Date: 16 March 2002
To: T10 Technical Committee
From: Ralph O. Weber
Subject: This is not a revision of SAM-3

Revision -1
16 March 2002

SCSI Architecture Model - 3 (SAM-3)

This is a T10 proposal for what SAM-3 might look like. This is not a working draft revision of SAM-3.

The intent of this proposal is to demonstrate how expeditious development of SAM-3 can be facilitated by use of
shared source files between SAM-2 and SAM-3 until SAM-2 completes public review. This proposal is produced
using shared SAM-2 source files and demonstrates both addition and removal of text for SAM-3 using the
FrameMaker Conditional Text feature. See the revision history for details of what has been added and removed.

If this had been an actual SAM-3 revision, this page would have been replaced with a real T10 working draft cover
page.

T10 Technical Editor: Ralph O. Weber
ENDL Texas
18484 Preston Road
Suite 102 PMB 178
Dallas, TX 75252
USA

Telephone: 214-912-1373
Facsimile: 972-596-2775
Email: ROWeber@ACM.org

18484 Preston Road, Suite 102 PMB 178, Dallas, TX 75252 214-912-1373 972-596-2775 Fx ENDL_TX@computer.org



02-119r0

Points of Contact:

T10 Chair

John B. Lohmeyer

LSI Logic

4420 Arrows West Drive

Colorado Springs, CO 80907-3444
Tel: (719) 533-7560

Fax:  (719) 533-7183

Email: lohmeyer@t10.org

INCITS Secretariat

INCITS Secretariat

1250 Eye Street, NW Suite 200
Washington, DC 20005

T10 Web Site www.t10.0rg

16 March 2002

T10 Vice-Chair

George O. Penokie

IBM

3605 Highway 52 N

MS: 2C6

Rochester, MN 55901
Tel: (507) 253-5208
Fax:  (507) 253-2880
Email: gop@us.ibm.com

Telephone: 202-737-8888
Facsimile: 202-638-4922
Email: INCITS @itic.org

T10 Reflector  To subscribe send e-mail to majordomo@T10.org with ‘subscribe’ in message body
To unsubscribe send e-mail to majordomo@T10.org with ‘unsubscribe’ in message body
Internet address for distribution via T10 reflector: T10@T10.0rg

Document Distribution
INCITS Online Store
managed by Techstreet
1327 Jones Drive

Ann Arbor, Ml 48105

or

Global Engineering
15 Inverness Way East
Englewood, CO 80112-5704

http://www.techstreet.com/INCITS.html

Telephone: 1-734-302-7801 or
1-800-699-9277

Facsimile: 1-734-302-7811

http://global.ihs.com/

Telephone: 1-303-792-2181 or
1-800-854-7179

Facsimile: 1-303-792-2192



ANSI (r)
INCITS.***:200x

American National Standards
for Information Systems -

SCSI Architecture Model - 2 (SAM-2)

Secretariat
National Committee for Information Technology Standards

Approved mm dd yy

American National Standards Institute, Inc.

Abstract

This standard specifies the SCSI Architecture Model. The purpose of the architecture is to provide a common basis

for the coordination of SCSI standards and to specify those aspects of SCSI I/O system behavior that are
independent of a particular technology and common to all implementations.



American
National
Standard

Approval of an American National Standard requires verification by ANSI that the require-
ments for due process, consensus, and other criteria for approval have been met by the
standards developer. Consensus is established when, in the judgment of the ANSI Board
of Standards Review, substantial agreement has been reached by directly and materially
affected interests. Substantial agreement means much more than a simple majority, but
not necessarily unanimity. Consensus requires that all views and objections be considered
and that effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he or she has approved the standards or not,
from manufacturing, marketing, purchasing, or using products, processes, or procedures
not confirming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give interpretation on any American National Standard in the name of the
American National Standards Institute. Requests for interpretations should be addressed
to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at
any time. The procedures of the American National Standards Institute require that action
be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of
American National Standards may receive current information on all standards by calling
or writing the American National Standards Institute.

CAUTION: The developers of this standard have requested that holders of patents that may be required for the
implementation of the standard, disclose such patents to the publisher. However, neither the developers nor
the publisher have undertaken a patent search in order to identify which, if any, patents may apply to this

standard.

As of the date of publication of this standard and following calls for the identification of patents that may be
required for the implementation of the standard, no such claims have been made. No further patent search is
conducted by the developer or the publisher in respect to any standard it processes. No representation is
made or implied that licenses are not required to avoid infringement in the use of this standard.

Published by

American National Standards Institute
11 West 42nd Street, New York, NY 10036

Copyright 200n by American National Standards Institute

All rights reserved.

Printed in the United States of America



16 March 2002 T10/02-119r0 revision -1

Contents
Page
LIRS Tl ] o 1= PR RR 1
P I [ (e To [0 e (7] o PO PPPRPPPTP 1
1.2 REQUIrEMENES PrECEAEBINCE .....eiiiiiiiiiie ittt ettt e e e ettt e e s s b et e e s be et e e e s s bbbt e e e s nnee e e e s nnr e e e e annneeens 1
1.3 SCSI StANAArAS FAMIIY ...ttt e e et e e s s be e e b e e s abe e e anbeeebbeeesaseeeaneeeesareeenns 2
2 NOIMALIVE FEIEIENCES ...ttt e e oot e e e e ea b bt e e e h b et e e e e nb e e e e e e nbe e e e e aanrnbeee e e nnres 5
2.1 NOIMALIVE FEFEIENCES ... .ttt e e ettt e e e e e st e e e e e aab e et e e e aanbe e e e e e anbeeeeesannreeeeeeanes 5
P Y o] o1 {01V =T o (=] (=T 1= o Lo TP PP PP OTPPPPPOE 5
2.3 References under deVEIOPMENT ..ot e et e e s st e e e e aab e e ee e s anreeeeeeanee 5
3 Definitions, symbols, abbreviations, and CONVENTIONS ..........cuuiiiiiiii e 6
T I B LY 101 o o - PP PP PSPPI 6
T2 Yo7 (o] 01/ 0 oI T TP PP PP PPPPPPPPRPPS 13
I =Y AT o] (o TP PP P PP PPPPPPTPRPPS 13
3.4 EQItOrIal CONVENTIONS........eiiiiiieeieiie e etee ettt et et e et e ettt e e sa e e e saeee e aaseeeeabe e e aaeeeesabeeesabeeaeanseesaneeesanseasans 14
3.5 NUMETIC CONVENTIONS ... .eeiiitiie ittt et e st e e a bt e e bt e e sabe e e sasee e eabeeesabe e e smbeeeebeeeeabeeaeaseeesaneeeaanneaaans 15
3.6 NOLAtION CONVENTIONS ......eeiiiiiie ettt h e et e e st e e sheee e aaee e e sabe e e ambe e e sabeeaaabeeaeaaseesaneeaeanreesans 15
3.6.1 Hierarchy diagram CONVENTIONS ........cooi ittt et e e sb e e e sb e e e e e e anrereeenannee 15
3.6.2 Notation for procedures and fUNCHIONS. ..........oiiiiiiiiii e e e e 16
3.6.3 Notation for State IAGIAMS ........oiiiii et e e e e et e e e s s sab e e e e e e anrereeeeannee 17
S 02 T N (o a1 Yo (B €= 1Y o T [ USSP 18
o I [ 01 1o o [8 o7 o] o I TSP PR TP PPPPOPPP 18
4.2 The SCSI distributed SErviCe MOMEI .........c.eiiiiii i ettt s esbe e e ranee s 19
4.3 The SCSI ClieNt-SEIVEN MOUEL.........eiiiiiieitii ettt e a e e e st e e e see e sab e e sbeeesbeeeeaaneaas 20
4.4 The SCSI StrUCIUIal MOTEI .......eeiiiiiiee e ettt e bt e bt e e e st e e st e e e st eeeeneeas 21
SIS 015 Mo ()41 T 11 o PRSPPI 23
4.6 The service deliVery SUDSYSIEIM ... it e s e e e e s s nneee e s 23
4.6.1 Synchronizing client and SEIVEr STAtES .......c..ii i et aee s 24
4.6.2 ReqUES/RESPONSE OFAEING . .ceiiuteiiitieeitieeeitee ettt e e rtee e ettt et e e e ebe e e be e e e bt e e s be e e aaneeesaseeaaasseesneeesbeeeesaneean 24
4.7 SCSI AEVICES ....ciiuetieeteii ettt ettt e e he e e e bt e e e sate e e ahee e s oabe e e aasee e be e e e bee e s bee e saneeesabeeesabbeesabeeesnbeeeeraneaan 25
4.7.1 SCSIINMIAIOI EVICE ...eeueieeiiiie ettt ettt et e et e e s be e e bt e e e aa bt e e sase e e sabbeesbeeesbeeeeraneaan 25
4.7.2 SCSIHAIGET GBVICE. ...eeiiueiieieee ettt ettt ettt et e bt e e et e e e be e e e be e e b be e e aaaeeesaseeesntbeesbeeesnbeeeeaaneean 26
4.7.3 SCSI target/iNtiator EVICE .....c.oueiiiiiii ettt sttt e bt e e st be e ebe e e sbeeeesaeeaas 26
A ST O3S 1 o o] A o [T o {1 1= PRSPPI 27
4.7.5 SCSIHASK FOULET ...ttt ettt ettt bt e e et e e et et e e be e e b be e e aabe e e saseeesabbeeenbeeesnbeeeenneean 27
4.7.6 SCSI GEVICE NAIME .....eiiitiieiiiieettee et ee e ettt e e et e e e sttt e e aatee s aaee e s aabe e e aasee e abeeeaabeeasbeeeanbeeeeaseeesmtbeesbeeesnbeeeernneeas 28
O S 1035 T o o] 4 3 0 F- 14 L= SRR PTPR 28
ol WoTo[or= I U] ]| £ T OO PP PPOPPPI 28
e =T O TP OP TP PPOPPPI 30
4.9.1 THE taSK ODJECT .....eeeiiiiie ettt e e s ae et e s b e e e e e snn e e e e e s nneeaeean 30
e - 1 [ - To [ O OO OO PPPPOPPP 30
4.10 THE NEXUS ODJECT ....ceiiiiieeieie ittt e ettt e e sttt e e e e et et e e e e e be b e e e e aaasne e e e e snbe e e e e s nnneeeean 30
o B IS T 02T [ oo 4 =PTSRS 31
4.11.1 SCSI POrt CONTIQUIALIONS.......ceiiiiiiiiii ettt ettt e bt e e sabe e e s st e e e satbeesneeesbeeeeaaneaas 31
4.11.2 SCSI devices With MUIIPIE POIS ......ooiiiiiiie ettt sar e s ae e be e e e sanea s 32
4.11.3 Multiple port target SCSI deViCe SIIUCIUIE ..........oii ittt e raee s 32
4.11.4 Multiple port initiator SCSI deVICE SIIUCTUIE........cii ittt st saee s 33
4.11.5 Multiple port target/initiator SCSI deViCe SIIUCIUIE ..........oiiiiiiiiiiei e 34
4.11.6 SCSil initiator device view of a multiple port SCSI target deviCe .......c.oocceiieiiiiiiiiiene e 35
4.11.7 SCSI target device view of a multiple port SCSI initiator deViCe ..........cccveiiiiiiiiiiii e 37

not a revision of SCSI Architecture Model - 3 (SAM-3) '



