Serial Attached SCSI
Technical Overview

by Rob Elliott
Based on T10/02-157r0
Revision 0 - 29 April 2002
Revision 1 - 6 May 2002 (minor corrections)
Outline

- Introduction
- General (devices, domains, …)
- Physical layer (cables, connectors, electrical specs, …)
- Phy layer (8b10b, OOB, …)
- Link layer (primitives, connections, …)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information
Introduction

- Serial Attached SCSI (SAS)
 - *Serial SCSI Protocol (SSP)*
 - SCSI over Serial ATA physical layer
 - *Serial ATA Tunneling Protocol (STP)*
 - Enhancement to Serial ATA adding addressing
 - *Serial Management Protocol (SMP)*
 - Expander management
Introduction - General

- Expanders
 - Simple virtual circuit switches
 - STP to SATA protocol conversion
 - edge expanders - simple subtractive decode
 - fanout expanders - routing table - max. one per domain
 - 64 devices per expander

- 4096 total devices in a SAS domain
Connectors

- Disk drive/backplane - Based on SATA connectors
 - Dual port - extra port on other side of SATA signals, between signal and power
 - SATA or SAS disk drive can plug into SAS backplane
- External - Based on InfiniBand™ 4-wide connector (SFF-8470)
 - Special keying for SAS
- Being standardized in SFF

Electrical specs

- 1.5 Gbps, 3.0 Gbps
- Based on SATA 1.0 and XAUI
8b10b like all other serial protocols

OOB compatible with Serial ATA
SAS primitives use K28.5; SATA use K28.3
- Address frames
- WWN addressing
- Connections
- Scrambling
SSP

- SCSI frames are based on FCP
- COMMAND, XFER_RDY, DATA, RESPONSE
- TASK, AEN, and AEN_RESPONSE added

STP

SMP

- Functions for expanders
Introduction - Application layer

- **SCSI**
 - Disconnect-Reconnect mode page
 - Protocol-Specific mode page

- **ATA**
 - Addressing added
General outline

- SCSI standards
- ATA standards
- Serial ATA overview
- Protocol layers
- SSP (SCSI), STP (ATA), and SMP
- Initiators, targets, and expanders
- Phy
- Ports and wide links
- Domains
- Sample topologies

- Possible configurations
- Pathways
- Device names
- Transmit data path
- Resets
- Expander model
Device-type specific command sets (e.g., SBC-2, SSC-2, MMC-3)

Primary command set (shared for all device types) (SPC-3)

Protocols (e.g., SPI-4, FCP-2, SSP in this standard)

Interconnects (e.g., SPI-4, Fibre Channel, this standard)
General - ATA standards

- ATA register-delivered command set (ATA/ATAPI-6)
- Device-type specific command sets (e.g., MMC-3)
- Primary command set (shared for all device types) (SPC-3)
- ATA (Register-delivery for ATA commands)
- ATAPI (Packet-delivery for SCSI commands)
- ATA/ATAPI Register set (ATA/ATAPI-6)
- Protocols (STP in this standard, SATA)
- Interconnects (this standard, SATA)
General - Serial ATA overview

- **Physical**
 - Point-to-point links
 - 1.5 Gbit/sec transfer rate; 3.0 Gbit/sec and 6.0 Gbit/sec in the future
 - spread-spectrum clocking
 - Device connector, cables, backplane connectors

- **Link**
 - Out-of-band (OOB) reset sequence (includes speed negotiation)
 - 8b10b coding, repeated primitive scrambling, frame data scrambling, power management, half duplex

- **Transport**
 - ATA/ATAPI-6 transport protocol - PIO, DMA, DMA queuing, PACKET
 - Frame Information Structure (FIS) with CRC-32
 - No addressing; little-endian
General - Protocol layers

- SCSI application
 - SSP transport
 - SSP link
 - SAS link
 - SAS phy
 - SAS physical

- SATA/ATA application
 - SATA transport
 - STP link
 - SAS link

- Management application
 - SMP transport
 - SMP link
- Initiator (HBA) protocols
 - SSP (SCSI)
 - STP (ATA)
 - SMP
 - SATA (ATA)

- Target (disk or tape drive) protocols
 - SSP (SCSI)
 - SATA (ATA)
 - SMP

- Expander protocols
 - Initiator side
 - SSP (SCSI)
 - STP (ATA)
 - Target side
 - SSP (SCSI)
 - SATA (ATA)
 - SMP
General - Initiator device

SAS initiator device is a SCSI initiator device and/or ATA initiator device.

