
The Data Integrity Extension is an optional feature for direct access devices (peripheral 
device type 00). The Data Integrity Extensions are designed to provide end-to-end 
protection of user data against media and transmission errors. These extensions are 
carefully designed to allow for transparent usage in legacy contexts, i.e., the Data 
Integrity Extensions do not materially affect legacy operations (e.g., Read and Write). 
 
The main control (the STOR_DIF flag) for the Data Integrity Extension is the controls in 
the new Mode page that indicate whether the Data Integrity Field (DIF) is appended to 
each block on the device. If these controls indicate that the Data Integrity Extensions are 
disabled (i.e., STOR_DIF is 0), the device operates in the normal legacy manner. If these 
controls indicate that the Data Integrity extensions are enabled (i.e. STOR_DIF is 1), 
each block on the device is expected to have a Data Integrity Field attached and the 
device is expected to process that DIF in the manner outlined in this document. 
 
There are essentially five possible kinds of devices in the context of the Data Integrity 
Extensions, as follows: 
 
? ? The device does not implement the Data Integrity Mode page or any of the Data 

Integrity Extensions (a “legacy device” in this context). 
? ? The device implements the Data Integrity Mode page but forces the DIF flag to 0 

(zero) and does not allow it to change. Such devices do not implement any other 
aspects of the Data Integrity Extensions and operate only as a legacy device. This 
form is called a “DIE aware” implementation. 

? ? The device implements DIFs internally but does not provide initiator access to the 
DIF fields. This form is called a “hidden DIF” implementation. 

? ? The device forces the attachment of a DIF to every data block. In this case the DIF 
flag (STOR_DIF) on the Data Integrity Mode page is forced to 1 and is marked as 
unchangeable. Because of the manner in which the Data Integrity Field is handled in 
normal Read/Write usages, such devices can be attached to an initiator that does not 
recognize the Data Integrity Extensions. This form is called a “forced DIF” 
implementation. 

? ? The device allows the DIF flag (STOR_DIF) in the Data Integrity Mode page to be 
altered and processes operations according to the setting of that flag. This form is 
called a “full DIE” implementation. 

 
Moreover, a device may limit the scope of its implementation to a subset of the full Data 
Integrity functionality. In most cases, such limitations are indicated by limiting the 
accepted values for one or more of the Mode page control fields. The device may either 
reject any Mode Select command that attempts to set such a control to an unacceptable 
value, or it may further indicate that the value of a control field may not be changed. by 
omitting it from the “changeable values” form of the Mode page. 
 
The remainder of this document describes the operational extensions and modifications 
associated with the Data Integrity Extensions. 
 



The Data Integrity Field 
 

The Data Integrity Field (DIF) is an 8-byte element with three sub-fields, as follows:1 
 

4 bytes 2 bytes 2 bytes 

Ref Tag Meta Tag Guard 
 

The first sub-field (the Ref Tag) is a 4 byte value which is nominally intended to hold 
information which identifies the block within some context. The characteristics of this 
context are not described in this document. During a multi-block operation, this field is 
incremented (by 1) for each successive block processed. The normal/default content of 
this field is the low order 4 bytes of the Logical Block Address (LBA). 
 

The second sub-field (the Meta Tag) is a 2 byte value, which is (normally) held fixed 
within the context of a single command. The contents of this field are generally only 
meaningful to an application and thus falls outside the scope of this document. It might, 
for example, hold information identifying a virtual LUN or flags indicating block state or 
status. This value is often provided by, or matches, the fixed value parameter in the Data 
Integrity Mode page. 
 

The third sub-field is a 2 byte guard value computed from the user data block, nominally 
under control of the Data Integrity Mode page. The computation of this value does not 
include any tag parts of the DIF itself and may, as specified in the Data Integrity Mode 
page, exclude a trailing part of the user data block. The guard value is normally one of 
the following, with the method selected in the Data Integrity Mode page:  
 

? ? A modified 1’s complement checksum2 that can be easily calculated in code. The 
computed value can never be zero (0) and a guard value of 0 can be used to mark 
special block statuses (e.g., intentionally treat as a bad block).  

? ? A CRC. In this case, the guard value can be zero (0) and some other method to 
indicate a specially marked block is required. A specially marked block is identified 
by computing the nominal CRC value and modifying that value by XORing in a 
value of BADBh 

 

The capability of specially marking data blocks is useful when an application (e.g., a 
RAID controller) may need to mark a block as bad (or special) while avoiding the 
possibility of spurious media errors (e.g., the old, standard, method of modifying ECC). 

Format 
 

When a device is formatted with the DIF flag active (i.e., the Data Integrity extensions 
enabled), the device will physically format the media with data blocks extended with a 
(default) DIF. These blocks will be 8 (or 16 if DIFs must be stacked) bytes (the size of 
the DIF) longer than the blocks that would be formatted if the DIF flag were not enabled. 
For example, if the device is set up to format 512 byte blocks if the DIF flag is disabled, 
enabling the DIF flag will cause the device to be formatted in 520 byte blocks. 

