the 
product serial number is not available, the device server shall return ASCII spaces (20h) in this field.

[is this supposed to mean the string must be padded with spaces at the front? 

This introduces the term “least significant character” which is defined on the web as “the character furthest to 
the right in a string of characters” or “The low-order, or rightmost, character in a string. Acronym LSC.” LSC 
and MSC are correct but somewhat obvious labels for strings (there are not many uses of these terms 
according to a web search).]

8.3.2.3.2 REPORT LU DESCRIPTORS parameter data format

...

a) If the identification descriptor has a length less than or equal to 32 bytes, then the EVPD IDENTIFICATION 
DESCRIPTOR field shall be set to the value of the identification descriptor in the most significant bytes of the 
field and the remainder of the field shall be padded with zero in the least significant bytes. The EVPD 
IDENTIFICATION DESCRIPTOR LENGTH field shall be set to the length of the identification descriptor; or

b) If the identification descriptor has a length greater than 32 bytes, then the EVPD IDENTIFICATION 
DESCRIPTOR field shall be set to the 32 most significant bytes of the identification descriptor. The EVPD 
IDENTIFICATION DESCRIPTOR LENGTH field shall be set to 32.

...

a) If the device identifier has length less than or equal to 32 bytes, then the DEVICE IDENTIFIER field shall be 
set to the value of the device identifier in the most significant bytes of the field and the remainder of the field 
shall be padded with zero in the least significant bytes. The DEVICE IDENTIFIER LENGTH field shall be set to 
the length of the device identifier; or

b) If the device identifier has length greater than 32 bytes, then the DEVICE IDENTIFIER field shall be set to 
the 32 most significant bytes of the identifier The DEVICE IDENTIFIER LENGTH field shall be set to 32.

[change to “first 32 bytes”, “first bytes” and “last bytes”]

8.3.3.2.2 The Grant/Revoke ACE page

If a suggested LUN value is determined, the most significant four bytes of the suggested LUN value shall be 
placed in the INFORMATION field and the least significant four bytes shall be placed in the 
COMMAND-SPECIFIC INFORMATION field of the sense data (see 6.25.2).

[change to “first four” and “last four”]

8.3.3.11 ASSIGN PROXY LUN service action

If a suggested LUN value is determined, the most significant four bytes of the suggested LUN value shall be 
placed in the INFORMATION field and the least significant four bytes shall be placed in the 
COMMAND-SPECIFIC INFORMATION field of the sense data (see 6.25.2).

[change to “first four” and “last four”]

Removal of MSB and LSB

Remove the (MSB) and (LSB) labels from the identified field(s) in the following tables. ASCII means the field 
contains an ASCII (or UTF-8) string. Substruct means the field contains other fields. Opaque means the field 
contents are not defined as values with any important meaning, and should be treated as an array of bytes. 
Typo means the labels are on a reserved or obsolete field.



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

7  



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

8

Table 8 — MSB and LSB removal (part 1 of 3)

Table Field Notes

Table 5 — Typical CDB for 16-byte commands Additional CDB data (if required) substruct

Table 31 — Identification descriptor target descriptor 
format Identifier substruct

Table 32 — Alias target descriptor format LU Identifier substruct

Table 55 — Standard INQUIRY data format 
Vendor Identification
Product Identification
Product Revision Level

ASCII
(also adjust 

vertical 
spacing in 

36..55)

Table 80 — PERSISTENT RESERVE IN parameter data 
for READ RESERVATION Reservation descriptor(s) substruct

Table 88 — PERSISTENT RESERVE OUT parameter list Obsolete typo

Table 121 — REPORT LUNS parameter data format 
Reserved
First LUN
Last LUN

typo
substruct
substruct

Table 152 - Fixed sense data format Information
Command-specific information substruct

Table 195 — Start-Stop Cycle Counter log page 

Year of Manufacture
Week of Manufacture
Accounting Date Year
Accounting Date Week

ASCII

Table 202 — MAM ATTRIBUTE format Attribute Value substruct

Table 206 — DEVICE VENDOR/SERIAL NUMBER 
attribute format 

Vendor Identification
Product Serial Number ASCII

Table 240 Fibre Channel world wide port name alias entry 
designation

fibre channel world wide port 
name substruct

Table 241 Fibre Channel world wide port name with 
N_Port checking alias entry designation

fibre channel world wide port 
name
n_port (which maps to D_ID)

substruct

Table 243 RDMA target port identifier alias entry 
designation target port identifier substruct