- SAS initiator port
 - SCSI initiator port
- SAS initiator port
 - ATA initiator port
- SAS initiator port
 - ATA initiator port

Service delivery subsystem

Slide 16
SAS target device is a SCSI target device and/or ATA target device.
General - Expander device

Expander device

expander port

SAS target port

expander port

SSP and STP, or SATA

Initiator ports, target ports, or expander ports
General - Expander types

- **Fanout expander**
 - Up to 64 phys
 - One per domain
 - Maintains routing table for whole domain
 - Attaches to edge expanders, initiators, and targets

- **Edge expanders**
 - Up to 64 phys
 - Subtractive routing
 - Attaches to initiators, and targets, and one other expander

Slide 19
General - Ports and wide links

- **physical link**
 - 1-wide physical link

- **2-wide physical link**

- **n-wide physical link**

Slide 21
Aggregates bandwidth

Different connection may be open on different link

Expected usage

- Common: Wide HBA to wide expander
 - External 4-wide cables common
- Possible: Wide HBA to wide RAID controller
- Unlikely: Wide disk drives
 - Dual ports only for use in separate domains, not more bandwidth
General - Domains

- Initiator port (SSP)
- Initiator port (STP)
- Target port (SSP)
- Target port (SATA)
- Expander port
- Expander devices

SAS domain

SSP
STP
SATA

Slide 23
General - Initiator device in 2 domains

Slide 24
General - Target device in 2 domains

Slide 25
General - Maximum configuration

Slide 26
General - Pathways

Slide 27
Internal drives and External JBOD with dual port drives (future)

Internal drives and external RAID as a 4 Node Cluster
Each device has a 64-bit FC style Worldwide Name (WWN), used for addressing.

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-6</td>
<td>0</td>
<td>NAA (5h)</td>
</tr>
<tr>
<td>5-4</td>
<td>2</td>
<td>IEEE Company ID (24 bits)</td>
</tr>
<tr>
<td>2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-0</td>
<td>4</td>
<td>Vendor-Specific Identifier (40 bits)</td>
</tr>
</tbody>
</table>
General - Transmit data path SAS portion

Phy layer state machine
- OOB signals, D10.2, ALIGN
- Insert ALIGNs

SAS Link layer Connection management
- Address frames, OPEN_ACCEPT, CLS, OPEN_REJECT, BREAK

SSP Link layer
- SSP dword

SMP Link layer
- SMP dword

STP Link layer
- STP dword

Phy layer state machine transitions:
- Ready
- Connected
- Other

Slide 31
General - Transmit data path - SSP portion

- **SCSI Application layer** runs SCSI commands
- **SSP Transport layer** builds and parses SSP frames
- **Port layer** Transport layer to multiple link layers arbiter
- **SSP Link layer**
 - **SSP Transmit frame state machine**
 - **SSP Receive frame state machine**
 - **SSP Receive credit counter state machine**
- **SSP Done state machine**
- **SSP idle dword generator**

Vendor-specific to send ACK/NAK/RRDY inside frames

- **SOF / dwords / EOF**
- **DONE**
- **idle dword**
- **ACK / NAK**
- **RRDY**

SSP dword
Slide 33

General - Transmit data path - STP portion

SATA Application layer state machines
Device: Device
Command layer (D)
Host: Vendor-specific

SATA Transport layer state machines
Host transport: HT (transmit FIS, decompose FIS)
Device transport: DT (transmit FIS, decompose FIS)

STP Link layer machine based on SATA Link state machine
L = Link idle
LT = Link transmit
LR = Link receive
LPM = Link power mode

PMREQ_P, PMREQ_S, PMACK, PMNAK, ALIGN
SYNC, ALIGN
X_RDY, HOLDA, HOLD, EOF, WTRM
R_RDY, SYNC, R_IP, DMAT, HOLD, HOLDA, R_OK, R_ERR, CRC dword

SATA state machines are defined by SATA and are shown here only for reference.
General - Reset terminology

SATA

- Time
- Link reset sequence
- Phy reset sequence
- SATA power-on sequence
- SATA OOB sequence
- SATA speed negotiation sequence

SAS

- Time
- Link reset sequence
- Phy reset sequence
- SAS OOB sequence
- SAS speed negotiation sequence
- Identification sequence

Phy layer state machine enters Ready

Link layer state machine starts

Link layer state machine enters Idle
General - Expander model

- Expander Port
- SAS Target Port
 - SMP Target Port
 - SSP Target Port (optional)

- SSP Link

Input:
- Request
- Confirm
- Indicate

Output:
- Request
- Confirm
- Indicate

Tx
Rx

Slide 35
Outline

- Introduction
- General (devices, domains, ...)
- **Physical layer (cables, connectors, electrical specs, ...)**
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)
- Application layer (SCSI mode pages)
- Further information

Slide 36
Physical layer outline

- SATA cables and connectors
- SAS external environment
- SAS internal environments
- Cables and connectors
- Compliance points
- Electrical characteristics
- Eye diagrams
- Transmit and receive electrical characteristics
- Other highlights