                                                
1 Future extensions may provide a 4 byte guard (or dual 2-byte guards) by removing the explicit Meta Tag 
field and possibly using the nominal Meta field value as a seed for the guard calculation. 
2 In RAID applications using the checksum guard method, the guard sub-field in a parity block is usually 
the XOR of the checksum guard values of the associated data blocks, protecting across the whole stripe.. 



As the result of a Format operation, each formatted block will consist of the following: 
? ? The user data will be the same as it would if the DIF flag was not enabled. 
? ? The REF Tag part of the DIF will be the low order 4 bytes of the LBA. 
? ? The META Tag part of the DIF will be as specified in the Data Integrity Mode 

page. This will be the META TAG DEFAULT value from the Mode page. 
? ? The guard sub-field will be calculated according to the settings in the Data Integrity 

Mode page. 
 

Inquiry and Read Capacity  
 

Bit 0 of byte 5 of the Inquiry data is defined to have the following meaning: 
Bit 0 – Indicates that the device supports the Data Integrity Mode page. 

The Read Capacity data returned by a device where the blocks have attached DIFs does 
not include the length of the DIF (8 bytes or possibly 16 bytes if DIFs must be “stacked”) 
in the value returned for the block size. For example, if the device is formatted for 512 
byte user data blocks with attached DIFs, the physical block size on the media will be 
520 bytes, but the block size returned by a Read Capacity command will be 512 bytes. 
Note that the number of data blocks is likely to be different depending on whether the 
device is formatted with attached DIFs or not. 
 

Mode pages 

The Data Integrity Extensions affect one existing Mode page (page 03, the “format” 
page) and add a new Data Integrity Mode page (page code TDB).  
In the “format” mode page, bit 0 of byte 20 is defined to have the following meaning: 

Bit 0 – The value of the STOR_DIF flag at the last format operation 
This bit is informational only and should be marked as being unchangeable. 
If the application client changes the DIF-enable flag (STOR_DIF), the REF METHOD 
value, the GUARD METHOD value, or the META ECHO value, the device may not be 
able to access the media until a FORMAT UNIT command has been successfully 
completed. [Note to reviewers: See “Note 30” on page 114 of sbc2r07.pdf]. Change in 
the latter three values may result in a “format required” state (see STK_META, 
STK_REF, and STK_GRD) when the “device” is really an intermediate controller 
which makes internal use of the tag fields, i.e., makes internal use of the META TAG 
field (e.g., to hold a virtual LUN number), requires a particular guard calculation method 
as part of a RAID algorithm, or requires LBA-locked REF TAGs to verify the accuracy 
of its internal mapping functions. In such cases, the “device” (intermediate controller) 
may “stack” DIFs by extending the user data block with two 8-byte DIFs with the first 
holding the “visible” DIF (and tag values) and the second holding the tag values used 
internally by the “device” (intermediate controller). The controller may either calculate 
the guard value in the second DIF over the user data block plus the first DIF or it may 
exclude the first DIF from the calculation (and exclude those 8 bytes from any back-end 
guard calculation). In the latter case, the guard value in the second DIF can generally be 
copied from the guard value present in the first DIF (assuming the same guard calculation 
method). A device which has specific requirements on the REF METHOD, GUARD 
METHOD, or the META ECHO controls may refuse to allow changes to those values 
rather than implementing some form of DIF “stacking” or some equivalent mechanism. 



Detailed control over the Data Integrity Extensions is provided by the new Data Integrity 
Mode page (page code: TBD), which is laid out as follows: 
 

Bit 7 6 5 4 3 2 1 0 
Byte         

0 PS RESERVED PAGE CODE (TBDh) 
1 PAGE LENGTH (0Eh) 

2 STOR_DIF Vendor Specific LBA_ 
40b EXCL_Bytes (# 4B incr.) 

3 META 
ECHO REF METHOD GUARD METHOD RESERVED 

{Primary Verification 
Controls:} 

{Alternate 
Verification 
Controls:} 

{Legacy 
Verification 
Controls:} 

{Legacy Write 
Controls:} 4 

REF_ 
CK_p 

GRD_ 
CK_p 

REF_ 
CK_a 

GRD_ 
CK_a 

REF_ 
CK_l 

GRD_ 
CK_l 

ZAP_ 
REF 

MRK_ 
GRD 

5 STK_ 
META 

STK_ 
REF 

STK_ 
GRD 

DI_ 
AVAIL Reserved 

6 (MSB)  
7  

META TAG MASK Primary 
(LSB) 

8 (MSB)  
9  

META TAG MASK Alternate 
(LSB) 

10 (MSB)  
11  

META TAG MASK Legacy 
(LSB) 

12 (MSB)  
13  

META TAG DEFAULT (legacy) 
(LSB) 

14         
15         

 

If the STOR_DIF flag is 0 (zero), the special DIF CDBs are not available and a Check 
condition with ILLEGAL OPERATION sense data should be issued in response. If the 
STOR_DIF flag is 1 (one), the special DIF CDBs are available and the device is 
normally expected to have been formatted with a DIF attached to each data block. 
 