T10/02-119r0 revision -1 16 March 2002

4.12 Model for dependent [0GICal UNItS..........oiiiiiiiiiiiiieee ettt e e e e nne e e e s nreeeeean 37
L 2 1 oo [ T (o o PSSP 37
o e IO | 0= To (o | £= == PSPPSR 39
4.12.3 Eight DYte LUN SIFUCTUIE ...ttt e et e e e e e e s e e eeeeas 39
4.12.4 Logical unit addressing METNO . .........uu i e e e e e e e e eeeeas 41
4.12.5 Peripheral device addressing Method ...........ooooiiiiiii e 42
4.12.6 Flat Space AdAressing MEthOd ..........ooiuiiiiiiiie e e et e e e e e s nneeaeean 43
4.13 Model for extended logical Unit @dArESSING .......cocuueiiiiiiiiiee e e e s nreeaeean 43
4.13.1 Introduction to extended logical unit addrEeSSING ........uueeerieiiiiiiiiiiie e 43
4.13.2 Extended logical unit addressing fOrMalS .........c.uiiiiiiiiiiiie e 43
4.13.3 Well known logical unit @ddreSSiNg........ccceuii i e e e e e e e s eeeeas 45
4.14 The SCSI model for distributed COMMUNICAIONS ........cooiiiiiiiiii e 46
5 SCSI COMMANA MOUEL ..ottt e e e e e e s re e e s s e e amnn e e san e e e san e e sneeesneeeeanneenn 49
5.1 The Execute Command remOtE PrOCEAUIE ........c..eiiiiuiiiiiieeiiie et et ee et be e sbe e e s bt e e e sae e e sbee e e saaeesaneeeesareeans 49
5.2 Command DescCriptor BIOCK (CDB)......ccoiuuiiiiiiiiiiee ittt ettt ee ettt e e ssae e e sbe e e sabe e e sbee s aaaeeeesaneeeans 51
B5.2.1 CDB FOIMAL......tiiiiiiiiiiiie e ettt ettt e e e ettt e e e et e e e e e staeeeeesatbeeeeeesasaeeeesansseeeeesaseeeeeesseseeesssnsanaeesanseseeenannss 51
5.2.2 OPERATION CODE DYEE... ittt ettt ettt et e a e e be e e e s a b e e e sate e e snbe e e eabe e e ebeeaeaneeeans 51
5.2.3 CONTROL DY .....eiiitiieitii ettt ettt ettt h bt e e bttt e sa bt e e sae e e e eaeeeeeabe e e embe e e eabeeeeabeeaeaaseesaneeaaeaneeaans 52
LRI £ L LU PRSP RPRTRR 53
R T I = (DT oo o [T PRSPPI 53
5.3.2 SHATUS PrECEAEINCE ... . eiii ettt et e e a e e e bt e e e eae et e sabe e e amee e e sabeeaaabeeaeaaseesaneeeeanreanans 54
5.4 SCSI Protocol Services in Support of Execute Command .............cooiiiiiiiiiiiin e 55
BT OVEIVIBW...eeeeeeeiitiiee e cteee e ettt e e e s st e e e e eateeeeeeaaateeeeeaastaeeeeaasnteeaeeaasteeeeeassteeeesasseeeeeeansseeaeseansanaesanseneeenannss 55
5.4.2 Execute Command Request/Confirmation Protocol SErvices ...........ccoouiiiiiiiiiiiiiienee e 55
5.4.3 Data Transfer ProtoCOl SEIVICES. ......coouiiiiiiii ittt sttt e e bt e e s be e e e saee e s aaee e e snreaens 57
LI e T I [ 011 oo [8 ez 1] o PP OO PP PPPPPPPPPPOPPPPPT 57
5.4.3.2 Data-IN DEIIVEIY SEIVICE ....cciueiiiiuiieiiit ettt ettt ra ettt e e eae e e e sabe e e aaee e e sabee e aabeeaeaaseesaneeaeanreaaans 58
5.4.3.3 Data-Out DEIIVEIY SEIVICE.......eii ittt ettt ettt et e e et e e e s ate e e sbe e e sabeeaeaaseeaaaeeeeanreaaan 59
5.5 Task and command HFEHIMES ......cooiuiiiii e e e e e e en e e e e e s anrereeenannes 59
5.6 ADOIING TASKS ...ttt ettt e e b e e e e e e e e e b e e e e b e e e e e e e b e ee e e e e abe e e e e e anrereeenannn 60
5.6.1 Mechanisms that cause tasks 10 be @borted ..........oo i 60
5.6.2 When an initiator aborts itS OWN taSKS .........eeiiiiiiieie e 61
5.6.3 When an initiator aborts another initiator's tasks ... 61
5.7 Command ProCeSSING EXAMPIES .........coiiiiiiiiii ittt ettt e sab e e saee e e s abe e e sbeeasabeeesbeeeeaaeeeeanreeaans 62
5.7.1 Unlinked cOMMaNd ©XAMPIE .........uuiiiiiiiieiie ittt e et e e s ane e e e e e saneeee e e s nreeeeesanrereeesanne 62
5.7.2 Linked COMMANG EXAMPIE.......cooiiiiieie ittt et e e e e et e e e s st e e e e e e aabeee e e e s aabeeeeesanrereeesannes 63
5.8 Command processing considerations and exception conditions.............ccccveiiiiieeieecciiee e 64
5.8.1 Contingent Allegiance (CA) and Auto Contingent Allegiance (ACA) .......coiciiiiiiiiniie e 64
B.8.1.1 OVEBIVIEW....cceieeee e ctieee ettt e ettt e e e ettt e e e st te e e e e sbeeeee e st beeeeeeaaseeeee e e ssseee e s aaseeeeeesnseseeeessnsanaeeeanseneeenannes 64
5.8.1.2 EStabliShing @ CA OF ACA.... .. ettt ettt e et e e st e e e s be e e e bt e e sbeeaeaseeesaneeeesareeaan 65
5.8.1.3 Handling tasks when neither CA or ACA is iN €ffeCt.........uoiiiiiiiii e e 66
5.8.1.4 Handling new tasks from the faulted initiator when CA or ACA is in effeCt .........ccccriiiiiiiiiiniiiiieee 67
5.8.1.5 Handling new tasks from initiators other than the faulted initiator when CA or ACA is in effect........... 68
5.8.1.6 Clearing @ CA CONITION .......oiuiiieiiiee ettt ettt sa e e st bt e sabe e e sbe e e e abeeeebeeaeaaeeesaneeeesnreeaans 69
5.8.1.7 Clearing an ACA CONAItION ......coi ittt ettt st e e s be e e e be e e sbe e e e saeeesaneeeeanneeean 70
5.8.2 OVErlapped COMIMEANTS .......eiiiiiiii ittt ettt et e st e e st e e st b e e eabe e e ebe e e e aaeeeebeeeeaaseesaneeaeanreesans 70
5.8.3 Incorrect Logical UNit SEIECHION. .........coiiiiiiiii e e e ee e e e 71
B.8.4 SENSE ALA ..o ueiiiiiii ettt e e h et h e e e h et e e ea bt e e eaee e e e be e e ebee e e aaaeeeaneeeeanreaaas 71
5.8.4.1 Sense data iNtrOGUCTION ...........iii ittt ettt e st e e st e e e e bt e e sabe e e e saseesaneeeesnreeaan 71
5.8.4.2 Asynchronous Event REPOMING .......cooi ittt rb e e e e en e e e e e 72
RS Rl U] (0 1=1=T o LT T T OO P PPPPPPPPPTPRPPOS 73
5.8.5 Unit AeNtioN CONDITION......o.iiiiii it e e e e e anr e e e e e s sabe e e e e s anrereeenannes 73
RS Nl F= T (o I (=TT TP PP PP PPPPPPPPPTPPPPNS 74

vi

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.8.7 LOGICAI UNIT FESEL ...ttt e e e e e e e e e e e e e e e e e e e e e e e e e b rrrreeeeeeeeeanan 74
6 Task Management FUNCHONS.........cooi et e et e e e e e e e r e e e e e eeeeeas e annnanreneeees 76
L2 I 11 oo 13T 1o T o OO PP 76
B.2 AB O RT TASK ...ttt et e et e st e e n e e s s e e e an e e e R e e e e eRE et e e R n et e e e e e e ne e e nre e e e arneeeanee e e anreenn 77
8.3 ABORT TASK SET ...ttt ittt ettt e e e s e s s e e sa e e ss s et e s r et e sane e e s R e e e e neeesareeeeanneesanneeeanneenan 77
B.4 CLEAR ACA .ottt ettt et e e h e R et e Rt R e et e E et e et e e e et e e Re e e nre e e e e rneeearneeeanreenn 78
B.5 CLEAR TASK SET ..o iiiiie ittt sttt ettt e s s e e s e e s et e as e et e s an e e e emne e e nane e e sare e e e anneesanneeeanneenan 78
6.6 LOGICAL UNIT RESET ....ciiitiii ittt sttt et e st e s ne e e e ann e e s anee e e nnneesanneeeanneenns 79
B.7 TARGET RESET ....tiiiiiiie ittt ettt e s e an e e s et e am et e san et e s et e ene e e sare e e e anneesaneeeeanneenans 79
B.8 WAKEUP ...ttt ettt e st en e e s e e s e e e s et e e n e et e e an et e amn e e e nane e e s re e e e anneeeanne e e anreenn 80
6.9 Task management ProtOCOI SEIVICES ......couiiiii ittt e e e et e e e e e e e e e e e e e e e e eeeeeaan 80
6.10 Task management fUNCLION EXAMPIE.........ooii i e et e e s s sabe e e e e s anreeeeeeaanes 82
FALE: S T = TaE= o =T o =Y o | USRI 83
7.1 Introduction 10 task Set ManN@geMENT ..........o i e e e e 83
7.2 Controlling task SEt MaNAGEMENT ........cii ittt be e e e be e e sbe e e ebeeesaneeaesnreaeans 83
7.3 Task MANAGEMENT BVENTS ........ooiiiiiiiii et ea e e e s as b e e e e e sanre e e e e s anbeeeeeeanbereeesannee 84
A =] = =Y (=Y PSR 84
2 B Y= =SSR PRSP 84
7.4.2 ENADIEA 1aSK STALE ... ettt e e e e e e e e n e e e e e e e e e e an 84
7.4.3 BIOCKEA 1aSK STALE ....eeeiiiiiiiie ettt e e e e e e e e e e e bt e e e eeaaaae e e s 85
7.4.4 DOrmMant taSK STATE ....eoiiiiiii it e e et e e e e e e e e e nr e e e eeaaaaaeeaaaan 85
7.4.5 ENAEA 1ASK STALE .....eeeeiiiieiie ittt et e e e e e e e e et e et et e e e e e e e e e anreeaneeaaaaaeeaaan 85
7.4.6 Task states and task lIfEtiMeES .........oooi i e e e e e e e aaaee 85
7.5 TaSK AIIDULES ...ttt e oot ettt e et e e e e e e e e aanbee e et eeeaaaaaeaesaansnnbeeaaaaaeeaaan 86
7.5, SIMPLE TaSK....eetiitiieiiii ettt ettt ettt e ettt e bttt e ea bt e e ae e e e sat e e e eabe e e aabe e e eabeeeeabeeeeasseesaneeaaenneeans 86
7.5.2 ORDERED TaSK. ... eeititiiiitiieitee ettt ettt ettt ettt e b e e e st b e e e s be e e be e e e seeeeease e e aabeeeaabeeeanbeeaeanseesaneeaeanreeaans 86
7.5.3 HEAD OF QUEUE TaASK ... .eiiiiiiii ettt ettt ettt ettt e e st e e e e abe e e e be e e sabee e e aneeesneeeeanreaaan 86
A T 3 X O I 1= SRR PPSR 86
7.6 Task State traNSIHIONS. ....coi ittt e e e e e e e s e e e bt e et e e e e e e e e e e e e nnreeaeeeaaaaaeeaaan 87
7.7 Task set management EXAMPIES. .......ccoi i it e e ab e e e e ab e e e e s s sb e e e e e e anrereeesaanee 88
4 4% T 1] (o T [T 4o ) o PSPPI 88
7.7.2 Head Of QUUEUE TASKS ......coiiiii ittt ettt e e bt e e be e e e rae e e e saseeenbeeesabeeesbeeaeaneeean 89
A A5 O 100 (1 €Yo I = TSR SPTSPS 91
A A3 X O N - T PRSP SRTPPSRS 92
Annex A
Identifiers and NAMES FOr ODJECTS ......ooiueiiiie e e e e s nnneeeean 93
A1 1dentifiers and NAMES OVEIVIEW......cooiiuiiiiii ittt e et e e et e e s s e e s sann e e e e s bn b e e e e s annneeens 93
A.2 SCSI object and NeXUS relatioNSHIP ........oouiiiiiii et e e e s be e e sanee s 93
FWC B (o [=T o i1 1Y SJR=Ta Lo B o =T =T SRS RRP 94
A.4 SCSI protocol acronyms and bibliography ...........oceii it 96