Slide 37
Physical - SATA cables and connectors

Internal cabled environment

Host

SATA cable

Power cable receptacle connector

Device plug connector

Signal host plug connector

Signal cable receptacle connectors

Power supply

Internal backplane environment

Host

Host receptacle connector

Device plug connector

SATA device
Physical - SAS external environment

External cable environment

Initiator device

SAS external cable (1-4 physical links)

SAS external plug connector (4 physical links)

SAS external cable receptacle connectors (4 physical links)

SAS external plug connector (4 physical links)

Expander device
Physical - SAS internal environments

Internal cabled environment

SAS cable (1 physical link plus power)

SAS internal cable receptacle connectors (single-port)

SAS target device

SAS plug connector (dual-port)

Internal backplane environment

SAS initiator device or expander device

SAS backplane receptacle connector (dual port)

SAS target device

SAS plug connector (dual-port)
Physical - Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Attaches to</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS plug</td>
<td>SAS internal cable receptacle</td>
</tr>
<tr>
<td></td>
<td>SAS backplane receptacle</td>
</tr>
<tr>
<td>SAS internal cable receptacle</td>
<td>SAS plug</td>
</tr>
<tr>
<td></td>
<td>SATA device plug (single-port)</td>
</tr>
<tr>
<td>SAS backplane receptacle</td>
<td>SAS plug</td>
</tr>
<tr>
<td></td>
<td>SATA device plug (single-port)</td>
</tr>
<tr>
<td>SAS external cable receptacle</td>
<td>SAS external plug</td>
</tr>
<tr>
<td>SAS external plug</td>
<td>SAS external cable receptacle</td>
</tr>
</tbody>
</table>
Physical - Cables and connectors

- READY LED pin added to device connector
 - Disk drive output indicating activity
- InfiniBand™ connectors and cables for the external environment
- 10 meter external cable length
- 500 plug events on device connector
Physical - Compliance points

Compliance points

- Dt, Dr - SAS disk drive connector
 - Attaches to backplane connector leading to SAS initiator or SAS expander ASIC
- Ct, Cr - SAS external connector
 - Attaches to other external connectors

Optional compliance points

- Xt, Xr - SAS expander ASIC
- It, Ir - SAS initiator ASIC
 - May be attached to SATA drives or SAS drives
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1.5 Gbps</th>
<th>3.0 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate</td>
<td>150 Mbps</td>
<td>300 Mbps</td>
</tr>
<tr>
<td>Unit interval (UI)</td>
<td>666.667 ps</td>
<td>333.333 ps</td>
</tr>
<tr>
<td>Frequency stability for initiator ASICs and expanders</td>
<td>+350/-5150 pp</td>
<td>+350/-5150 pp</td>
</tr>
<tr>
<td>and expanders supporting SATA 1.0 device with SSC</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Frequency stability for SAS-only compliance points</td>
<td>+100/-100 ppm</td>
<td>+100/-100 ppm</td>
</tr>
<tr>
<td>(SAS drives, external connectors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media impedance</td>
<td>100 ohm</td>
<td>100 ohm</td>
</tr>
</tbody>
</table>
Amplitude and time based on eye diagrams

Absolute amplitude

Normalized time (UI)

0 V

Normalized amplitude

1+Y2

One level

1-Y1

Midpoint

Y1

Zero level

-Y2

-
Physical - Transmit signal characteristics

<table>
<thead>
<tr>
<th>Compliance point</th>
<th>Characteristic</th>
<th>SATA</th>
<th>1.5 Gbps</th>
<th>3.0 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive connector</td>
<td>Maximum drive strength (B1-B2)</td>
<td>N/A</td>
<td>1200 mV</td>
<td>1600 mV</td>
</tr>
<tr>
<td></td>
<td>Minimum drive strength (A1-A2)</td>
<td>N/A</td>
<td>600 mV</td>
<td>800 mV</td>
</tr>
<tr>
<td>External connector</td>
<td>Maximum drive strength (B1-B2)</td>
<td>N/A</td>
<td>1600 mV</td>
<td>1600 mV</td>
</tr>
<tr>
<td></td>
<td>Minimum drive strength (A1-A2)</td>
<td>N/A</td>
<td>800 mV</td>
<td>800 mV</td>
</tr>
<tr>
<td>Initiator or expander attached to SATA</td>
<td>Maximum drive strength (B1-B2)</td>
<td>900 mV</td>
<td>1200 mV</td>
<td>1600 mV</td>
</tr>
<tr>
<td></td>
<td>Minimum drive strength (A1-A2)</td>
<td>600 mV</td>
<td>600 mV</td>
<td>800 mV</td>
</tr>
</tbody>
</table>
Physical - Receive signal characteristics