The LBA_40b flag is independent of the DIE proposal and is described in a separate 
document. It appears here for convenience only and might be migrated to a different, 
more appropriate, Mode page. This feature provides a larger LBA value in certain CDBs. 
 
The EXCL_Bytes count, which must be 8 or less, indicates the number of 4 byte 
DWords, at the end of the data block, which are excluded from the guard calculation. In 
other words, the guard value is computed against the first (BlkSize-4*EXCL_Bytes) 
bytes of the data block, where the BlkSize is the value reported in response to a Read 
Capacity command. For example, if the reported block size is 520 bytes and the 
EXCL_Bytes count is 2, the guard value will be calculated against the first 512 bytes of 
the block, while, if the reported block size is 512 bytes and the EXCL_Bytes count is 8, 
the guard value will be computed against the first 480 bytes of the data block. The data 
bytes excluded from the guard calculation in this way are sometimes called “Customer 
Specific Data”. Generally, the part of the block excluded from the guard calculation by 
the EXCL_Bytes count is called the “data block extension”, while the part of the block 
included in the guard calculation is usually called the “user data block”. 



The controls in byte 3 of the Mode page describe the format and handling of the Tag and 
Guard sub-fields of the DIF. If a device only accepts one setting for a control, it should 
also mark that field as unchangeable. 

The META ECHO flag indicates the behavior that the initiator observes with respect to 
the META tag sub-field. If the META ECHO flag is 0 (zero), the initiator expects (and 
requires) that the value returned in the META Tag field of any block read using a special 
DIF Read is the value last written using a DIF Write (or the value of the META TAG 
DEFAULT field at the time of the last legacy write). The returned value may or may not 
match (and cause a UNIT CHECK condition if the META Tag is being verified) the 
nominal Meta Tag value indicated in a DIF-Read CDB or expected during a normal 
Read. If the META ECHO flag is 1 (one), the initiator expects (and requires) that the 
device return the nominal Meta Tag value in a DIF Read in the META Tag sub-field of 
each returned DIF. On a DIF Write, when the META ECHO flag is 1, the device is 
expected to verify the META Tag sub-field in any received DIF, but is then, in effect, 
free to discard the value. Note that when the META ECHO flag is 1, the device must 
also, effectively, disable Meta Tag verification on Read operations. 
 

The REF METHOD field controls the handling of, and any expectations regarding, the 
REF Tag sub-field. Note that the device may require that the initiator follow certain 
protocols with respect to the REF Tag sub-field. The meanings of these controls are: 

REF 
METHOD 

REF Generation 
[Initial REF Tag value] 

REF value returned 
for a DIF Read 

00 All Writes: 
LBA LBA 

01 

Legacy Writes: 
LBA 

DIF Writes: 
From CDB 

Value written by 
the last Write 

10 
11 

Reserved (/ Vendor Specific) 

 
Note that when the REF METHOD is 00b, the device should reject special DIF 
operations if the REF value supplied in the CDB (when the CDB contains an explicit 
REF Tag value) differs from the above. In addition, when the REF METHOD is 00b, 
the device is only required to verify the REF Tag value during a DIF-Write and to supply 
the appropriate REF Tag value in response to a DIF Read. An REF METHOD of 00b is 
generally used (forced) by a device that is an intermediate controller. If a device cannot 
properly alter or supply the REF Tag value during a DIF Read, it should reject attempts 
to set the REF METHOD to 00b. 

The GUARD METHOD control specifies the method used to calculate the guard value 
from the data block. This calculated guard value is either used to generate the DIF 
(normal writes) or to verify the guard value sub-field in the DIF. A device is not required 
to support both methods. The GUARD METHOD control field provides a number of 
Reserved values to allow for future extensions, e.g., 4 byte guard calculations or a 4 byte 
guard consisting of two 2-byte (independently calculated) guard values. 
 



 

The GUARD METHOD control has the following values: 

GUARD 
SELECT Guard Calculation 

0 {000} Reserved 

1 {001} The checksum-based algorithm, using 16-bit 1’s complement 
addition with a left rotation (multiply by 2) each step 

2 {010} 
The CRC-based algorithm, with polynomial:   {18BB7h or:}  

x16 + x15 + x11 + x9 + x8 + x7 + x5 + x4 + x2 + x + 1 
3 {011} 

thru 
7 {111} 

Reserved / Vendor Specific 

The checksum-based value can be easily calculated by code. The specific algorithms used 
to calculate this value is provided in an appendix (below). The CRC-based value is 
calculated by serially processing the bits of each byte into the polynomial from the high-
order bit (bit 7) through the low-order bit (bit 0). The precise CRC calculation algorithm 
is described at the end of this document. Both calculations are seeded with a logical zero 
value (using the FFFFh form for the checksum to ensure that the calculated value is never 
0000h) to make them easier to use in RAID applications. 