not a revision of SCSI Architecture Model - 3 (SAM-3) vii



T10/02-119r0 revision -1 16 March 2002

Tables

Page
1 SiNGIE LEVEI LUN SITUCTUIE ...ttt ettt ettt ettt e bt e e et et e e bt e e et e e e e eaee e s eaee e s eabeeeanbeesanbeeennnes 29
2 Mapping NeXus 10 SAM-2 IAENETIEIS .....coiieiiiiiiie et st e e st e st e e s nre e e nns 31
3 Eight byte LUN Structure adjUSTMENTS .......coooiiiiiii ittt e s e e e e e nne s 40
4 Eight BYEE LUN STUCIUIE ...ttt ettt e e e sttt e e e e st e e e e e aab e et e e e e anbe e e e e e anbnneeesannes 40
5 Format of addresSing fIelUS .......coo i e s e e e e nre s 40
6 ADDRESS METHOD fI€IA VAIUES ...ttt e e e e e ab e e e san e e e e ennes 41
4 Moo [oz= IV a1 = e lo [ £=1=1] o To PSP PPPPPPT 41
8 Peripheral deViCe addrESSING .. ... i ittt e et e e e e s e e e e e bbb e e e e e ebe e e e e e e nnb e e e e e anreeeeeennees 42
S P BT o= Lot Iz (o (o [ £= TS g o PP PPPRPPT 43
10 Extended 10gical UNit AArESSING .....cuueiiieiiieiiie ittt et e e e et et e e aaaner e e e e snnn e e e e e nnreeeean 43
T LENGTH fIEIA VAIUES ...ttt ettt e e ek e e e e e b b et e e e s s et e e s s bn e e e e e annne e e s nnneeeean 44
12 Two byte extended logical unit addressing fOrMat...........cooi i 44
13 Four byte extended logical unit addressing fOrMaLt ..........cooiiiiiiiii e 44
14 Six byte extended logical unit addressing fOrmMat..........cooo i e 44
15 Eight byte extended logical unit addressing fOrmat ............oooiiiii i 44
16 Logical unit extended address MEthOUS ..........ooiiiiiiiiii e 45
17 Well known logical unit extended address fOrmat.............oooi i 45
18 Command Descriptor BIOCK (CDB) FOIMAL........c.uiiiiiiiiiiiieiie ettt ettt see e rae et nes 51
19 OPERATION CODE DYEE ..ttt ettt ettt ettt e e be e e et e e e e e ae e e sbe e e e eabe e e aaeee s eabeeenseesanbeeennnes 51
20 GrOUD COUE VAIUES .....ceoeeiei ittt ettt ettt ettt s ettt e sttt e s bt e e s bt e e eabe e e eabe a2 e bee e e aee e e aneee e embeeeaabeeeabeeeanbeesnnbeeannen 52
b2 T N 10T o)V (=Y PSSP 52
22 SHATUS COUES .....nuiiii ittt ettt ettt e s bt e e bt e e e be e e e ahee e e be e e e eabe e e eaee e e aabe e e eabe e e ambe e e ebeeesbee e s aabeesaneeesanreeennnes 53
23 Autosense, CA, and ACA INTEIACHIONS .....u.ee et e e e e e e e s e e e e e e e eeaeaeeeeeeeeesererearararanas 64
24 Blocking and aborting tasks when a CA or ACA is established ..o 65
25 Task handling when neither CA nor ACA iS in €ffECT ........uii i 66
26 Handling for new tasks from a faulted initiator during CA .........oo i e 67
27 Handling for new tasks from a faulted initiator during ACA ... ..o e e 67
28 Handling for new tasks from non-faulted initiators during CA .......coooiiiiiii i 68
29 Handling for new tasks from non-faulted initiators during ACA ..o s 69
30 Task Management FUNCHIONS...........ooii e e e et e e e e e e e e e enbre e e s e nr e e e e e anreeas 76
31 Task attribute and state indications iN @XAMPIES ..........cooi i 89
32 Dormant task blocking boundary reqUIrEMENTS ..........oooiiiiiiiii e 91
A.1 Nexus element to object relatioNShiP..........oooo e 93
A.2 Object Size and SUPPOIT FEQUIFEIMENTS ......coiuuiiiiuiiieiiieeiteeeeiee sttt e et e e sbe e e s be e e sabee s abe e e eaaeeesbeeasaaseesaneeesnreesnnes 94
A.3 Object identifier size fOr @aCh ProtOCOI ..........eiiuiiiiiii e e e e e nes 94
A.4 Object identifier format for €aCh ProtOCOL.........oouuii i e e 95
A.5 Object name Size fOr @aCh ProtOCOI ..........oiiuuiiiiiee ettt st be e e b e sae e e 95
A.6 Object name format for @ach ProtOCOL ...........eiiuiiiiiiii ettt e e e nes 96

viii not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Figures

Page
1 ReQUIrEMENTS PIrECEAEBNCE ........eeeieiiitieiee ettt e ettt e e e ettt e e e aa b et e e e e e aabe e e e e eanbeeeeesannbeeeeeeanbeeeeeeannreeeeseanes 1
P S 1025 ] e [oTol0 o g 1= oL a o T=To [ o =T o USRI 2
3 Example NIerarchy di@Qram ........ oot e ettt e e e bt e e e e e s b e e e e e e e nr e e e s e nr e e e e e nre s 15
ey T aa o] [I] r= 1 (= o =T [ =T o o TP PP PPPPPPPPPPPN 17
O 1=t a1 O T V=Y g g To T [ USROS 19
B SCSI ClIENT-SEIVET MOUEI ... .eiiiieiii ittt ettt ettt e s bt e et e e e be e e aabe e e s bee e eabeeesabbeesbeeesbeeeeaneeaan 20
7 SCSI 1/O system and dOmM@in MOGEL ... .....eiiiiiiiieieeee ettt sa e e s e e e st e e e sasbeesbeeesbeeeesneeean 21
8 Overall SCSI dOMaIN MOUEL........uiiieii ettt ettt e bt e e s bt e s be e e bbe e st beeeabeseesabbeesbeeesbeeeeaaeeean 22
SRS (02S] e o] 0 F=1 10 W o 0 (o o 1= USRI 23
10 Service delivery SUDSYSIEM MOTEL.......ccoiiiiiii ittt et b e st e e s sare e e nbe e smreeenees 23
11 SCSI iNtiator AEVICE MOEL......ccc ittt ettt e e e bt e e s be e s e be e e s aae e e s eabeeenseesnbeeennes 25
12 SCSI target dEVICE MOUEI .......coi ittt ettt e bt e e s be e e e bt e e abe e e e abee e s aseee s aabeesanseesanbeeannes 26
13 SCSI target/initiator dEVICE MOGEL..... ..ot et rbe e s ae e e sabe e et e e s b e e enes 27
L e o Tor= U o) ¢ g e Te =Y PP OT TP 28
15 SCSI device fFUNCHONEAI MOTEIS ......cco..eiiiie ettt ettt rbe e e s be e e sabe e e st e e snreeennes 31
16 Multiple port target SCSI device StruCture MOMEL. .........cooiiiiiuiiiiiii e e are e 32
17 Multiple port SCSI initiator device Structure MOGEl ............coo i e 33
18 Multiple port target/initiator SCSI device Structure Model ...........ocueiiiiiiiiiiii e 34
19 SCSI target device configured in @ single SCSI AOMAIN ......oouiiiiiiiiiiie e e 35
20 SCSil target device configured in multiple SCSI dOMAINS ........ciiiiiiiiiiie e 36
21 SCSil target device and SCSI initiator device configured in a single SCSI domain...........cccoocoiriiiiinien e 36
22 Dependent Logical UNit MOAEN..........ooiiiiiie ettt e st e e e e e ane e e e e e s aabe e e e e e anrnneeesannee 37
23 Example of hierarchical SyStem diagram .........c..eeeiiiiiiiii e e e 38
24 Eight Byte LUN Structure adjUSTMENTS ........coiiiiiiiii ittt e et e e s s s e e e e e earnneeeeaanes 39
25 Protocol service reference MOTEI ... ..o e e e e s s b e e e e aabrr e e e e e 46
26 ProtoCOl SEIVICE MOUEL ..ottt e s bt e e e e aab et e e e e aae e e e e e s aabe e e e e e e aabeeeeeeanrnneeesannes 47
27 Request-Response ULP transaction and related LLP SEIVICES ........cooiiiiiiiiiiiiiiii e 48
28 Model for Data-In and Data-Out data tranSTers. ...... ..o e e 57
29 COomMMANT PrOCESSING BVENES ......eiiiiiiiiiieeteee et ee et ee ettt e et e e e sttt e e sabe e e sabee e aabeeesbee e aabeeeeabeeeabeeasaaseesanseesanbeesnnen 62
30 Linked command ProCeSSING EVENTS .........iiiiiiiiiiiee ittt e s e e et e e e e s e e e e e nre e e e e annb e e e e s anreeeeeannees 63
31 Task management ProCESSING EVENES ......cciiiiiiiii i e et e e ab e e e s bbe e e e e ebrbe e e s e nr e e e e e enreeas 82
32 Example of Dormant state task DENAVIOL ..........coooi i e 85
K =T ) =Y T T PP PP PPPPPPT 87
34 Head of Queue tasks and blocking boundaries (EXample 1) ..o 89
35 Head of Queue tasks and blocking boundaries (EXample 2) .........oiuii it 90
36 Ordered tasks and blOCKING DOUNTANES .........ooiuiiiiiiiiiieii et sae e e se e eneeas 91
T O N - 1] (=)= 1401 o] [T USROS 92

not a revision of SCSI Architecture Model - 3 (SAM-3) ix



T10/02-119r0 revision -1 16 March 2002

Revision Information

1 Approved Documents Included

The following T10 approved proposals have been incorporated SAM-3 up to and including this revision:

To the best of the technical editor’s knowledge, all proposals for SAM-3 approved by T10 have been included in this
revision.

2 Revision History
2.1 Revision -1 (6 March 2002, 02-119r0)

Revision -1 is just a demonstration of the shared sources concept for SAM-3 during the SAM-2 letter ballot and
public review period. It is shared source with SAM-2 revision 23.

For the purposes of demonstration only, revision -1 eliminates all normative references to parallel SCSI and makes
autosense mandatory.

2.2 Revision 0 (?? May 2002)

Revision 0 incorporates the following T10 approved proposals:

3 Plans for Future Revisions
This is a list of the work the technical editor considers required in future revisions of SAM-x.
3.1 Minor Changes

The terms “call”, “procedure”, and any related terms should have glossary definitions that clearly identify them as
architectural abstractions. All of these concepts are wording conveniences used as shorthand by the architecture
and model to express more complex concepts or concepts for which numerous implementations are possible. The
technical editor also should search on the terms “call” and “procedure” to locate any uses and edit text at each
usage point to clearly identify “call” and “procedure” as architectural model abstractions and not as indications of
implementation requirements. In a similar vein, “protocol” is an architectural abstraction, however this may be
better understood as an abstraction in the community of SCSI designers.

The term “service” appears to be an architectural abstraction too, it is defined totally on architectural abstractions
(“calls” and “objects”). However, careful study is required to determine if “service” has some non-abstract, concrete
meaning. If it does, the glossary definition should be changed.

Is it necessary to have definitions for “implementation option”, “logical unit option”, and “protocol option”? Surely,
an option is an option is an option and the context in which the word “option” appears is sufficient to identify whose
option is being discussed.

The technical editor wishes to remove the definition of “ended command”. Strictly speaking, the term “ended
command” is not used anywhere in the working draft, thus allowing removal of the definition as a strictly editorial

X not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

change. However, some consideration of the change appears prudent. The word “ended” is used frequently in the
working draft, all uses appear to have the standard English meaning, but this thesis needs additional verification.
Also, there is an “ended (task state)” that lacks a glossary definition and perhaps should have one.

The glossary definition of “layer” in uninformative, owing in part to the vague usage of “rank”. A clearer, more
specific definition is needed.

Is the term “protocol service request” really so general as to require its being defined in terms of “call” (an architec-
tural abstraction)? Also, the technical editor believes that “protocol service response” should be defined as “A reply
to the upper level protocol ...”, not “A reply from the upper level protocol ...” Finally, would it be possible to cast both
definitions in terms of specific entities from the SCSI roadmap, instead of “lower level protocol” and “upper level
protocol” (see 3.2)?