<table>
<thead>
<tr>
<th>Compliance point</th>
<th>Characteristic</th>
<th>SATA</th>
<th>1.5 Gbps</th>
<th>3.0 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive connector</td>
<td>Maximum drive strength (B1-B2)</td>
<td>N/A</td>
<td>1200 mV</td>
<td>1600 mV</td>
</tr>
<tr>
<td></td>
<td>Minimum drive strength (A1-A2)</td>
<td>N/A</td>
<td>325 mV</td>
<td>275 mV</td>
</tr>
<tr>
<td>External connector</td>
<td>Maximum drive strength (B1-B2)</td>
<td>N/A</td>
<td>1600 mV</td>
<td>1600 mV</td>
</tr>
<tr>
<td></td>
<td>Minimum drive strength (A1-A2)</td>
<td>N/A</td>
<td>275 mV</td>
<td>275 mV</td>
</tr>
<tr>
<td>Initiator or expander</td>
<td>Maximum drive strength (B1-B2)</td>
<td>600 mV</td>
<td>1200 mV</td>
<td>1600 mV</td>
</tr>
<tr>
<td>attached to SATA</td>
<td>Minimum drive strength (A1-A2)</td>
<td>225 mV</td>
<td>325 mV</td>
<td>275 mV</td>
</tr>
</tbody>
</table>
Physical - Other highlights

- Jitter specs
- 10^{-12} system bit error rate
- Impedance requirements
- AC coupled

- No spread spectrum clocking (SSC)
 - SSC slightly varies the frequency of the transmit clock
 - This reduces EMI at one peak frequency but spreads the emissions over multiple frequencies
 - expander and initiator must tolerate a SATA drive transmitting with SSC, but no SAS component will transmit with SSC

- Non-tracking clock architecture
 - Each device runs off its own internal PLL
Introduction

General (devices, domains, …)

Physical layer (cables, connectors, electrical specs, …)

Phy layer (*8b10b, OOB, …*)

Link layer (primitives, connections, …)

Transport layer (SSP, STP, and SMP frames)

Application layer (SCSI mode pages)

Further information
Phy layer outline

- Encoding
- Out-of-band (OOB) signaling
- Reset sequences
- State machines
- Spin-up
8b10b coding
- As used in SATA, Fibre Channel, et al.
- **Character = 10 bits** as transmitted on the wire
- Control characters Kxx.y - special uses
- Data characters Dxx.y - represent 8 bit data bytes
- Running disparity

Dword = 4 characters
- Everything in SAS is based on dwords

Primitive = dword starting with a control character
Phy - Out-of-band (OOB) signaling

- SATA out of band (OOB) special patterns ("signals")
 - Signals are sent after power-up to initialize the link
 - Signal is a burst of ALIGN primitives, then idle time; repeated 6 times
 - Detected by squelch detector and frequency comparators

- SATA’s COMRESET/COMINIT, and COMWAKE signals are unchanged

- COMSAS signal added for SAS devices
 - Inserted after calibration sequence before COMWAKE

- If both sides assert COMSAS, then the link is a SAS link rather than a SATA link
Phy - OOB signals

OOB signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Nominal burst time</th>
<th>Nominal idle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMINIT/COMRESET</td>
<td>107 ns</td>
<td>320 ns</td>
</tr>
<tr>
<td>COMWAKE</td>
<td>107 ns</td>
<td>106.7 ns</td>
</tr>
<tr>
<td>COMSAS</td>
<td>214 ns</td>
<td>320 ns</td>
</tr>
</tbody>
</table>
Phy - SATA reset sequence

SATA host (initiator) TX

Power-On

SATA device (target) TX

COMRESET

Calibrate

COMWAKE

d10.2
@ Slowest
Rate

ALIGNs
@ Detected
Rate

Non-ALIGNs
@ Negotiated
Rate

533ns
max

175ns
min

228,3
max

2048
ALIGNs
@ Fastest
Rate

Non-ALIGNs
@ Negotiated
Rate

Post-COMRESET/COMINIT SATA reset sequence
Phy - SAS reset sequence

- TX
 - COMINIT
 - COMSAS
 - AwaIt
 - COMSAS
 - Negate
 - RCD 320 ns
 - Pattern sync
 - D10.2s
 - ALIGNs
 - Rate Change
 - Delay (RDC) 320 ns
 - Pattern sync
 - D10.2s
 - ALIGNs
 - Start Speed Negotiation
 - SAS Speed Negotiation Window G1 rate
 - SAS Speed Negotiation Window G2 rate
 - SAS Speed Negotiation Window G3 rate
 - SAS Speed Negotiation Window Negotiated rate (G2)