Table 244 InfiniBand global identifier with target port 
identifier checking alias entry designation

infiniband global identifier
target port identifier substruct

Table 246 iSCSI name alias entry designation iscsi name ASCII

Table 247 iSCSI name with binary IPv4 address alias 
entry designation

iscsi name
ipv4 address ASCII

Table 248 iSCSI name with IPname address alias entry 
designation

iscsi name
ipname ASCII

Table 249 iSCSI name with binary IPv6 address alias 
entry designation

iscsi name
ipv6 address ASCII

Table 250 — Fibre Channel world wide name EXTENDED 
COPY target descriptor format 

LU Identifier
World Wide Name substruct

Table 251 — Fibre Channel N_Port EXTENDED COPY 
target descriptor format LU Identifier substruct



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

9  

Table 252 — Fibre Channel N_Port with world wide name 
checking target descriptor format 

LU Identifier
World Wide Name substruct

Table 253 — SCSI Parallel T_L EXTENDED COPY target 
descriptor format LU Identifier substruct

Table 254 — IEEE 1394 EUI-64 EXTENDED COPY target 
descriptor format 

LU Identifier
EUI-64
Directory ID

substruct

Table 255 — RDMA EXTENDED COPY target descriptor 
format 

LU Identifier 
Target Port Identifier substruct

Table 256 — iSCSI binary IPv4 address EXTENDED 
COPY target descriptor format LU Identifier substruct

Table 256 — iSCSI binary IPv4 address EXTENDED 
COPY target descriptor format IPV4 Address opaque

Table 257 — SAS serial SCSI protocol EXTENDED 
COPY target descriptor format 

LU Identifier
SAS Address substruct

Table 260 Fibre Channel TransportID format world wide name substruct

Table 261 — Parallel SCSI bus TransportID format Reserved typo

Table 262 IEEE 1394 TransportID format eui-64 name substruct

Table 263 RDMA TransportID format initiator port identifier opaque

Table 264 - iSCSI TransportID format iSCSI name ASCII

Table 265 — SAS Serial SCSI Protocol TransportID 
format SAS Address substruct

Table 270 - Identification descriptor Identifier substruct

Table 274 — Vendor specific IDENTIFIER field format Vendor Specific Identifier opaque

Table 275 — T10 vendor IDENTIFIER field format Vendor Identification
Vendor Specific Identifier ASCII

Table 308 — Granted ACL data page LUACD descriptor 
format 

LU Value
Default LUN substruct

Table 312 — Proxy token descriptor format Default LUN
Proxy Token

substruct
opaque

Table 314 — ACCESS CONTROL IN with REPORT LU 
DESCRIPTORS parameter data format Supported LUN-Mask Format substruct

Table 315 — SUPPORTED LUN-MASK FORMAT field 
format 

First level LUN mask
Second level LUN mask
Third level LUN mask
Fourth Level LUN Mask

substruct

Table 316 — Logical Unit descriptor format 

Default LUN
EVPD Identification Descriptor 
Device Identifier
Device-type Specific Data

substruct

Table 321 — Key Overrides access controls log page 
format TransportID substruct

Table 322 — Invalid Keys access controls log page format TransportID substruct

Table 8 — MSB and LSB removal (part 2 of 3)

Table Field Notes



03-127r0 SPC-3 MSB and LSB labels 9 March 2003

10

Table 323 — ACL LUN Conflicts access controls log page 
format TransportID substruct

Table 326 — ACCESS CONTROL IN command with 
REQUEST PROXY TOKEN service action LUN value substruct

Table 327 - ACCESS CONTROL IN with REQUEST 
PROXY TOKEN parameter data Proxy Token opaque

Table 333 — ACE page LUACD descriptor format LUN Value
Default LUN substruct

Table 339 — ACCESS CONTROL OUT with ACCESS ID 
ENROLL parameter data format Reserved typo

Table 344 — ACCESS CONTROL OUT with REVOKE 
ALL PROXY TOKENS parameter data format 

LUN Value
Proxy Token

substruct
opaque

Table 345 — ACCESS CONTROL OUT with ASSIGN 
PROXY LUN parameter data format LUN Value substruct

Table 346 — ACCESS CONTROL OUT with RELEASE 
PROXY LUN parameter data format 

LUN Value
Proxy Token

substruct
opaque

Table 8 — MSB and LSB removal (part 3 of 3)

Table Field Notes