Although it is used in the Foreword, Scope, and one figure title, the term “reference model” is little more than obfus-
cated wording for “model”. Could it be replaced?

Is “subsystem” really used as it is defined in the glossary? Many other SCSI standards use subsystem differently.

It seems that task management function names sometimes appear in all capitals and bold, not capitalized and bold
as is stated in 3.4.

Why is the following sentence from the end of the first paragraph in 4.2 so important:

“In such a model, each client or server is a single thread of execution which runs concurrently with all other
clients or servers.”

Are the requirements on protocols really contained only in 5.4 and 6.9, as is stated in 4.17?
Change all usage of “remote procedure call” to “procedure call”, since “remote procedure call” is not defined.

Clause 5.3 is a mess. The data delivery services are given individual 5.3.x clauses but the command protocol
services are not. 5.3.1 fails to identify the party responsible for establishing the parameters for the transfer of a
buffer segment. The rule prohibiting input and output transfers by a single command is buried in a paragraph that
starts with a discussion of buffer segmentation. The technical editor was very tempted to rewrite the whole clause
during the revision 4 conversion, but wrote this reminder to himself instead.

5.6.4.1 seems to imply that other methods for controlling AER besides the Control mode page are acceptable. Is
this really the intent of T107?

3.2 Substantial Changes

Is it really necessary for SAM-2 to place requirements on the contents of other standards? Would the SCSI
documents set be just as well served if SAM-2 acted as a guide to what readers might expect to find in other SCSI
standards? With these thoughts in mind, a few (but not necessarily all) specific instances of needed changes are
noted:

a) The Foreword and Introduction clauses need to be modified to remove the work “requirements”; at the time
of this writing, “capabilities” is the preferred replacement;

b) Most of 1.1 probably would be obsolete; and

c) A careful audit of the requirements statements will be needed to adjust those placing requirements on
other standards.

not a revision of SCSI Architecture Model - 3 (SAM-3) Xi



T10/02-119r0 revision -1 16 March 2002

The technical editor is considering a careful review of the working draft, with an eye toward overly abstract model
abstractions. Examples are:

a) Overly general layering terms and discussions; and
b) Discussion of a new application client for each new request or task management function.

The layering seems overly general and thus confusing. SCSI has two (or at most three) layers. The question of
two or three layers depends on whether the service delivery port is a layer. The two “main” layers are the
command and control layer (application client, device server, and task manager) and the service delivery
subsystem. The description appears amenable to substantial simplifications. LLP and ULP could disappear.
Generalized interfaces could be replaced with a small number of specific interfaces. Does T10 see value in this
kind of simplification?

The terms “SCSI application layer” and “SCSI protocol layer” appear to be redundant. Certainly, “SCSI application
layer” is little more than a generalization of “application client”. Perhaps, “SCSI application layer” and “SCSI
protocol layer” can be removed. As if this confusion were not enough, the definition of “Upper Layer Protocol”
clearly ties it to the application layer. This further suggests that SCSI has only two protocol layers.

The technical editor wonders how useful it is to say that the architectural model presumes the creation of a new
application client for each new request or task management function. It is difficult to see how this formalism serves
to produce a better understanding of the real-world usage of SCSI. In fact, other text in the working draft acknowl-
edges that this formalism may not relate to reality at all. If this change were made, it might also be possible to
simplify the following statements in 4.3:

“An application client represents a thread of execution whose functionality is independent of the
interconnect and SCSI-3 protocol. In an implementation, that thread could correspond to the device driver
and any other code within the operating system that is capable of managing I/O requests without requiring
knowledge of the interconnect or SCSI-3 protocol.”

Is the following 4.2 statement rigorously true?

“All allusions to a pending command or task management function in this standard are in the application
client's frame of reference.”

The use of “conventional procedure call” in the following 4.2 statement is at odds with the SAM definitions of
procedure call as a modeling mechanism.

“From the client's standpoint, the behavior of a remote service invoked in this manner is indistinguishable
from a conventional procedure call.”

If the following two 4.2 statements are true, why are confirmed services defined?

“In this model, confirmation of successful request or response delivery by the sender is not required. The
model assumes that delivery failures will be detected by the client's service delivery port.”

The technical editor suspects that “confirmed service” has multiple definitions.

xii not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Foreword
This foreword is not part of American National Standard INCITS.***:200x.

The purpose of this standard is to provide a basis for the coordination of SCSI standards development and to
define requirements, common to all SCSI technologies and implementations that are essential for compatibility with
host SCSI application software and device-resident firmware across all SCSI protocols. These requirements are
defined through a reference model that specifies the behavior and abstract structure that is generic to all SCSI I/0
system implementations.

With any technical document there may arise questions of interpretation as new products are implemented.
INCITS has established procedures to issue technical opinions concerning the standards developed by INCITS.
These procedures may result in SCSI Technical Information Bulletins being published by INCITS.

These Bulletins, while reflecting the opinion of the Technical Committee that developed the standard, are intended
solely as supplementary information to other users of the standard. This standard, ANSI INCITS.***:200x, as
approved through the publication and voting procedures of the American National Standards Institute, is not altered
by these bulletins. Any subsequent revision to this standard may or may not reflect the contents of these Technical
Information Bulletins.

Current INCITS practice is to make Technical Information Bulletins available through:

INCITS Online Store http://www.techstreet.com/INCITS.html
managed by Techstreet Telephone: 1-734-302-7801 or

1327 Jones Drive 1-800-699-9277

Ann Arbor, Ml 48105 Facsimile: 1-734-302-7811

or

Global Engineering http://global.ihs.com/

15 Inverness Way East Telephone: 1-303-792-2181 or
Englewood, CO 80112-5704 1-800-854-7179

Facsimile: 1-303-792-2192

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent to the INCITS Secretariat, National Committee for Information Technology Standards, Information
Technology Institute, 1250 Eye Street, NW, Suite 200, Washington, DC 20005- 3922.

This standard was processed and approved for submittal to ANSI by the InterNational Committee for Information
Technology Standards (INCITS). Committee approval of the standard does not necessarily imply that all
committee members voted for approval. At the time of it approved this standard, INCITS had the following
members:

<<Insert INCITS member list>>

The INCITS Technical Committee T10 on Lower Level Interfaces, which reviewed this standard, had the following
members:

<<Insert T10 member list>>

not a revision of SCSI Architecture Model - 3 (SAM-3) Xiii



T10/02-119r0 revision -1 16 March 2002

Introduction

The SCSI Architecture Model - 3 (SAM-3) standard is divided into seven clauses and one annex:

xiv

Clause 1 is the scope.

Clause 2 enumerates the normative references that apply to this standard.

Clause 3 describes the definitions, symbols, and abbreviations used in this standard.
Clause 4 describes the overall SCSI architectural model

Clause 5 describes the SCSI command model element of the SCSI architecture
Clause 6 describes the task management functions common to SCSI devices
Clause 7 describes the task set management capabilities common to SCSI devices
Annex A summarizes the identifier and name definitions of the SCSI Protocols

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

American National Standard INCITS.***:200x

American National Standard for Information Systems -
Information Technology -
SCSI Architecture Model - 3 (SAM-3)

1 Scope
1.1 Introduction

The set of SCSI standards consists of this standard and the SCSI implementation standards described in 1.2. This
standard defines a reference model that specifies common behaviors for SCSI devices, and an abstract structure
that is generic to all SCSI I/0 system implementations.

The set of SCSI standards specifies the interfaces, functions, and operations necessary to ensure interoperability
between conforming SCSI implementations. This standard is a functional description. Conforming implementa-
tions may employ any design technique that does not violate interoperability.

1.2 Requirements precedence

This standard defines generic requirements that pertain to SCSI implementation standards, and implementation
requirements. An implementation requirement specifies behavior in terms of measurable or observable param-
eters that apply directly to an implementation. Examples of implementation requirements defined in this document
are the command descriptor block format and the status values to be returned upon command completion.

Generic requirements are transformed to implementation requirements by an implementation standard. An
example of a generic requirement is the hard reset behavior specified in 5.8.6.

SCSI Architecture Model - 2

SCSI Implementation SCSI Implementation PREPRIPS SCSI Implementation
Standard Standard Standard
Key: \ v /
Generic Implementation
) . SCSI
Requirements Requirements .
Implementation
- -

Figure 1 — Requirements precedence

As shown in figure 1, all SCSI implementation standards shall reflect the generic requirements defined herein. In
addition, an implementation claiming SCSI compliance shall conform to the applicable implementation require-

not a revision of SCSI Architecture Model - 3 (SAM-3) 1



T10/02-119r0 revision -1 16 March 2002

ments defined in this standard and the appropriate SCSI implementation standards. In the event of a conflict
between this document and other SCSI standards under the jurisdiction of technical committee T10, the require-
ments of this standard shall apply.

1.3 SCSI standards family

Figure 2 shows the relationship of this standard to the other standards and related projects in the SCSI family
standards as of the publication of this standard.

Common Access Method

Device-Type Specific Command Sets

Shared Command Set (for all device types)

SCSI Protocols

Architecture Model

Interconnects

Figure 2 — SCSI document roadmap

The roadmap in figure 2 is intended to show the general applicability of the documents to one another. The figure is
not intended to imply a relationship such as a hierarchy, protocol stack, or system architecture. It indicates the
applicability of a standard to the implementation of a given transport.

The functional areas identified in figure 2 characterize the scope of standards within a group as follows:

Architecture Model: Defines the SCSI systems model, the functional partitioning of the SCSI standard set and
requirements applicable to all SCSI implementations and implementation standards.

Common Access Method: Implementation standard that defines a host architecture and set of services for device
access.

Device-Type Specific Command Sets: Implementation standards that define specific device types including a
device model for each device type. These standards specify the required commands and behavior that is specific to
a given device type and prescribe the requirements to be followed by an initiator when sending commands to a
device having the specific device type. The commands and behaviors for a specific device type may include by
reference commands and behaviors that are shared by all SCSI devices.

Shared Command Set: An implementation standard that defines a model for all SCSI device types. This standard

specifies the required commands and behavior that is common to all devices, regardless of device type, and
prescribe the requirements to be followed by an initiator when sending commands to any device.

2 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1
SCSI Protocols: Implementation standards that define the requirements for exchanging information so that
different SCSI devices are capable of communicating.

Interconnects: Implementation standards that define the communications mechanism employed by the SCSI
Protocols. These standards may describe the electrical and signaling requirements essential for devices to interop-

erate over a given physical interconnect.