- RX
 - COMINIT
 - COMSAS
 - 525 ns
 - Pattern sync
 - D10.2s
 - ALIGNs
 - Not supported
 - Don’t transmit anything
 - Pattern sync
 - D10.2s
 - ALIGNs
 - Pattern sync
 - G2 Rate
Phy - SAS reset sequence 2

Slide 56

- Start Speed Negotiation
 - TX
 - COMINIT
 - COMSAS
 - Await COMSAS Reply
 - RX
 - COMINIT
 - COMSAS
 - Rate Change Delay (RDC)
 - RCD
 - Fall back to G2

- Pattern sync
 - D10.2s ALIGNs
 - 109.2 usec
 - Not supported
 - Don't transmit anything

- SAS Speed Negotiation Window
 - G1 Rate
 - G2 Rate
 - G3 Rate
 - Negotiated Rate G2
Phy - Hot plug and the reset sequence

SAS Speed Negotiation Sequence

Hot Plug event - Signal cable plugged in

Power-On
Phy - State machines

- Phy state machine
 - SATA and SAS reset sequence

- Dword synchronization state machine
 - Determines when link is gone bad
Phy - Spin-up

- Desktop (ATA) goal - boot quickly, spin-up ASAP
 - ATA Power Up in Standby feature rarely implemented

- Enterprise goal - stagger spin-up to avoid excessive power drain
 - Delayed start feature with SCA-2 connector

- Rack of SATA drives may overwhelm power supplies

- SAS rules/recommendations:
 - SAS-capable SATA devices shall spin-up only after reset sequence
 - SATA devices should spin-up only after reset sequence
 - SAS devices shall not spin-up until START STOP UNIT is run

Slide 59
Introduction

General (devices, domains, …)

Physical layer (cables, connectors, electrical specs, …)

Phy layer (8b10b, OOB, …)

Link layer *(primitives, connections, …)*

Transport layer (SSP, STP, and SMP frames)

Application layer (SCSI mode pages)

Further information
Link layer outline

- Primitives
- Idle links
- Power management
- SATA loopback tests
- Tests
- Wide links
- Domain management
- Rate matching
- Elasticity buffers
- Scrambling
- Fabric management
- Connections
- Frame transmission
- Flow control
- SSP flow control
- STP flow control
- Asynchronous event notification
Primitive is a dword starting with a control character.

Primitives have no endianness; just first, second, third, and last bytes.

ALIGN starts with K28.5.

All other SATA primitives start with K28.3.

All SAS primitives start with K28.5.

Primitives may start/end with any disparity.
Slide 63

- **SAS primitives**
 - AIP
 - ALIGN()
 - BREAK
 - CHANGE
 - CLOSE
 - EOAF
 - HARD_RESET
 - OPEN_ACCEPT
 - OPEN_REJECT()
 - SOAF

- **SSP/SMP primitives**
 - ACK
 - DONE()
 - EOF
 - NAK()
 - RRDY
 - SOF
SATA primitives

- SATA_CONT
- SATA_DMAT
- SATA_EOF
- SATA_HOLD
- SATA_HOLDA
- SATA_PMACK
- SATA_PMNACK
- SATA_PMREQ_P
- SATA_PMREQ_S
- SATA_R_ERR
- SATA_R_IP
- SATA_R_OK
- SATA_R_RDY
- SATA_SOF
- SATA_SYNC
- SATA_WTRM
- SATA_X_RDY

Slide 64
Link - Primitive sequences

- Some primitives are sent more than once for more reliable delivery - tolerate single bit errors
- “Repeated” is for SATA primitives

<table>
<thead>
<tr>
<th>Type</th>
<th>Send</th>
<th>Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Repeated</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Triple</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Redundant</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
- Input data clock does not exactly match the internal clock
 - Overflow = sender faster than receiver
 - Underflow = Sender slower than receiver

- ALIGN primitives added to data stream
 - Receiver throws them out
 - 1 per 2048 dwords
 - 2 per 256 extra for STP
Between connections, or within an SSP or SMP connection between frames, idle dwords are sent
- Idle dword = random scrambled data

During an idle STP connection, SATA_SYNC is sent
- Usually followed by SATA_CONT and random scrambled data
Link - IDENTIFY address frames

- IDENTIFY address frame sent after reset sequence

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
<td>FRAME TYPE (0h)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHY IDENTIFIER</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
<td>MAX LINK RATE</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEV TYPE</td>
<td>SSP_I</td>
<td>STP_T</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEVICE NAME</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CRC</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Link - OPEN address frame

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INIT</td>
<td>PROTOCOL</td>
<td>FRAME TYPE (1h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
<td>LINK RATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INITIATOR CONNECTION TAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ARBITRATION WAIT TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DESTINATION DEVICE NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SOURCE DEVICE NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>CRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAS support for power management