The verification flags in byte 4 control the verification of the DIF during read, write, and 
verify operations. There are three sets of controls, with the following usages: 

? ? The primary set is selected by the 11b CHK_OPTN field value, for verification 
control by the 16-byte forms of the special DIF CDBs. 

? ? The alternate set is selected for use, by the 10b CHK_OPTN field control value, for 
verification control by the 16-byte forms of the special DIF CDBs. 

? ? The legacy set controls DIF verification during all normal/legacy read and verify 
operations (i.e., legacy CDBs).  

 

The legacy write controls indicate the handling of the DIF in conjunction with a legacy 
write command. 
 

The individual verification control flags have the following meanings: 
 

The REF_CK_x flag controls the checking of the REF Tag sub-field against the nominal 
REF value. The nominal value is, according to the REF METHOD control and the 
specific CDB, one of the following two values: 

? ? The REF value indicated in a special DIF CDB (possibly incremented). 
? ? The lower 4 bytes of the LBA. 

 

The GRD_CK_x flag indicates whether the guard sub-field of the DIF is checked against 
the calculated guard value.  
 

The ZAP_REF flag indicates that the REF Tag value should be stored as zero (0) during 
a legacy write operation to indicate the source of the DIF. 



The MRK_GRD flag indicates that the guard sub-field should be specially marked as 
part of a legacy write operation. When active, the guard is stored as zero (0000h) when 
using a checksum-based guard or the calculated CRC value XORed with BADBh for a 
CRC-based guard. 
 

The META TAG MASK x fields provides masks used to limit the checking of the 
META Tag value. A value of 0000h effectively disables checking of the META Tag. 
 

The META TAG DEFAULT field supplies the nominal (or generated) META Tag 
value used with legacy CDBs where there is no provision for a META Tag value. 
 

The STK_META, STK_REF, and STK_GRD flags indicate whether the device has 
internal usage requirements for the META Tag, REF Tag, or Guard calculation method 
which would force it to “stack” DIFs (or provide some equivalent internal alternative) if 
the initiator alters those controls in byte 3 of the mode page. Such devices are generally 
intermediate controllers which make use of those fields in the DIF for internal purposes, 
e.g., it uses the META Tag as part of its block-state/status information (and/or as a 
logical LUN indicator), requires that the REF Tag be locked to LBA to allow it to 
internally verify block identity, or requires a specific Guard calculation method as part of 
certain internal algorithms (e.g., the use of checksum-based guards to close the RAID 
write-hole problem and/or to provide stripe protection). An intermediate controller should 
not require DIF-stacking for a META ECHO setting of 1 or a REF METHOD of 00b. 
 

The DI_AVAIL flag is informational only (marked as unchangeable). A device sets this 
flag if it internally provides some form of Data Integrity (DIF-based or some alternate 
method), e.g., a “hidden DIF” implementation. 
 

Vendor specific fields are provided to allow for certain variances, e.g., little-endian 
semantics or explicit stacking of DIFs. 
 
 

NOTE to reviewers: The following is to be extracted to a separate document: 
 
The LBA_40b flag indicates whether the device will accept 40-bit LBAs. A device that 
does not provide this extension should force this flag to 0 (zero) and mark this bit as 
“unchangeable”. If a device does provide for the 40-bit LBA extension, this flag should 
be marked as “changeable” and the setting of the flag indicates whether the extension is 
in force (flag is 1 [one]) or not (flag is 0 [zero]). 
 
If the 40-bit LBA extension is not in force (i.e., LBA_40b is 0 [zero]), LBAs in CDBs 
are processed and checked normally, and the canonically reserved byte in 10, 12, and 16 
byte CDBs remains “reserved”. 
 
If the LBA_40b flag is 1 (one), all CDBs with a 4-byte LBA are adjusted to accept a 5 
byte (40 bit) LBA. The least significant 4 bytes of the LBA are provided by the existing 4 
byte LBA field, while the most significant byte is provided in the canonically reserved 



byte in the CDB – This is byte is byte 6 in a 10-byte CDB3, byte 10 in a 12-byte CDB, 
and byte 14 in a 16-byte CDB. This flag affects the following CDS:  

Lock Unlock Cache (10); Pre-Fetch (10); Read (10) and (12); Read Capacity (10); 
Read Long; Rebuild (16); Regenerate (16); Seek (10); Set Limits (10) and (12); 
Synchronize Cache (10); Verify (10) and (12); Write (10) and (12); Write and 
Verify (10) and (12); Write Long; Write Same (10); XDRead (10); XDWrite (10); 
XDWriteRead (10); and4 XPWrite (10). In addition, the new DIF-aware CDBs 
with CMD_FMT equal to 0 (and thus 4 byte LBAs) are affected. 