At the time this standard was generated, examples of the SCSI general structure included:

Interconnects:
Fibre Channel Arbitrated Loop FC-AL [ANSI X3.272-1996]
Fibre Channel Arbitrated Loop -2 FC-AL-2 [ISO/IEC 14165-122]
[ANSI NCITS.332-1999]
Fibre Channel Physical and Signalling Interface FC-PH [ISO/IEC 14165-111]
[ANSI X3.230-1994]
Fibre Channel Physical Amendment 1 [ANSI X3.230/AM1-1996]
Fibre Channel 3rd Generation Physical Interface FC-PH-3 [ISO/IEC 14165-113]
[ANSI X3.303-1998]
Fibre Channel Physical Interfaces FC-PI [T11/1235-D]
Fibre Channel Framing and Signaling Interface FC-FS [T11/1331-D]
High Performance Serial Bus [ANSI IEEE 1394-1995]
High Performance Serial Bus [ANSI IEEE 1394a-2000]
(supplement to ANSI/IEEE 1394-1995)
SCSI Parallel Interface - 2 SPI-2 [ISO/IEC 14776-112]
[ANSI X3.302-1999]
SCSI Parallel Interface - 3 SPI-3 [ISO/IEC 14776-113]
[ANSI NCITS.336-2000]
SCSI Parallel Interface - 4 SPI-4 [ISO/IEC 14776-114]
[ANSI INCITS.362-200x]
SCSI Parallel Interface - 5 SPI-5 [ISO/IEC 14776-115]
[T10/1525-D]
Serial Storage Architecture Physical Layer 1 SSA-PH [ANSI X3.293-1996]
Serial Storage Architecture Physical Layer 2 SSA-PH-2 [ANSI NCITS.307-1998]
SCSI Protocols:
Serial Storage Architecture Transport Layer 1 SSA-TL-1 [ANSI X3.295-1996]
Serial Storage Architecture Transport Layer 2 SSA-TL-2 [ANSI NCITS.308-1998]
SCSI-3 Fibre Channel Protocol FCP [ISO/IEC 14776-221]
[ANSI X3.269-1996]
SCSI Fibre Channel Protocol - 2 FCP-2 [ISO/IEC 14776-222]
[ANSI NCITS.350-200x]
Serial Bus Protocol - 2 SBP-2 [ISO/IEC 14776-232]
[ANSI NCITS.325-1999]
Serial Bus Protocol - 3 SBP-3 [ISO/IEC 14776-233]
[T10/1467-D]
Serial Storage Architecture SCSI-3 Protocol SSA-S3P [ANSI NCITS.309-1998]
SCSI on Scheduled Transfer SST [T10/1380-D]
SCSI RDMA Protocol SRP [T10/1415-D]
Shared Command Sets:
SCSI-3 Primary Commands SPC [ISO/IEC 14776-311]
[ANSI X3.301-1997]
SCSI Primary Commands - 2 SPC-2 [ISO/IEC 14776-312]

[ANSI NCITS.351-2001]

not a revision of SCSI Architecture Model - 3 (SAM-3) 3



T10/02-119r0 revision -1 16 March 2002

SCSI Primary Commands - 3 SPC-3 [ISO/IEC 14776-313]

[T10/1416-D]
Device-Type Specific Command Sets:

SCSI-3 Block Commands SBC [ISO/IEC 14776-321]
[ANSI NCITS.306-1998]

SCSI Block Commands - 2 SBC-2 [ISO/IEC 14776-322]
[T10/1417-D]

SCSI-3 Stream Commands SSC [ISO/IEC 14776-331]
[ANSI NCITS.335-2000]

SCSI Stream Commands - 2 SSC-2 [ISO/IEC 14776-332]
[T10/1434-D]

SCSI-3 Medium Changer Commands SMC [ISO/IEC 14776-351]
[ANSI NCITS.314-1998]

SCSI Medium Changer Commands - 2 SMC-2 [ISO/IEC 14776-352]
[T10/1383-D]

SCSI-3 Multimedia Command Set MMC [ANSI X3.304-1997]

SCSI Multimedia Command Set - 2 MMC-2 [ISO/IEC 14776-362]
[ANSI NCITS.333-2000]

SCSI Multimedia Command Set - 3 MMC-3 [ISO/IEC 14776-363]
[T10/1363-D]

SCSI-3 Controller Commands SCC [ISO/IEC 14776-341]
[ANSI X3.276-1997]

SCSI Controller Commands - 2 SCC-2 [ISO/IEC 14776-342]
[ANSI NCITS.318-1998]

SCSI Reduced Block Commands RBC [ISO/IEC 14776-326]
[ANSI NCITS.330-2000]

SCSI-3 Enclosure Services Commands SES [ISO/IEC 14776-371]
[ANSI NCITS.305-1998]

SCSI Specification for Optical Card Reader/Writer OCRW [ISO/IEC 14776-381]

Object-based Storage Devices Commands OsD [T10/1355-D]

SCSI Management Server Commands MSC [T10/1528-D]

Architecture Model:

SCSI-3 Architecture Model SAM [ISO/IEC 14776-411]
[ANSI X3.270-1996]

SCSI Architecture Model - 2 SAM-2 [ISO/IEC 14776-412]
[T10/1157-D]

The term SCSI is used to refer to the family of standards described in this subclause.

4 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

2 Normative references

2.1 Normative references

The following standards contain provisions that, by reference in the text, constitute provisions of this standard. At
the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agree-
ments based on this standard are encouraged to investigate the possibility of applying the most recent editions of
the standards listed below.

Copies of the following documents may be obtained from ANSI: approved ANSI standards, approved and draft
international and regional standards (ISO, IEC, CEN/CENELEC, ITUT), and approved and draft foreign standards

(including BSI, JIS, and DIN). For further information, contact ANSI Customer Service Department at
212-642-4900 (phone), 212-302-1286 (fax) or via the World Wide Web at http://www.ansi.org.

2.2 Approved references

ISO/IEC 60027-2-am2 (1999-01), Letter symbols to be used in electrical technology - Part 2: Telecommunications
and electronics (Amendment 2)

ISO/IEC 14776-312, SCSI Primary Commands - 2 (SPC-2) [ANSI NCITS.351-2001]

2.3 References under development

At the time of publication, the following referenced standards were still under development. For information on the
current status of the document, or regarding availability, contact the relevant standards body or other organization
as indicated.

ISO/IEC 14776-313, SCSI Primary Commands - 3 (SPC-3) [T10/1416-D]

not a revision of SCSI Architecture Model - 3 (SAM-3) 5



T10/02-119r0 revision -1 16 March 2002

3 Definitions, symbols, abbreviations, and conventions
3.1 Definitions

3.1.1 aborted command: A SCSI command that has been ended by aborting the task created to process it.
3.1.2 ACA command: A command performed by a task with the ACA attribute (see 3.1.5, 4.9 and 7.5.4).

3.1.3 additional sense code: A combination of the ADDITIONAL SENSE CODE and ADDITIONAL SENSE CODE QUALIFIER
fields in the sense data (see 3.1.107 and SPC-2).

3.1.4 application client: An object that is the source of SCSI commands.

3.1.5 auto contingent allegiance (ACA): One of the possible conditions of a task set following the return of a
CHECK CONDITION status. See 5.8.1.

3.1.6 blocked task state The state of a task that is prevented from completing due to an ACA condition.

3.1.7 blocking boundary: A task set boundary denoting a set of conditions that inhibit tasks outside the boundary
from entering the enabled task state.

3.1.8 byte: An 8-bit construct.
3.1.9 call: The act of invoking a procedure.

3.1.10 client-server: A relationship established between a pair of distributed objects where one (the client)
requests the other (the server) to perform some operation or unit of work on the client's behalf.

3.1.11 client: An object that requests a service from a server.

3.1.12 code value: A one or a series of defined numeric values each representing an identified and described
instance or condition. Code values are defined to be used in a specific field (see 3.1.37), in a procedure input data
object (see 3.6.2), in a procedure output data object, or in a procedure result.

3.1.13 command: A request describing a unit of work to be performed by a device server.

3.1.14 command descriptor block (CDB): A structure used to communicate a command from an application
client to a device server. A CDB may have a fixed length of up to 16 bytes or a variable length of between 12 and

260 bytes.

3.1.15 completed command: A command that has ended by returning a status and service response of TASK
COMPLETE Or LINKED COMMAND COMPLETE.

3.1.16 completed task: A task that has ended by returning a status and service response of TASK COMPLETE.
The actual events comprising the TASK COMPLETE response are protocol specific.

3.1.17 confirmation: A response returned to an object that signals the completion of a service request.

3.1.18 confirmed SCSI protocol service: A service available at the SCSI protocol service interface that includes
a confirmation of completion.

3.1.19 contingent allegiance (CA): One of the possible conditions of a task set following the return of a CHECK
CONDITION status. See 5.8.1.

6 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

3.1.20 Control mode page: The Control mode page that identifies the settings of several device server behaviors
that may be of interest to an application client or may be changed by an application client. Fields in the Control
mode page are referenced by name in this standard and SPC-2 contains a complete definition of the Control mode

page.
3.1.21 current task: A task that has a data transfer SCSI protocol service request in progress (see 5.4.3) or is in
the process of sending command status. Each SCSI protocol standard shall define the protocol specific conditions
under which a task is considered a current task.

3.1.22 dependent logical unit: A logical unit that is addressed via some other logical unit(s) in a hierarchical
logical unit structure (see 3.1.40), also a logical unit that is at a higher numbered level in the hierarchy than the
referenced logical unit (see 4.12).

3.1.23 destination device: The SCSI device to which a service delivery transaction is addressed. See source
device (3.1.115).

3.1.24 device identifier: Synonymous with SCSI port identifier (see 3.1.95).
3.1.25 device model: The description of a type of SCSI target device (e.g., block, stream).

3.1.26 device server: An object within the logical unit that processes SCSI tasks according to the requirements
for task management described in clause 7.

3.1.27 device service request: A request, submitted by an application client, conveying a SCSI command to a
device server.

3.1.28 device service response: The response returned to an application client by a device server on completion
of a SCSI command.

3.1.29 domain: An I/O system consisting of a set of SCSI devices that interact with one another by means of a
service delivery subsystem.

3.1.30 dormant task state: The state of a task that is prevented from starting processing due to the presence of
certain other tasks in the task set.

3.1.31 enabled task state: The state of a task that may complete at any time. Alternatively, the state of a task that
is waiting to receive the next command in a series of linked commands.

3.1.32 ended command: A command that has completed or aborted.

3.1.33 faulted initiator: The initiator to which a CHECK CONDITION status was returned. The faulted initiator
condition disappears when the ACA or CA condition resulting from the CHECK CONDITION status is cleared.

3.1.34 faulted task set: A task set that contains a faulting task. The faulted task set condition disappears when
the ACA or CA condition resulting from the CHECK CONDITION status is cleared.

3.1.35 faulting command: A command that completed with a status of CHECK CONDITION.
3.1.36 faulting task: A task that has completed with a status of CHECK CONDITION.

3.1.37 field: A group of one or more contiguous bits, part of a larger structure such as a CDB (see 3.1.14) or
sense data (see 3.1.107).

not a revision of SCSI Architecture Model - 3 (SAM-3) 7



T10/02-119r0 revision -1 16 March 2002
3.1.38 function complete: A logical unit response indicating that a task management function has finished. The
actual events comprising this response are protocol specific.

3.1.39 hard reset: A target action in response to a reset event in which the target port performs the operations
described in 5.8.6.

3.1.40 hierarchical logical unit: An inverted tree structure for forming and parsing logical unit numbers (see
3.1.63) containing up to four addressable levels (see 4.12).

3.1.41 I_T nexus: A nexus between an initiator and a target (see 4.10).

3.1.42 |_T_L nexus: A nexus between an initiator, a target, and a logical unit (see 4.10).

3.1.431_T_L_Q nexus: A nexus between an initiator, a target, a logical unit, and a tagged task (see 4.10).
3.1.441_T_L_x nexus: Eitheran|_T_L nexus oran I_T_L_Q nexus (see 4.10).

3.1.45 /O operation: An operation defined by an unlinked SCSI command, a series of linked SCSI commands or
a task management function.

3.1.46 implementation: The physical realization of an object.

3.1.47 implementation specific: A requirement or feature that is defined in a SCSI standard but whose imple-
mentation may be specified by the system integrator or vendor.

3.1.48 implementation option: An option whose actualization within an implementation is at the discretion of the
implementor.

3.1.49 initiator: Synonymous with SCSI initiator port (see 3.1.93).

3.1.50 initiator device name: A SCSI device name of a SCSI initiator device (see 4.7.1).

3.1.51 initiator identifier: Synonymous with initiator port identifier (see 4.7.1).

3.1.52 initiator port identifier: A value by which a SCSI initiator port is referenced within a domain (see 4.7.1).

3.1.53 initiator port name: A SCSI port name (see 3.1.96) of a SCSl initiator port or of a SCSI target/initiator port
when operating as a SCSI initiator port (see 4.7.1).

3.1.54 interconnect subsystem: One or more physical interconnects that appear as a single path for the transfer
of information between SCSI devices in a domain.

3.1.55 in transit: Information that has been sent to a remote object but not yet received.

3.1.56 layer: A subdivision of the architecture constituted by subsystems of the same rank.

3.1.57 linked CDB: A CDB with the LINK bit in the CONTROL byte set to one.

3.1.58 linked command: One in a series of SCSI commands processed by a single task that collectively make up
a discrete 1/0O operation. In such a series, each command is represented by the same I_T_L_x nexus, and all,

except the last, have the LINK bit in the CDB CONTROL byte set to one.

3.1.59 logical unit: A target-resident object that implements a device model and processes SCSI commands sent
by an application client.

8 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1
3.1.60 logical unit reset: A logical unit action in response to a logical unit reset event in which the logical unit
performs the operations described in 5.8.7.

3.1.61 logical unit reset event: An event that triggers a logical unit reset from a logical unit as described in 5.8.7.