<table>
<thead>
<tr>
<th>ATA device power management</th>
<th>SATA interface power management</th>
<th>SCSI power conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle (yes)</td>
<td>Partial (no)</td>
<td>Idle (yes)</td>
</tr>
<tr>
<td>Standby (yes)</td>
<td>Slumber (no)</td>
<td>Standby (yes)</td>
</tr>
<tr>
<td>Sleep (no)</td>
<td></td>
<td>Sleep (no)</td>
</tr>
</tbody>
</table>

- **ATA device power management**
 - Idle, Standby, Sleep
 - SAS: Idle and Standby supported; Sleep shall not be requested

- **SATA interface power management**
 - Partial, Slumber states
 - PMREQ_P, PMREQ_S, PMACK, PMNAK
 - SAS: Initiator shall not request interface power management
 - SAS: Initiator shall reply with PMNAK to PMREQ_P and PMREQ_S

- **SCSI power management**
 - Idle, Standby, Sleep
 - SAS: Idle and Standby supported; Sleep not supported
Link - SAS loopback test modes

- Invoked with SMP

![Diagram of SAS loopback test modes]

Slide 72
Expander broadcasts CHANGE primitive to notify initiators and expanders that
- Phy has lost dword sync
- Reset sequence completed on a phy
- CHANGE received

Initiators perform level-order traversal of domain

Fanout expanders run DISCOVER function to fetch routing tables from edge expanders
Scrambling tries to randomize data
- XOR data with the contents of a linear feedback shift register at both sender and receiver
- changes constant 000000… and 111111… patterns into pseudo-random patterns of 1s and 0s
- Constant patterns occur more often than other patterns, including the worst case pattern that undoes the scrambling effect

Reduces EMI peaks and helps DC balance
- Spread spectrum clocking addresses EMI for all patterns
- 8b10b coding addresses DC balance
Repeated primitives (STP)
 - Replaces repeated primitives
 - `<prim>, <prim>, … SATA_CONT, <random data>, <random data>, …, <new
 prim>`
 - ALIGNs may be inserted inside random data
 - Exit with any primitive except ALIGN

Idle dwords (SAS, SSP)

Frame data (SAS address frames, SSP, SMP, and STP frames)
 - All data dwords in frames are scrambled (between SOF and EOF)
 - Primitives inside frames are NOT scrambled
 - Polynomial reset every SOF or SATA_SOF

SAS big-endian, SATA little-endian polynomial
 - Doesn’t matter for random/idle data, does matter for frame data
All I_T communication occurs within an SSP, SMP or STP connection

Establishing connection through an expander involves arbitration

OPEN address frame to make connection request

Open timeout timer

OPEN_ACCEPT means connection is active
Responses to open request

- Arbitration in progress - AIP
 - reset open timeout timer and keep waiting
- Cross on wire - OPEN address frame
 - Arbitration fairness dictates who wins
- Accepted - OPEN_ACCEPT
- Rejected - OPEN_REJECT
 - Numerous reasons - Retry, bad protocol, deadlock avoidance, etc.
- Cancel - BREAK
- No response - timeout and send BREAK
Link - Breaking a connection

- BREAK primitive signals a unilateral close of the connection
- BREAK response allowed but not required
- Expander tears down connection when it sees BREAK
Link - Breaking a connection 2

- **Originating device**
 - (last) BREAK
 - OPN (first)
 - BREAK
 - OPN (first)
 - AIP
 - BREAK (last)

- **Expander device**
 - idle
 - idle

- **Destination device**
 - BREAK
 - OPN

(if expander device has not forwarded the OPN to the destination)

(if expander device has forwarded the OPN to the destination)
After no more data is being sent on the connection, it may be closed by either side

CLOSE primitive sent; CLOSE received

Expander tears down the connection when it sees CLOSE in both directions
Before sending CLOSE, must guarantee that the SSP traffic is finished

DONE primitive indicates sender is done originating frames

Works like FC-AL DHD (dynamic half duplex)

Back channel may still be active
 - sender may send ACK, NAK, RRDY after DONE to keep the other direction active

When both sides have sent DONE, the connection is idle and CLOSE can be exchanged
- SAS endpoint connection management state machine (SL)
- SAS expander connection management state machines (XL)
When initiator port and target port are separated by an expander, their link rates may differ
 - E.g. Initiator to expander 3 Gbit/sec; expander to target 1.5 Gbit/sec

Solution: insert ALIGNs on the faster links
 - E.g. every other dword is used
Full duplex

SOF, frame dwords, CRC, EOF

Each frame acknowledged with ACK, NAK

Credit with RRDY

SSP link layer state machine
Link - SSP flow control

- Credit maintained by each connected port
 - Initialized to 0
 - Receive RRDY -> increase by 1
 - Transmit frame -> decrease by 1
 - Maximum 255