                                                
3 For the 10-byte CDBs, there is some case for making byte 2 the most significant byte and byte 6 the least 
significant of a contiguous 5-byte LBA. However, the approach of making byte 6 the most significant 
would seem to have the smallest impact. 
4 XDWrite Extended (16) cannot be extended due to the use of byte 14 for the “Secondary Address”. 



Legacy Write operations 
 
When the device is formatted with attached DIFs, the DIF must be generated during a 
normal Write operation (i.e., existing write CDBs) under control of the Legacy Write 
control bits. The generation of the DIF is similar to the DIF generation described above 
during format operations: 

? ? The first (4 byte) sub-field of the DIF is either the lowest 4 bytes of the LBA or 
zero, depending on the ZAP_REF control flag. 

? ? The second (2 byte) sub-field is taken from the Data Integrity Mode page. 
? ? The guard sub-field is generated according to the guard selection controls in the 

Data Integrity Mode page. If the MRK_GRD flag is active, the guard sub-field is 
set to a special value to “mark” the block.  

The device accepts the user data portion of each block, attaches the appropriate DIF, and 
writes the combined block to the media. 
 
Legacy Write Same operations 
 
During a Write Same operation on a device formatted with attached DIFs, a DIF must be 
generated and attached to each copy of the block, similar to a Write operation. If both the 
PBDATA and LBDATA flags are 0, the guard value can be calculated only once. 
 
Legacy Read operations 
 
When the device is formatted with attached DIFs, the DIF is checked and then stripped 
during normal read operations. The device reads the DIF-extended block from the media, 
verifies the DIF according to the Legacy set of flag settings in the Data Integrity Mode 
page, and sends the user data portion of the block (without the DIF) to the initiator.  
 
[Notes to reviewers: 

1. Do we wish to “require” that a device keeps the DIF in it buffers and only checks 
and strips it as the last part of sending the block to the initiator? 
Current position seems to be: It is nice to have, but not a requirement. Failure 
to do so weakens the integrity (especially with regard to the guard value). 

2. We need to specify the behavior when a DIF error is detected during a multi-
block read. There seem to be two options: Terminate the read as soon as an error 
is recognized (send the block with the error but no more), OR, continue the read 
operation (sending all of the data blocks requested) and then indicate an error 
with the sense data indicating the first block in error and also indicating if there 
was only one block in error or if there were additional DIF errors. I tend to favor 
the latter approach, but I have not thought through all of the possible problems 
that might arise if there are other (non-DIF) errors and I could probably be 
talked into the former approach – This area needs to be discussed!! 
Current position: The consensus seems to be to allow the device to terminate the 
operation, under control of the Read/Write Error Recovery mode page, when an 
error is encountered. 



 
Legacy Verify operations 
 

When the device is formatted with attached DIFs and a normal Verify operation is 
requested, the DIF is checked as described for a read operation and the user data part of 
the block is verified as specified by the existing Verify command requirements.  
 

Legacy Write&Verify operations 
 

The extension to the Write-and-Verify command is similar, but with the DIF generated as 
described for a Write operation and then verified as described above. 
 

Write Long and Read Long (legacy) 
 

These operations continue to access a complete block including any ECC (or other 
information on controllers that do not return ECC). However, if the device is formatted 
with attached DIFs, the size of the complete block includes the eight byte DIF (or 16 
bytes for 2 DIFs in some cases) in addition to the ECC. 
 
XOR Support operations 
 
If the STOR_DIF flag is 1, the device is expected to reject the XOR support CDBs 
(REBUILD, REGENERATE,  XDREAD, XDWRITE, XPWRITE, XDWRITEREAD, 
and XDWRITE EXTENDED).  
 
DIF-aware operations 
 
As a part of the Data Integrity Extensions, a number of new operations (CDBs) are 
defined to deal with blocks extended with DIFs. All of these operations should return 
ILLEGAL OPERATION/INVALID FORMAT sense data if they are issued to a device 
where the STOR_DIF flag is inactive. The additional operations extend the basic Read, 
Write, and Verify operations to deal directly with data blocks including an attached DIF, 
which is generally assumed to be accurate. In addition to transferring the DIF between 
the initiator and the device, the DIF-aware CDBs generally provide nominal values 
against which the REF Tag and META Tag sub-fields of the DIFs may be checked and 
controls to indicate if and when an error condition should be recognized as a result of an 
unexpected mis-match of the guard value or one of the tag values. 
 
A device which implements the Data Integrity Extensions must provide support for either 
the 16 byte CDB formats and/or the 32 byte CDB formats (or both). 