3.1.62 logical unit inventory: The list of the logical unit numbers reported by a REPORT LUNS command (see
SPC-2).

3.1.63 logical unit number (LUN): A 64-bit identifier for a logical unit.

3.1.64 logical unit option: An option pertaining to a logical unit, whose actualization is at the discretion of the
logical unit implementor.

3.1.65 lower level protocol (LLP): A protocol used to carry the information representing upper level protocol
transactions.

3.1.66 media information: Information stored within a SCSI device that is non-volatile (retained through a power
cycle) and accessible to an initiator through the processing of SCSI commands.

3.1.67 name: A label of an object that is unique within a specified context and should never change (e.g., the term
name and world wide identification (WWID) may be interchangeable).

3.1.68 nexus: A relationship between two SCSI devices and the initiator and target objects within those SCSI
devices (see 4.10).

3.1.69 object: An architectural abstraction or container that encapsulates data types, services, or other objects
that are related in some way.

3.1.70 peer-to-peer protocol service: A service used by an upper level protocol implementation to exchange
information with its peer.

3.1.71 peer entities: Entities within the same layer.
3.1.72 pending task: A task that is not a current task.

3.1.73 physical interconnect: A single physical pathway for the transfer of information between SCSI devices in a
domain.

3.1.74 port: Synonymous with SCSI port (see 3.1.94).
3.1.75 procedure: An operation that is invoked through an external calling interface.

3.1.76 protocol: The requirements governing the content and exchange of information passed between
distributed objects through the service delivery subsystem.

3.1.77 protocol option: An function whose definition within a SCSI protocol standard is optional.

3.1.78 queue: The arrangement of tasks within a task set (see 3.1.134), usually according to the temporal order in
which they were created.

3.1.79 receiver: A client or server that is the recipient of a service delivery transaction.

3.1.80 reference model: A standard model used to specify system requirements in an implementation-
independent manner.

not a revision of SCSI Architecture Model - 3 (SAM-3) 9



T10/02-119r0 revision -1 16 March 2002

3.1.81 request: A transaction invoking a service.

3.1.82 request-response transaction: An interaction between a pair of distributed, cooperating objects,
consisting of a request for service submitted to an object followed by a response conveying the result.

3.1.83 request-confirmation transaction: An interaction between a pair of cooperating objects, consisting of a
request for service submitted to an object followed by a response from the object confirming request completion.

3.1.84 reset event: A protocol specific event that triggers a hard reset from a SCSI device as described in 5.8.6.
3.1.85 response: A transaction conveying the result of a request.

3.1.86 SCSI application layer: The protocols and procedures that implement or issue SCSI commands and task
management functions by using services provided by a SCSI protocol layer.

3.1.87 SCSl device: A device that contains one or more SCSI ports that are connected to a service delivery
subsystem and supports a SCSI application protocol.

3.1.88 SCSI device identifier: Synonymous with SCSI port identifier (see 3.1.95).

3.1.89 SCSI device name: A name (see 3.1.67) of a SCSI device that is world wide unique within the protocol of a
SCSI domain in which the SCSI device has SCSI ports (see 4.7.6). The SCSI device name may be made available
to other SCSI devices or SCSI ports in that SCSI domain in protocol specific ways.

3.1.90 SCSI I/0 system: An I/O system, consisting of two or more SCSI devices, a SCSI interconnect and a SCSI
protocol that collectively interact to perform SCSI I/O operations.

3.1.91 SCSil identifier: Synonymous with SCSI port identifier (see 3.1.95).

3.1.92 SCSi initiator device: A SCSI device containing application clients and SCSI initiator ports that originate
device service and task management requests to be processed by a target SCSI device. When used this term
refers to SCSl initiator devices or SCSI target/initiator devices that are using the SCSI target/initiator port as a SCSI
initiator port.

3.1.93 SCSil initiator port: A SCSI initiator device object acts as the connection between application clients and
the service delivery subsystem through which requests and responses are routed. In all cases when this term is
used it refers to an initiator port or a SCSI target/initiator port operating as a SCSI initiator port.

3.1.94 SCSiI port: A device-resident object that connects the application client, device server or task manager to
the service delivery subsystem through which requests and responses are routed. SCSI port is synonymous with
port and either a SCSI initiator port (see 3.1.93) or a SCSI target port (see 3.1.103).

3.1.95 SCSiI port identifier: A value by which a SCSI port is referenced within a domain. The SCSI port identifier
is either an initiator port identifier (see 3.1.52) or a target port identifier (see 3.1.122).

3.1.96 SCSI port name: A name (see 3.1.67) of a SCSI port that is world wide unique within the protocol of the
SCSI domain of that SCSI port (see 4.7.7). The name may be made available to other SCSI devices or SCSI ports
in that SCSI domain in protocol specific ways.

3.1.97 SCSi protocol layer: The protocol and services used by a SCSI application layer to transport data repre-
senting a SCSI application protocol transaction.

3.1.98 SCSiI protocol service confirmation: A signal from the lower level SCSI protocol layer notifying the upper
layer that a SCSI protocol service request has completed.

10 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1
3.1.99 SCSiI protocol service indication: A signal from the lower level SCSI protocol layer notifying the upper
level that a SCSI protocol transaction has occurred.

3.1.100 SCSI protocol service request: A call to the lower level SCSI protocol layer to begin a SCSI protocol
service transaction.

3.1.101 SCSI protocol service response: A reply from the upper level protocol layer in response to a SCSI
protocol service indication.

3.1.102 SCSI target device: A SCSI device containing logical units and SCSI target ports that receives device
service and task management requests for processing. When used this term refers to SCSI target devices or SCSI
target/initiator devices that are using the SCSI target/initiator port as a SCSI target port.

3.1.103 SCSI target port: A SCSI target device object that contains a task router and acts as the connection
between device servers and task managers and the service delivery subsystem through which requests and
responses are routed. When this term is used it refers to a SCSI target port or a SCSI target/initiator port operating
as a SCSI target port.

3.1.104 SCSI target/initiator device: A device that has all the characteristics of a SCSI target device and a SCSI
initiator device.

3.1.105 SCSI target/initiator port: A device-resident object that has all the characteristics of a SCSI target port
and a SCSl initiator port.

3.1.106 sender: A client or server that originates a service delivery transaction.

3.1.107 sense data: Data returned to an application client as a result of an autosense operation, asynchronous
event report, or REQUEST SENSE command (see 5.8.4). Fields in the sense data are referenced by name in this
standard. See SPC-2 for a complete sense data format definition.

3.1.108 sense key: A field in the sense data. See 3.1.107 and SPC-2.

3.1.109 server: A SCSI object that performs a service on behalf of a client.

3.1.110 service: Any operation or function performed by a SCSI object that is invoked by other SCSI objects.

3.1.111 service delivery failure: Any non-recoverable error causing the corruption or loss of one or more service
delivery transactions while in transit.

3.1.112 service delivery subsystem: That part of a SCSI I/O system that transmits service requests to a logical
unit or target and returns logical unit or target responses to an initiator.

3.1.113 service delivery transaction: A request or response sent through the service delivery subsystem.

3.1.114 signal: (n) A detectable asynchronous event possibly accompanied by descriptive data and parameters.
(v) The act of generating such an event.

3.1.115 source device: The SCSI device from which a service delivery transaction originates. See destination
device (see 3.1.23).

3.1.116 standard INQUIRY data: Data returned to an application client as a result of an INQUIRY command.

Fields in the standard INQUIRY data are referenced by name in this standard and SPC-2 contains a complete
definition of the standard INQUIRY data format.

not a revision of SCSI Architecture Model - 3 (SAM-3) 11



T10/02-119r0 revision -1 16 March 2002
3.1.117 subsystem: An element in a hierarchically partitioned system that interacts directly only with elements in
the next higher division or the next lower division of that system.

3.1.118 suspended information: Information within a logical unit that is not available to any pending task.
3.1.119 target: Synonymous with SCSI target port (see 3.1.103).

3.1.120 target device name: A SCSI device name (see 3.1.89) of a SCSI target device (see 4.7.2).

3.1.121 target identifier: Synonymous with target port identifier (see 4.7.2).

3.1.122 target port identifier: A value by which a SCSI target port is referenced within a domain (see 4.7.2).

3.1.123 target port name: A SCSI port name of a SCSI target port or of a SCSI target/initiator port when
operating as a SCSI target port (see 4.7.2).

3.1.124 target/initiator device name: A SCSI device name (see 3.1.89) of a SCSI target/initiator device (see
4.7.3).

3.1.125 task: An object within the logical unit representing the work associated with a command or a group of
linked commands.

3.1.126 task abort event: An event or condition indicating that the task has been aborted by means of a task
management function (see 7.3).

3.1.127 task completion event: An event or condition indicating that the task has ended with a service response
of TASK COMPLETE (see 7.3).

3.1.128 task ended event: An event or condition indicating that the task has completed or aborted (see 7.3).

3.1.129 task management function: A task manager service capable of being requested by an application client
to affect the processing of one or more tasks.

3.1.130 task management request: A request submitted by an application client, invoking a task management
function to be processed by a task manager.

3.1.131 task management response: The response returned to an application client by a task manager on
completion of a task management request.

3.1.132 task manager: A server within a logical unit that processes task management functions.

3.1.133 task router: Routes commands and task management functions between the service delivery subsystem
(see 3.1.112) and the appropriate logical unit’s task manager (see 3.1.132).

3.1.134 task set: A group of tasks within a logical unit, whose interaction is dependent on the task management
(queuing), CA, and ACA requirements (see 4.8).

3.1.135 third-party command: A SCSI command that requires a logical unit within a SCSI target device to
assume the initiator role and send SCSI command(s) to another SCSI target device.

3.1.136 transaction: A cooperative interaction between two objects, involving the exchange of information or the
processing of some service by one object on behalf of the other.

12 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1
3.1.137 unconfirmed protocol service: A service available at the protocol service interface that does not result
in a completion confirmation.

3.1.138 unlinked command: A SCSI command having the LINK bit set to zero in the CDB CONTROL byte.

3.1.139 upper level protocol (ULP): An application specific protocol processed through services provided by a
lower level protocol.

3.1.140 wakeup: A SCSI target port returning from the sleep power condition to the active power condition (see
SPC-3).

3.1.141 wakeup event: An event that triggers a wakeup from a SCSI target port as described in SPC-3.
3.1.142 well known logical unit: A logical unit that only does specific functions (see 4.13.3). Well known logical
units allow an application client to issue requests to receive and manage specific information usually relating to a

SCSI target.

3.1.143 well known logical unit number (W-LUN): The logical unit number that identifies a well known logical
unit.

3.2 Acronyms

ACA Auto Contingent Allegiance (see 3.1.5)
AER Asynchronous Event Reporting

CA Contingent Allegiance (see 3.1.19)

CDB Command Descriptor Block (see 3.1.14)
LLP Lower Level Protocol (see 3.1.65)

LUN Logical Unit Number (see 3.1.63)

MMC-2 SCSI Multi-Media Commands -2 (see 1.3)
n/a Not Applicable

SBC SCSI-3 Block Commands (see 1.3)

SCSI The architecture defined by the family of standards described in 1.3
SSC SCSI-3 Stream Commands (see 1.3)
SPI-4 SCSI Parallel Interface -4 (see 1.3)

SPC-2 SCSI Primary Commands -2 (see 1.3)
SPC-3 SCSI Primary Commands -3 (see 1.3)

SSC SCSI-3 Stream Commands (see 1.3)
ULP Upper Level Protocol (see 3.1.139)
VPD Vital Product Data (see SPC-2)

W-LUN Well known logical unit number (see 3.1.143)

3.3 Keywords

3.3.1 expected: A keyword used to describe the behavior of the hardware or software in the design models
assumed by this standard. Other hardware and software design models may also be implemented.

3.3.2 invalid: A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt by
a device server of an invalid bit, byte, word, field or code value shall be reported as error.

3.3.3 mandatory: A keyword indicating an item that is required to be implemented as defined in this standard.

not a revision of SCSI Architecture Model - 3 (SAM-3) 13



T10/02-119r0 revision -1 16 March 2002

3.3.4 may: A keyword that indicates flexibility of choice with no implied preference (synonymous with "may or may
not").