- Interlocked frames
 - COMMAND, TASK, XFER_RDY, RESPONSE, AEN, AEN_RESPONSE frames with different tags
 - Must receive ACK or NAK before sending another, regardless of credit

- Non-interlocked frames
 - DATA frames
 - If same tag, may send without waiting for ACK or NAK, provided credit is available

Slide 85
Link - SSP interlocking

Non-interlocked frame tag A
Non-interlocked frame tag A
Non-interlocked frame tag A
Non-interlocked frame tag A

ACK or NAK
ACK or NAK

Non-interlocked frame tag A
Non-interlocked frame tag A

ACK or NAK
ACK or NAK
ACK or NAK
ACK or NAK

Non-interlocked frame tag B

ACK or NAK

Non-interlocked frame tag C
Non-interlocked frame tag C

ACK or NAK

.:.
STP (ATA) connection

- STP from initiator to last expander
- SATA from the expander to the SATA device
- After an STP connection is opened, follow SATA rules
- Frame sent as: SATA_SOF, SATA frame, SATA_EOF
- Each frame receives SATA_R_OK or SATA_R_ERR
- SATA_X_RDY/SATA_R_RDY for permission to send another frame
During an STP connection, SATA flow control operates as defined by SATA:
- SATA_HOLD and SATA_HOLDA primitives

- SATA targets accept 20 dwords after HOLD
- STP initiators shall accept 128 dwords after HOLD
- Expanders must insert HOLD/HOLDA themselves if they add latency
 - Must guarantee the 20 dword/128 dword rules
Simplified version of SSP

No ACK, NAK, RRDY, or DONE

Initiator opens and closes connection

Send one SMP_REQUEST

Receive one SMP_RESPONSE

SMP link layer state machine

Slide 89
Outline

- Introduction
- General (devices, domains, …)
- Physical layer (cables, connectors, electrical specs, …)
- Phy layer (8b10b, OOB, …)
- Link layer (primitives, connections, …)
- Transport layer *(SSP, STP, and SMP frames)*
- Application layer (SCSI mode pages)
- Further information
Transport layer outline

- SSP (SCSI) frame format
- SSP information units
- SSP information unit sequences
- SSP TASK IU notes
- SSP information unit notes
- STP (ATA)
- SMP
- Port Control state machine
Transport - SSP frame format

- Based on Fibre Channel and FCP-2
- Lots of reserved fields
 - No exchanges
 - No sequences
 - Ack, Nak, etc. handled with primitives, not frames
- The *only* fields used in the outer frame:
 - Frame type (FCP calls this R_CTL)
 - Fill bytes
 - Tag (FCP calls this OX_ID)
 - CRC
 - Maybe the Source_ID and Destination_ID (TBD)
- Frame payload carries information units
<table>
<thead>
<tr>
<th>INFORMATION UNIT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASHED DESTINATION DEVICE NAME</td>
</tr>
<tr>
<td>Reserved</td>
</tr>
<tr>
<td>HASHED SOURCE DEVICE NAME</td>
</tr>
<tr>
<td>Reserved</td>
</tr>
<tr>
<td>Reserved</td>
</tr>
<tr>
<td>COMMAND ID</td>
</tr>
<tr>
<td>Reserved</td>
</tr>
<tr>
<td>TAG</td>
</tr>
<tr>
<td>TARGET PORT TRANSFER TAG</td>
</tr>
<tr>
<td>Reserved</td>
</tr>
<tr>
<td>INFORMATION UNIT</td>
</tr>
<tr>
<td>Fill bytes</td>
</tr>
<tr>
<td>CRC</td>
</tr>
<tr>
<td>IU</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>COMMAND</td>
</tr>
<tr>
<td>TASK</td>
</tr>
<tr>
<td>XFER_RDY</td>
</tr>
<tr>
<td>DATA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RESPONSE</td>
</tr>
<tr>
<td>AEN</td>
</tr>
<tr>
<td>AEN_RESPONSE</td>
</tr>
</tbody>
</table>
Transport - SSP Task Management sequence

- TASK
- RESPONSE

Initiator port → Target port
Transport - SSP Write sequence

Reply to XFER_RDY with one or more DATA IUs

Repeat XFER_RDY until all write data is transferred

Slide 96
Transport - SSP Bidirectional sequence

Initiator port

- COMMAND
- XFER_RDY
- DATA
- RESPONSE

Reply to XFER_RDY with one or more DATA IUs

Target port

- Repeat XFER_RDY until all write data is transferred
- Read (DATA) and write (XFER_RDY and DATA) IUs may be interleaved in any order
- Repeat DATA until all read data is transferred