There are two additional CDBs, with common formats, provided for each operation type: 

? ? A 16-byte CDB. This form is provided for common use by the initiator but does not 
provide a full set of control options over the operation. There are two variant 
formats, one with a 4 byte LBA and an independent 4 byte nominal REF Tag value 
and a second format with an 8 byte LBA in which the Nominal REF Tag value is 
assumed to be the lower 4 bytes of the LBA. The format variant is selected by the 
CMD_FMT flag in byte 1, bit 7 of the CDB. 

? ? A 32-byte CDB that provides full control over the operation. In this format, many of 
the Mode page controls are duplicated and the values provided in the CDB take 
precedence. If the device does not support the control combination specified in the 
CDB, it is expected to reject the command. 

 
The 16-byte CDBs use the following templates5. When the CMD_FMT flag is 0 (zero): 

Bit 7 6 5 4 3 2 1 0 
Byte         

0 OPERATION CODE (TBDh) 

1 
CMD_ 
FMT 
(0) 

CHK_OPTN [---Command specific flags---] 
{See the individual command descriptions} 

2 (MSB)  
3   
4   
5  

LOGICAL BLOCK ADDRESS (LBA) 

(LSB) 
6 (MSB)  
7   
8   
9  

(Nominal) REF TAG 

(LSB) 
10 (MSB)  
11  

(Nominal) META TAG 
(LSB) 

12 (MSB)  
13  

TRANSFER LENGTH 
(LSB) 

14 RESERVED 
15 CONTROL 

 

                                                
5 This approach requires the use of 5 of the 16-byte Operation codes. This can be reduced to only 2 codes 

by combining the DIF-Write, DIF-Verify, DIF-Write&Verify, and DIF-Write Same CDBs into a single 
Operation Code with a sub-operation field, as follows: 

1. Move the CHK_OPTN field to the (two) reserved bits in the “Command Specific Flag” area. The 
placement (unfortunately) varies according to the specific sub-operation., using bits 1 and 2 for the 
DIF-Write sub-operation, bits 2 and 3 for the DIF-Verify and DIF-Write&Verify sub-operations, 
and bits 3 and 4 for the DIF-Write Same sub-operation. 

2. Use bits 5 and 6 to indicate the sub-operation, 00b for DIF-Write, 01b for the DIF-Write Same, 
and 10b and 11b for the DIF-Verify and DIF-Write&Verify operations. 

3. For uniformity, the format of the DIF-Read CDB should be altered to conform to the format of the 
DIF-Write CDB, displacing CHK_OPTN to bits 1 and 2 and making bits 5 and 6 “reserved”. 



Format when the CMD_FMT flag is 1 (one): 

Bit 7 6 5 4 3 2 1 0 
Byte         

0 OPERATION CODE (TBDh) 

1 
CMD_ 
FMT 
(1) 

CHK_OPTN [---Command specific flags---] 
{See the individual command descriptions} 

2 (MSB)  
3   
4   
5 
6 

  

7   
8   
9  

LOGICAL BLOCK ADDRESS (LBA) 
 

[The nominal REF TAG is supplied by the lower 4 bytes] 

(LSB) 
10 (MSB)  
11  

(Nominal) META TAG 
(LSB) 

12 (MSB)  
13  

TRANSFER LENGTH 
(LSB) 

14 RESERVED 
15 CONTROL 

The CMD_FMT flag selects between the two 16-byte formats of the special DIF CDBs. 
If the CMD_FMT flag is 0 (zero), the 16-byte format contains a 4 byte LBA and a 
separate 4 byte REF tag checking value. If the CMD_FMT flag is 1 (one) the 16-byte 
format contains an 8 byte LBA and the REF tag checking value is assumed to be equal to 
the lower 4 bytes of the LBA. 
 
The CHK_OPTN field indicates the checking to be performed against the attached DIFs 
during the Read operation. The values of this field are as follows: 

CHK_OPTN DIF Checking performed 
00 None 
01 Guard value only 
10 As indicated by the Alternate Verification flags in the Mode page 
11 As indicated by the Primary Verification flags in the Mode page 

 

The “Command Specific Flags” vary according to the specific operation and are identical 
to the flag definitions of bits 0 through 4 in the corresponding non-DIF-aware command. 
The specific flag bit definitions are indicated in the descriptions (below) of the individual 
DIF-aware operations. 

 



The 32-byte format of the DIF-aware CDBs use the following template: 
Bit 7 6 5 4 3 2 1 0 

Byte         
0 OPERATION CODE (7Fh) 
1 CONTROL 
2 Reserved 
3 Reserved 
4 Reserved 
5 Reserved 
6 Reserved 
7 ADDITIONAL CDB LENGTH (18h) 
8 (MSB)  
9  SERVICE ACTION (TBDh) (LSB) 

10 Reserved [---Command specific flags---] 
{See the individual command descriptions} 

11 Vendor Specific REF 
CHECK 

GUARD 
CHECK Reserved 

12 (MSB)  
13   
14   
15   
16   
17   
18   
19  

LOGICAL BLOCK ADDRESS 

(LSB) 
20 (MSB)  
21   
22   
23  

(Nominal) REF TAG 

(LSB) 
24 (MSB)  
25  (Nominal) META TAG (LSB) 
26 (MSB)  
27  META TAG MASK (LSB) 
28 (MSB)  
29   
30   
31  

TRANSFER LENGTH 

(LSB) 

The REF CHECK, and GUARD CHECK flags correspond to the verification control 
flags in the Mode page and specify the verification checks to be performed for this 
operation. The META TAG MASK is always applied, but since a value of 0000h will 
effectively obviate the mask functionality, so there is no need to have a separate Mask 
control flag. 
 