3.3.5 may not: A keyword that indicates flexibility of choice with no implied preference (synonymous with "may or
may not").

3.3.6 obsolete: A keyword indicating that an item was defined in prior SCSI standards but has been removed from
this standard.

3.3.7 option, optional: Keywords that describe features that are not required to be implemented by this standard.
However, if any optional feature defined by this standard is implemented, then it shall be implemented as defined in
this standard.

3.3.8 protocol specific: Implementation of the referenced item is defined by a SCSI protocol standard (see 1.3).

3.3.9 reserved: A keyword referring to bits, bytes, words, fields and code values that are set aside for future
standardization. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to
this standard. Recipients are not required to check reserved bits, bytes, words or fields for zero values. Receipt of
reserved code values in defined fields shall be reported as error.

3.3.10 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements to ensure interoperability with other products that conform to this standard.

3.3.11 should: A keyword indicating flexibility of choice with a strongly preferred alternative; equivalent to the
phrase "it is strongly recommended".

3.3.12 vendor specific: Specification of the referenced item is determined by the device vendor.

3.4 Editorial Conventions

Certain words and terms used in this standard have a specific meaning beyond the normal English meaning.
These words and terms are defined either in the glossary or in the text where they first appear.

Upper case is used when referring to the name of a numeric value defined in this specification or a formal attribute
possessed by an object. When necessary for clarity, names of objects, procedures, parameters or discrete states
are capitalized or set in bold type. Names of fields are identified using small capital letters (e.g., NACA bit).

Callable procedures are identified by a name in bold type, such as Execute Command (see clause 5). Names of
procedural arguments are denoted by capitalizing each word in the name. For instance, Sense Data is the name of
an argument in the Execute Command procedure call.

Quantities having a defined numeric value are identified by large capital letters. CHECK CONDITION, for example,
refers to the numeric quantity defined in table 22 (see 5.3.1). Quantities having a discrete but unspecified value are
identified using small capital letters. As an example, TASK COMPLETE, indicates a quantity returned by the Execute
Command procedure call (see clause 5). Such quantities are usually associated with an event or indication whose
observable behavior or value is specific to a given implementation standard.

Lists sequenced by letters (e.g., a-red, b-blue, c-green) show no priority relationship between the listed items.
Numbered lists (e.g., 1-red, 2-blue, 3-green) show a priority ordering between the listed items.

14 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

If a conflict arises between text, tables, or figures, the order of precedence to resolve the conflicts is text; then
tables; and finally figures. Not all tables or figures are fully described in the text. Tables show data format and
values.

Notes do not constitute any requirements for implementors.

3.5 Numeric Conventions

Digits 0-9 in the text of this standard that are not immediately followed by lower-case "b" or "h" are decimal values.
Digits 0 and 1 immediately followed by lower case "b" are binary values. Digits 0-9 and the upper case letters
"A"-"F" immediately followed by lower-case "h" are hexadecimal values.

Large numbers are separated by spaces (e.g., 12 345, not 12,345).

3.6 Notation Conventions

3.6.1 Hierarchy diagram conventions

Hierarchy diagrams show how objects are related to each other. The hierarchy diagram of figure 3, for example,
shows the relationships among the objects comprising an object called Book. For this example, a Book object is
defined as containing a Table of Contents, an optional Preface, one or more Chapter(s), and an optional Index.
Further contents definitions are provided for Preface and Chapter. A Preface contains zero or more Figure(s) as
well as one instance of Outline or one instance of Introductory Text or one instance of Outline and one instance of
Introductory Text. A Chapter contains one or more Section(s) and zero or more Figure(s).

Book

Table of Preface Chapter Index
Contents

Outline Introductory Figure Section
Text

Figure 3 — Example hierarchy diagram

In the corresponding hierarchy diagram, labeled boxes denote the above objects. The composition and relation of
one object to others is shown by the connecting lines. In this case, the connecting lines indicate the relationship
between the Book object and its constituent objects Table of Contents, Preface, Chapter and Index. Similarly,
connecting lines show that a Chapter object contains the objects Section and Figure. Note that the Figure object
also may be a component of the Preface object.

In the hierarchy diagram, objects that are required to have one and only one instance are shown as simple boxes,
as is the case for the Book and Table of Contents objects. The hierarchy diagram also shows multiple instances of

not a revision of SCSI Architecture Model - 3 (SAM-3) 15



T10/02-119r0 revision -1 16 March 2002

an object by the presence of a shadow, as is the case for the Chapter, Figure and Section objects. Objects that are
optional are indicated by light diagonal lines, as is the case for the Preface, Figure and Index objects. An object that
may not have any instances, have only one instance, or have multiple instances is shown with both diagonal lines
and a shadow, as is the case for the Figure object. The instance indications shown in a hierarchy diagram are
approximate, detailed requirements appear in the accompanying text.

3.6.2 Notation for procedures and functions

In this standard, the model for functional interfaces between objects is the callable procedure. Such interfaces are
specified using the following notation:

[Result =] Procedure Name (IN ([input-1] [,input-2] ...]), OUT ([output-1] [,output-2] ...))
Where:
Result: A single value representing the outcome of the procedure or function.
Procedure Name: A descriptive name for the function to be performed.
Input-1, Input-2, ...: A comma-separated list of names identifying caller-supplied input data objects.

Output-1, Output-2, ...: A comma-separated list of names identifying output data objects to be returned by
the procedure.

“[...]": Brackets enclosing optional or conditional parameters and arguments.

This notation allows data objects to be specified as inputs and outputs. The following is an example of a procedure
specification:

Found = Search (IN (Pattern, ltem List), OUT ([ltem Found]))
Where:

Found = Flag
Flag, if set, indicates that a matching item was located.

Input Arguments:

Pattern = ...  /* Definition of Pattern object */
Object containing the search pattern.

Item List = tem<NN> /* Definition of Item List as an array of NN ltem objects*/
Contains the items to be searched for a match.

Output Arguments:

Item Found = ltem ... /* ltem located by the search procedure */
This object is only returned if the search succeeds.

16 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

3.6.3 Notation for state diagrams

All state diagrams use the notation shown in figure 4.

S0: State 0 S1: State 1
Actions taken on entry to SO Actions taken on entry to S1
— S0:S1 -
g S$1:50 —
S0:S0 —p
Transition labels

Figure 4 — Example state diagram
The state diagram is followed by a list of the state transitions, using the transition labels. Each transition is
described in the list with particular attention to the conditions that cause the transition to occur and special condi-
tions related to the transition. Using figure 4 as an example, the transition list might read as follows:
Transition S0:S1: This transition occurs when state SO is exited and state S1 is entered.

Transition S1:S0: This transition occurs when state S1 is exited and state SO is entered.

Transition S0:S0: This transition occurs when state SO transitions to itself. It is particularly important to note that
the actions taken whenever state SO is entered are repeated every time this transition occurs.

A system specified in this manner has the following properties:
a) Time elapses only within discrete states;
b) State transitions are logically instantaneous; and

c) Every time a state is entered, the actions of that state are started. Note that this means that a transition
that points back to the same state restarts the actions from the beginning.

not a revision of SCSI Architecture Model - 3 (SAM-3) 17



T10/02-119r0 revision -1 16 March 2002

4 SCSI Architecture Model
4.1 Introduction

The purpose of the SCSI architecture model is to:

a) Provide a basis for the coordination of SCSI standards development that allows each standard to be
placed into perspective within the overall SCSI Architecture model;

b) Identify areas for developing standards and provide a common reference for maintaining consistency
among related standards so that independent teams of experts may work productively and independently
on the development of standards within each functional area; and

c) Provide the foundation for application compatibility across all SCSI interconnect and protocol environments
by specifying generic requirements that apply uniformly to all implementation standards within each
functional area.

The development of this standard is assisted by the use of an abstract model. To specify the external behavior of a
SCSI system, elements in a system are replaced by functionally equivalent components within this model. Only
externally observable behavior is retained as the standard of behavior. The description of internal behavior in this
standard is provided only to support the definition of the observable aspects of the model. Those aspects are
limited to the generic properties and characteristics needed for host applications to interoperate with SCSI devices
in any SCSI interconnect and protocol environment. The model does not address other requirements that may be
essential to some I/O system implementations such as the mapping from SCSI device addresses to network
addresses, the procedure for discovering SCSI devices on a network and the definition of network authentication
policies for SCSI initiators or targets. These considerations are outside the scope of the architecture model.

The set of SCSI standards specifies the interfaces, functions, and operations necessary to ensure interoperability
between conforming SCSI implementations. This standard is a functional description. Conforming implementations
may employ any design technique that does not violate interoperability.

The SCSI architecture model is described in terms of objects (see 3.1.69), protocol layers and service interfaces
between objects. As used in this standard, objects are abstractions, encapsulating a set of related functions, data
types, and other objects. Certain objects, such as an interconnect, are defined by SCSI, while others, such as a
task, are needed to understand the functioning of SCSI but have implementation definitions outside the scope of
SCSI. That is, although such objects exhibit well-defined, observable behaviors, they do not exist as separate
physical elements. An object may be a single numeric parameter, such as a logical unit number, or a complex entity
that performs a set of operations or services on behalf of another object.

Service interfaces are defined between distributed objects and protocol layers. The template for a distributed
service interface is the client-server model described in 4.2. The structure of a SCSI I/O system is specified in 4.4
by defining the relationship among objects. The set of distributed services to be provided are specified in clause 5
and clause 6.

Requirements that apply to each SCSI protocol standard are specified in the SCSI protocol service model

described in 5.4 and 6.9. The model describes required behavior in terms of layers, objects within layers and
protocol service transactions between layers.

18 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

4.2 The SCSI distributed service model

Service interfaces between distributed objects are represented by the client-server model shown in figure 5.
Dashed horizontal lines with arrowheads denote a single request-response transaction as it appears to the client
and server. The solid lines with arrowheads indicate the actual transaction path through the service delivery
subsystem. In such a model, each client or server is a single thread of processing that runs concurrently with all
other clients or servers.

e N Client-Server Transaction Ve N
Client Server
| ___ __ ServerRequest >

< - _ServerResponse _)
1 _ _ PowcoiSevice T f _
Interface

Service Delivery Subsystem

Figure 5 — Client-Server model

A client-server transaction is represented as a remote procedure call with inputs supplied by the caller (the client).
The procedure is processed by the server returns outputs and a procedure status. A client directs requests to a
remote server, via the client's service delivery subsystem, and receives a completion response or a failure notifi-
cation. The request identifies the server and the service to be performed and includes the input data. The response
conveys the output data and request status. The function of the service delivery subsystem is to transport an
error-free copy of the request or response between sender and receiver. A failure notification indicates that a
condition has been detected, such as a reset, or service delivery failure, that precludes request completion.

As seen by the client, a request becomes pending when it is passed to the service delivery subsystem for trans-
mission. The request is complete when the server response is received or when a failure notification is sent. As
seen by the server, the request becomes pending upon receipt and completes when the response is passed to its
service delivery subsystem for return to the client. As a result there may be a time skew between the server and
client's perception of request status and logical unit state. All references to a pending command or task
management function in this standard are in the application client's point of view.

Client-server relationships are not symmetrical. A client may only originate requests for service. A server may only
respond to such requests. The client calls the server-resident procedure and waits for completion. From the client's
point of view, the behavior of a remote service invoked in this manner is indistinguishable from a conventional
procedure call. In this model, confirmation of successful request or response delivery by the sender is not required.
The model assumes that delivery failures are detected by the client's SCSI port or within service delivery
subsystem.

not a revision of SCSI Architecture Model - 3 (SAM-3) 19



T10/02-119r0 revision -1 16 March 2002

4.3 The SCSI client-server model

As shown in figure 6, each SCSI target device provides device services performed by the logical units under the
control of the target and task management functions performed by the task manager. A logical unit is an object that
implements one of the device functional models described in the SCSI command standards and processes SCSI
commands such as reading from or writing to the media. Each pending SCSI command or series of linked
commands defines a unit of work to be performed by the logical unit. Each unit of work is represented within the
target by a task that may be externally referenced and controlled through requests issued to the task manager.

