
ADI ADT Frame Format Proposal T10/2-274r0

1

TO: T10 Membership, ADI Working Group
FROM: Rod Wideman, ADIC; rod.wideman@adic.com
DATE: July 10, 2002
SUBJECT: ADI ADT Frame Format Proposal (document T10/02-274r0)

Introduction
This document is an attempt to describe an actual ADT frame format as a follow-up to
Paul Suhler’s document, T10/02-233r0 (Frame Format Notes). The goal of this
document is to facilitate the discussion regarding the frame definition and lead towards a
final definition to be included with the actual ADT specification. Complete transaction
descriptions are beyond the scope of this document. Intentional points of discussion are
shown in italics.

ADI ADT Frame Format
The general layout of the ADI frame is shown in Figure 1. It consists of a Start of Frame
character, followed by a frame header, the frame payload, a checksum field, and
concludes with an End of Frame character.

SOF Header Payload Checksum EOF
Figure 1 General ADT Frame Format

Special Characters
To guarantee that the Start of Frame and End of Frame characters are unique to the data
stream, special characters are reserved to represent them. These are:

��Start of Frame (SOF) 02h
��End of Frame (EOF) 03h

To ensure that these are unique to the data stream, a technique known as “byte stuffing”
is utilized to encode any other occurrence of these values outside of indicating the start of
end of a frame. This is accomplished by using an “escape” character to indicate that the
very next byte in the stream has been modified from its original value.

��Escape 7Dh

Occurrences of the Escape character value are also encoded. When a data byte having
the value of 02h, 03h, or 7Dh is encountered in the data stream, a 7Dh is inserted before
it and the data byte itself is modified by an OR operation with 80h, which results in the
values 82h, 83h, or FDh respectively to represent it.

Byte stuffing does not affect the actual usable header or payload sizes, as the Escape
sequence encoding and decoding only happens as the data is being sent or received. The
checksum is also calculated before the encoding occurs or after the decoding occurs.

ADI ADT Frame Format Proposal T10/2-274r0

2

[Actual values for SOF, EOF, Escape, and encoding are TBD]

[I didn’t choose a Hamming distance > 1 because with a limited number of special
characters it didn’t seem overly necessary]

Frame Header
The frame contains a seven-byte header as shown in Figure 2. The fields are described
below.
[Should more of the header be contained within the payload (addresses, LUNs)?]

Frame Type
Frame Number
Source Address
Target Address

Target LUN
Target LUN Task ID

Reserved
Figure 2 Frame Header

Frame Type – This field indicates the type of frame, which really indicates the type of
payload. The different frame types are shown in Figure 3.

Type Value
Command 0
Data 1
Response 2
Acknowledgement 3
Alert 4
Abort 5

Figure 3 Frame Types

[What are the other types needed?]

Frame Number – This is a continuously incrementing number that uniquely identifies a
frame from other frames. It ranges in value from 0 to 255, and repeats.
Acknowledgement frames return the same frame number as the one they are
acknowledging.

Source Address – This is the address of the initiator.

Target Address – This is the address of the target device.
[Do we really need these? In a point-to-point configuration, these seem to be
unnecessary. For a multi-drop configuration they would be needed.]

ADI ADT Frame Format Proposal T10/2-274r0

3

Target LUN – This is the destination Logical Unit Number within the Target. This is
used to identify either the SSC device server or the ADC device server over the same
serial port.

Target LUN Task ID – This is the specific task within the Logical Unit for which the
frame is intended. This can be used to communicate to special diagnostic tasks within the
ADC device server for example.

Reserved – A reserved field is included to pad the beginning of the frame to an eight-
byte boundary prior to the payload.

Frame Payload
The frame payload contains data defined by the frame type. For a Command type frame,
the payload contains an encapsulated SCSI Command Descriptor Block.

(etc., etc.)

[I didn’t want to get into the details of the payload yet.]

Frame Checksum
The checksum field is across all the data contained within the header and payload. It
excludes the SOF, EOF, and itself. The checksum algorithm is TBD.

Complete Frame
The complete ADT frame is shown in Figure 4.

Bit
Byte

7 6 5 4 3 2 1 0

0 SOF
1 Frame Type
2 Frame Number
3 Source Address
4 Target Address
5 Target LUN
6 Target LUN Task ID
7 Reserved
8
9 Payload Length (n-12)

 [Payload]
n-2
n-1 Checksum

n EOF
Figure 4 Complete ADT Frame