[Note to Reviewers: The 4 reserved bits in byte 11 could possibly be used to specify the 
guard calculation or exclusion count, but this does not seem to be a particularly useful 
feature to provide – Generally in the cases where it might be useful, it is probably 
simpler to suggest that the GUARD CHECK flag be set to 0 and any special verification 
be done in code instead.] 
 



DIF-Read operations 
 
The new DIF-Read CDB reads the complete data block (including the DIF) over the 
interface. The ”Command Specific Flags” for this operation are as follows: 

Bit 7 6 5 4 3 2 1 0 

Byte 1: --- DPO FUA Reserved RELADR 
 

During a DIF-Read, the device should send the data blocks unmodified, except as 
allowed and indicated by the Mode page controls. However, the device is expected to 
verify the DIF according to the information and flags in the CDB and in the Data 
Integrity Mode page (if selected, i.e., for CHK_OPTN values 10b and 11b) and indicate 
an error at the end of the transfer if a DIF error is recognized.  
 
DIF-Write operations 
 
The new DIF-Write CDBs cause the complete data block, including the 8 byte DIF, to be 
accepted by the device and written to the media. The ”Command Specific Flags” for this 
operation are as follows: 

Bit 7 6 5 4 3 2 1 0 

Byte 1: --- DPO FUA Reserved RELADR 

  
The device should not modify the DIF in any way before writing it to the media, but is 
expected to check the DIFs as they are accepted from the initiator and indicate any DIF-
errors it recognizes in the transmitted data. As for a DIF-Read, the checking is controlled 
by information and flags in the CDB and in the Data Integrity Mode page. If a DIF-error 
is recognized, the device is expected to complete the operation and indicate the error at 
the end with sense data indicating the first block in error. 
 
[Notes to reviewers: 

1. Again, there is the option of stopping on the first block in error rather than 
completing the operation (should we have an error control flag in the Data 
Integrity Mode page??). 
The current consensus seems to be that the device may terminate the operation 
whenever it detects a DIF error. In particular, the action on encountering and 
error should be controlled by the Read/Write Error Recovery mode page. 

2. A good case can be made for allowing the device to generate and fill-in some of 
the DIF sub-fields since this would help to reduce the firmware/software 
overheads. I think we have to have the full transmission possibility for flexibility 
and completeness. However, a good case can be made for allowing the controller 
in the initiator to fill in certain sub-fields of the DIF, and it may be worthwhile to 
allow the device to fill in such fields as well in certain cases.] 
This might be a possible usage for the reserved bits in byte 11 of the 32-byte 
CDB format. 

 



DIF-Verify operations 
 
The new DIF-Verify operation is used to verify that the DIF areas are as expected as well 
as (possibly) verifying the user data. The “Command Specific Flags” for this operation 
are as follows: 

Bit: 7 6 5 4 3 2 1 0 

Byte 1: --- DPO Reserved BYTCHK RELADR 

 
During a DIF-Verify, the device accepts the complete data block, including the DIF, and 
checks it against the appropriate data block from the media.  
 
DIF-Write&Verify operations 
 
The CDBs for the DIF-Write&Verify operation are similar to the DIF-Verify CDBs and 
the “Command Specific Flags” have the same layout.  
 
DIF-Write Same operations 
 
The DIF-Write Same operation accepts a single block of data, with a DIF, from the 
initiator and duplicates that block through the indicated range of blocks. The “Command 
Specific Flags” for this operation are as follows: 

Bit: 7 6 5 4 3 2 1 0 
Byte 1: --- Reserved PBDATA LBDATA RELADR 

 
In addition to the possible modifications of the data indicated by the PBDATA and 
LBDATA flags, the device may need to make the following alterations to the DIF on a 
block-by-block basis: 

? ? The REF Tag value may need to be incremented on a per-block basis. 
? ? The guard value may need to be adjusted due to any changes in the data block that 

result from the PBDATA or LBDATA modifications to the block. 
 
[Note to reviewers: There was some discussion as to whether we should disallow the 
PBDATA and LBDATA flags in the DIF-Write Same, both to avoid the extra overhead of 
modifying the guard value and because the REF Tag serves essentially the same purpose. 
However, the code to update the guard value is still required to handle the non-DIF 
Write Same CDB (if the flags are allowed), and an implementation can always reject the 
usage of those flags, so it seems reasonable to provide them here.] 
 