Slide 98
Transport - SSP AEN sequence

Initiator port

AEN

Target port

AEN_RESPONSE
ABORT TASK references the tag of the task to be aborted
 – No other task management functions reference tags

FCP uses Abort Sequence to implement ABORT TASK so didn’t face this issue
 – SAS does not have Sequences

The ABORT TASK itself could be rejected or have errors; needs its own tag

Two tags don’t fit in COMMAND IU cleanly

Separate IU implemented like iSCSI and SRP
Transport - SSP Information unit notes

- Only COMMAND and TASK contain the LUN
 - Tag must be target-wide, no reused for different LUNs
- No residuals in RESPONSE
- COMMAND supports bidirectional commands and variable length CDBs
- No TARGET RESET or WAKEUP task management functions
 - HARD RESET primitive is the low-level debug reset
Transport - SSP Asynchronous event notification

- SCSI asynchronous events
 - Initialization complete unit attentions (after power on) **NOT SUPPORTED**
 - All other unit attentions (e.g. SMART events)
 - Deferred errors (e.g. cached write failed)

- Target port sends AEN to all initiators it knows when an asynchronous event occurs
 - Contains LUN - optional for initiator to use
 - REPORT LUNS enhanced to identify which logical units have asynchronous events pending if LUN is ignored

- REQUEST SENSE to retrieve the sense data
The “official” way in pSCSI and FCP:

- disk drive becomes an initiator
- HBA becomes a target with a “processor” device type
- Disk drive uses SEND command to send sense data
- Nobody implements this
- Workarounds
 - Leave a vendor-specific command outstanding forever
 - Run unnecessary commands that can carry the sense data

AEN and REPORT LUNs much more efficient
Transport - STP (ATA)

- SATA Target sends frame
 - Expander detects SATA_X_RDY
 - Expander arbitrates and generates OPN to initiator
 - Expander passes through SATA until it sees SATA_WTRM in one direction and SATA_IDLE/SATA_SYNC in the other
 - Expander may close connection

- STP initiator sends frame
 - Wraps frame in OPN/CLS
 - May leave connection open to send more frames
Transport - SMP

- SMP_REQUEST frame
- SMP_RESPONSE frame
- SMP state machine
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCOVER</td>
<td>Used by fanout expander</td>
</tr>
<tr>
<td>REPORT GENERAL</td>
<td>General info</td>
</tr>
<tr>
<td>REPORT SATA CAPABILITIES</td>
<td>STP/SATA support info</td>
</tr>
<tr>
<td>REPORT PHY</td>
<td>Phy-related info</td>
</tr>
<tr>
<td>REPORT PHY ERROR LOG</td>
<td>Counters of # errors detected</td>
</tr>
<tr>
<td>REPORT PHY SATA</td>
<td>STP/SATA phy-specific state</td>
</tr>
<tr>
<td>REPORT PHY DEVICE NAMES</td>
<td>Topology management</td>
</tr>
<tr>
<td>PHY CONTROL</td>
<td>Request loopback test modes, reset sequence, HARD RESET</td>
</tr>
</tbody>
</table>
Transport - Port control state machine

- Port control (PC) state machine
- Sits between multiple transport layer state machines (e.g. SSP, STP, and SMP) and multiple link layer state machines (e.g. for wide links)
Introduction

- General (devices, domains, ...)
- Physical layer (cables, connectors, electrical specs, ...)
- Phy layer (8b10b, OOB, ...)
- Link layer (primitives, connections, ...)
- Transport layer (SSP, STP, and SMP frames)

Application layer (SCSI mode pages)

- Further information
Application layer outline

- SCSI
- ATA
Application - SCSI

- Disconnect-reconnect mode page protocol-specific fields
 - Supported fields
 - Bus inactivity limit - $n \times 100$ms
 - Maximum connect time limit - $n \times 100$ ms
 - Maximum burst size - $n \times 512$ bytes - devices may burst this much
 - First burst size - $n \times 512$ bytes - implicit XFER_RDY for each new command
 - Not supported
 - Buffer full/empty ratios - no - devices decide on their own
 - Enable modify data pointers - no - all transfers must be in order
Application - SCSI

- Protocol-specific mode page
 - I_T Nexus loss time
- No protocol-specific log pages
- No protocol-specific commands
SATA targets must work without changes

STP initiators add the concept of addressing to ATA

- Initiator may present a standard ATA register interface over PCI-X, one per target
- Alternate interfaces are also possible
Further information

- INCITS T10 (SCSI)
 - http://www.t10.org
 - Home of the SAS standard

- INCITS T13 (ATA)
 - http://www.t13.org

- Serial ATA Working Group
 - http://www.serialata.org

- SCSI Trade Association
 - http://www.scsita.org

- Original Serial Attached SCSI Working Group
 - http://www.serialattachedscsi.com
End of technical overview