 



Algorithm for calculating the Checksum-based Guard Value: 
 
The following C code describes the calculation of the checksum-based Guard value. Note 
that “len” is expected/required to be even (actually, it will normally be a multiple of 4): 
 

unsigned short ChkSum( register unsigned char * data,  
                       register int             len) 
{ 
    register unsigned long sum = 0xFFFF; 
     
    /* Infinite loop with mid-point “break” exit: */ 
    do 
    { 
        sum <<= 1; 
        sum += *((unsigned short*)data); 
        data += 2;    /*processing 2 bytes at a time */ 
        if( (len -= 2) & 0x0F)   /* loop if not *16 */ 
            loop; 
 
        /* Wrap carries down for 1’s complement add */ 
        sum = (sum & 0xFFFF) + (sum >> 16); 
 
        if( len == 0)   /* done? */ 
            break; 
    } 
    return (unsigned short) 
           ((sum & 0xFFFF) + (sum >> 16)); 
}  /* END of checksum calculation routine */ 

 

This routine produces the same (in memory) result under both “little endian” and “big 
endian” processor architectures when the result is stored in memory, i.e., the first result 
byte in memory will have the same value in either architecture and the second byte in 
memory will have the same value6. In particular, on a “big endian” architecture, the 
nominal data layout (for a 512 byte plus DIF data block in 2-byte words) is the following: 

msb lsb msb lsb ... msb lsb msb   lsb msb lsb msb lsb 

Guard Word 0 Word 1 ... Word 
255 REF Tag META 

Tag AA BB 

While, on a “little endian” architecture, the nominal data layout is the following: 

lsb msb lsb msb ... lsb msb lsb   msb lsb msb lsb msb 

Guard Word 0 Word 1 ... Word 
255 REF Tag META 

Tag AA BB 

Because the inputs to the calculation are “swapped” in the “little endian” architecture, the 
calculated value is also “swapped” (multiplied by 256 modulo 216-1), and the resulting 
value is “re-swapped” when stored in memory, resulting in the same values in byte order. 

                                                
6 This is a result of the special properties of 16-bit 1’s complement (i.e., modulo 216-1) arithmetic. The 
(relative) byte swap between “little endian” and “big endian” architectures is equivalent to a multiplication 
by 256 modulo 216-1, and 256*256 = 1 modulo 216-1.  



Examples of the Checksum-based Guard 
 
These examples all use a data block containing the following data bytes (in hexadecimal): 

01, 35, 2C, 57, 68, 4B, 59, 97, 74, 82, followed by 492 bytes of 00. 

When calculated on a “big endian” architecture, the calculations are as follows: 

Operation Checksum 
seed FFFF 

rotate FFFF 
data: 01,35 0135 

rotate 026A 
data: 2C,57 2EC1 

rotate 5D82 
data: 68,4B C5CD 

rotate 4B5B 
data: 59,97 A4F2 

rotate 49E5 
data: 74,82 BE67 
rotate * 11 3DF3 
rotate * 480 3DF3 

FINAL: 3DF3 
Stored in 
Memory 3D,F3 

When calculated on a “little endian” architecture, the calculations are as follows: 

Operation Checksum 
seed FFFF 

rotate FFFF 
data: 35,01 3501 

rotate 6A02 
data: 57,2C C12E 

rotate 825D 
data: 4B.68 CDC5 

rotate 5B4B 
data: 97,59 F2A4 

rotate E549 
data: 82,74 67BE 
rotate * 11 F33D 
rotate * 480 F33D 

FINAL: F33D 
Stored in 
Memory 3D,F3 

As can be seen from these examples, the value stored in memory (and attached as the 
guard value to the data block) is the same in both architectural models, 



Algorithm for calculating the CRC-based Guard value: 
 
The CRC-based Guard value is nominally calculated a bit–at-a-time by the following 
logic circuit. The initial feedback register value is 0000h: 

 

msb           lsb 
 

An implementation may provide an equivalent computation that produces the same value. 
An alternate implementation may well process the data a byte at a time, 2 bytes at a time, 
or in even larger blocks of data per (clock) step. 
 
As an example for verification purposes, the CRC computed, starting with a seed of 
FFFFh, for the following 512 byte data block: 

index x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF 

00x FF FE FD FC FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0 

01x EF EE ED EC EB EA E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 

02x 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

03x 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

... ... 
1Fx 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

 

is the value 69CDh and the DIF will be as follows: 

(MSB) REF Tag (LSB) (m)   META Tag   (l) 69h CDh 
 

B 8 B 7 

7 6 5 4 3 2 1 0 byte 2 
7 6 5 4 3 2 1 0 byte 1 
7 6 5 4 3 2 1 0 byte 0 

 

. . . Data is processed starting with bit 7 (the 
most significant bit) of byte 0 through bit 
0 (the least significant bit) of byte 0, and 
continues with the bytes in order. 