5\ Logical
Unit
icati Device Service Request
Aprc):lll_cat;on s — s — - — que — Device
o | Device Service Response | | Server
Task Management Request
/__r'l'(ﬁ"_"a"_» TaSk B
|/~ |Tgsk Management Response | - | Manager| |
NV |
Initiator Target

Figure 6 — SCSI client-server model

All requests originate from application clients residing within a SCSI initiator device. An application client repre-
sents a thread of processing whose functionality is independent of the interconnect and SCSI protocol. In an imple-
mentation, that thread could correspond to the device driver and any other code within the operating system that is
capable of managing I/O requests without requiring knowledge of the interconnect or SCSI protocol. In the archi-
tecture model, an application client is created to issue a single SCSI command or task management function. An
application client ceases to exist once the command or task management function ends. Consequently, there is
one application client for each pending command or task management request. Within the initiator, one or more
controlling entities, whose definition is outside the scope of the architecture model, oversee the creation of and
interaction among application clients.

As described in 4.2, each request takes the form of a procedure call with arguments and a status to be returned.
An application client may request processing of a SCSI command through a request directed to the device server
within a logical unit. Each device service request contains a CDB, defining the operation to be performed, along
with a list of command specific inputs and other parameters specifying how the command is to be processed. If
supported by a logical unit, a sequence of linked commands may be used to define an extended 1/O operation.

A task is an object within the logical unit representing the work associated with a command or series of linked
commands. A new command or the first in a series of linked commands causes the creation of a task. The task
persists until a command completion response is sent or until the task is ended by a task management function or
exception condition. For an example of the processing for a single command see 5.7.1. For an example of linked
command processing see 5.7.2.

An application client may request processing of a task management function through a request directed to the task

manager within the logical unit. The interactions between the task manager and application client when a task
management request is processed are shown in 6.10.

20 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

4.4 The SCSI structural model

The SCSI structural model represents a view of the elements comprising a SCSI I/0 system as seen by the appli-
cation clients interacting with the system. As shown in figure 7, the fundamental object is the SCSI domain that
represents an I/0O system. A domain is made up of SCSI devices and a service delivery subsystem that transports
commands and data. A SCSI device contains application clients or device servers or both and the infrastructure to
support them.

N

N

A

Service Delivery Subsystem

I - - o
:
|
|
|
|
|
|

SCSI Device SCSI Device SCSI Device SCSI Device
L _ _ _
Figure 7 — SCSI I/O system and domain model

not a revision of SCSI Architecture Model - 3 (SAM-3) 21



T10/02-119r0 revision -1

16 March 2002

Figure 8 shows the main functional components of the SCSI domain. The following clauses define these compo-
nents in greater detail.

22

Domain
Service
DS C.SI Delivery
evice Subsystem
Application Logical Port Interconnect
Client Unit Subsystem
Device Task Set Task Task
Server (Queue) Manager Router
Untagged Tagged
Task Task

Figure 8 — Overall SCSI domain model

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

4.5 SCSI domain

A SCSI domain is composed of at least one SCSI device, at least one target port and at least one initiator port
interconnected by a service delivery subsystem (see figure 9).

SCSI
Domain
| | |
Service
DS C_SI Delivery
evice Subsystem
|
I |
SCSI SCSl
Initiator Port Target Port

Figure 9 — SCSI domain model

A SCSI device is an object that originates or services SCSI commands. As described in 4.7, when a SCSI device
originates a command it is called a SCSI initiator device and that command is transmitted through an initiator port
or a SCSI target/initiator port. A SCSI device containing logical units that service commands is called a SCSI target
device and receives commands through a SCSI target port or a SCSI target/initiator port. The service delivery
subsystem connects all the SCSI ports in the SCSI domain, providing a subsystem through which application
clients and device servers communicate (see 4.6). The boundaries of a SCSI domain are established by the
system implementor, within the constraints of a specific SCSI protocol and interconnect standards.

4.6 The service delivery subsystem

The service delivery subsystem connects SCSI ports (see 3.1.94) and is composed of an interconnect subsystem
(see figure 10).

Service
Delivery
Subsystem

Interconnect
Subsystem

Figure 10 — Service delivery subsystem model

The interconnect subsystem is a set of one or more physical interconnects that appear to a client or server as a
single path for the transfer of requests, responses, and data between SCSI Devices.

The service delivery subsystem is assumed to provide error-free transmission of requests and responses between
client and server. Although a device driver in a SCSI implementation may perform these transfers through several
interactions with its SCSI protocol layer, the architecture model portrays each operation, from the viewpoint of the
application client, as occurring in one discrete step. In this model, the data comprising an outgoing request is sent

not a revision of SCSI Architecture Model - 3 (SAM-3) 23



T10/02-119r0 revision -1 16 March 2002

in a single package containing all the information required to process the remote procedure call. Similarly, an
incoming server response is returned in a package enclosing the output data and status. The request or response
package is sent when it is passed to the SCSI port for transmission; it is in transit until delivered and received when
it has been forwarded to the receiver via the destination device's SCSI port.

4.6.1 Synchronizing client and server states

The client is usually informed of changes in server state through the arrival of server responses. In the architecture
model such state changes occur after the server has sent the associated response and possibly before the
response has been received by the SCSI initiator device. Some SCSI protocols, however, may require the SCSI
target device to verify that the response has been received successfully before completing a state change. State
changes controlled in this manner are said to be synchronized. Since synchronized state changes are not
assumed or required by the architecture model, there may be a time lag between the occurrence of a state change
within the SCSI target device and the SCSI initiator device’s awareness of that change.

The model assumes that state synchronization, if required by a SCSI protocol standard, is enforced by the service
delivery subsystem transparently to the server. That is, whenever the server invokes a SCSI protocol service to
return a response as described in 6.9 and 5.4, it is assumed that the service delivery port for such a protocol does
not return control to the server until the response has been successfully delivered to the SCSI initiator device.

4.6.2 Request/Response ordering

In this standard, request or response transactions are said to be in order if, relative to a given pair of sending and
receiving SCSI ports, transactions are delivered in the order they were sent.

A sender may occasionally require control over the order in which its requests or responses are presented to the
receiver (e.g., the sequence in which requests are received is often important whenever a SCSI initiator device
issues a series of SCSI commands with the ORDERED attribute to a logical unit as described in clause 7). In this
case, the order in which these commands are completed, and hence the final state of the logical unit, may depend
on the order in which these commands are received. Similarly, the SCSI initiator device acquires knowledge about
the state of pending commands and task management functions and may subsequently take action based on the
nature and sequence of SCSI target device responses (e.g., if the SCSI initiator device aborts a command whose
completion response is in transit and the abort response is received out of order, the SCSI initiator device could
incorrectly conclude that no further responses are expected from that command).

The manner in which ordering constraints are established is vendor specific. An implementation may choose to
delegate this responsibility to the application client (e.g., the device driver). In some cases, in-order delivery may be
an intrinsic property of the service delivery subsystem or a requirement established by the SCSI protocol standard.

The SCSI architecture model assumes in-order delivery to be a property of the service delivery subsystem. This
assumption is made to simplify the description of behavior and does not constitute a requirement. In addition, this
specification makes no assumption about, or places any requirement on the ordering of requests or responses
between tasks or task management functions received from different SCSI initiator ports.

24 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

4.7 SCSI devices

A SCSI device is a SCSI target device, a SCSI initiator device, or a SCSI target/initiator device.

A SCSI initiator device contains at least one SCSI initiator port and is capable of originating SCSI commands and
task management requests (see 4.7.1). A SCSI target device contains at least one SCSI target port and is capable
of processing SCSI commands and task management requests (see 4.7.2). A SCSI target/initiator device contains
at least one SCSI target/initiator port and is capable of originating and processing SCSI commands and task
management requests (see 4.7.3). To be functional, a SCSI domain needs to contain a SCSI target port or a SCSI
target/initiator port operating as a SCSI target port and a SCSI initiator port or SCSI target/initiator port operating
as a SCSl initiator port.

4.7.1 SCSil initiator device
A SCSil initiator device (see figure 11) contains:
a) Zero or more initiator device names;
b) One or more SCSI initiator ports each containing an initiator port identifier and an optional initiator port

name;
c) Zero or more application clients.

SCSI Initiator
Device

Initiator Device SCSI Application
Name Initiator Port Client

' |
| |
Initiator Port Initiator Port
Name Identifier

Figure 11 — SCSl initiator device model
An initiator port identifier is a value that is the SCSI port identifier (see 4.7.4) for an initiator port.
An initiator device name is a name (see 3.1.67) that is a SCSI device name (see 4.7.6) for a SCSI initiator device.
A SCSI initiator device shall have no more than one initiator device name for each supported SCSI protocol. A

SCSI protocol standard may place additional requirements on initiator device names.

An initiator port name is a name (see 3.1.67) that is the SCSI port name (see 4.7.7) for the initiator port. A SCSI
protocol standard may place additional requirements on initiator port names.

An application client is the source of commands and task management functions. This model assumes that a SCSI
initiator device contains one application client for each pending command or task management function.

not a revision of SCSI Architecture Model - 3 (SAM-3) 25



T10/02-119r0 revision -1 16 March 2002

4.7.2 SCSI target device
A SCSI target device (see figure 12) contains:

a) Zero or more target device names;

b) One or more SCSI target ports each containing a task router, SCSI target port identifier, and an optional
target port name; and

c) One or more logical units.

SCSI Target
Device
I |
Target Device SCSI Logical
Name Target Port Unit
' [
[ | |
Target Port Target Port Task Router

Name Identifier

Figure 12 — SCSI target device model
A SCSI target port identifier is a value that is a SCSI port identifier (see 4.7.4) for a SCSI target port.
A target device name is a name (see 3.1.67) that is a SCSI device name (see 4.7.6) for a SCSI target device. A
SCSI target device shall have no more than one target device name for each supported SCSI protocol. A SCSI

protocol standard may place additional requirements on target device names.

A target port name is a name (see 3.1.67) that is the SCSI port name (see 4.7.7) for the target port. A SCSI
protocol standard may place additional requirements on target port names.

A task router routes commands and task management functions between the service delivery subsystem and the
appropriate logical unit’s task manager (see 4.7.5).

A logical unit is the object to which SCSI commands are addressed. One of the logical units within the SCSI target
device shall be accessed using the logical unit number zero. See 4.8 for a description of the logical unit.

4.7.3 SCSI target/initiator device
A SCSI target device (see figure 13) contains:
a) Zero or more target/initiator device names;
b) One or more SCSI target/initiator ports each containing a task router, target port identifier, an initiator port
identifier, an optional target port name and an optional initiator port name;

¢) One or more logical units; and
d) Zero or more application clients.

26 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

SCSI
Target/Initiator
Device
|
| I I |
SCSI ) . _—
Target/Initiator Target/Initiator Logical Application
Port Device Name Unit Client
: J
| | [ | |
Task Router Target Port Target Port Initiator Port Initiator Port
Identifier Name Identifier Name

Figure 13 — SCSiI target/initiator device model

The target port identifier and the initiator port identifier are values containing a SCSI port identifier (see 4.7.4) for a
SCSi target/initiator port. The target port identifier and the initiator port identifier may or may not be identical.

A target/initiator device name is a name (see 3.1.67) that is a SCSI device name (see 4.7.6) for a SCSI target/
initiator device. A SCSI target/initiator device shall have no more than one target/initiator device name for each
supported SCSI protocol. A SCSI protocol standard may place additional requirements on target/initiator device
names.

The target port name and initiator port name are names (see 3.1.67) that are the SCSI port name (see 4.7.7) for
the target/initiator port when operating as a target port and initiator port, respectively. The target port name and the
initiator port name may or may not be identical. A SCSI protocol standard may place additional requirements on
target port names and initiator port names.

When the SCSI target/initiator device is operating as a SCSI target device a task router routes the commands and
task management functions between the service delivery subsystem and the appropriate logical unit (see 4.7.5). A
logical unit is the object to which SCSI commands are sent. One of the logical units within the SCSI target/initiator
device shall be accessed using the logical unit number zero. See 4.8 for a description of the logical unit.

When the SCSI target/initiator device is operating as a SCSI initiator device an application client is the source of
commands and task management functions. This model assumes that there is one application client for each
pending command or task management function.

4.7.4 SCSI port identifier

The SCSI port identifier is equivalent to SCSI identifier and is the object name used to represent either an initiator
port identifier for an initiator, or a target port identifier for a target. SCSI port identifier is used when either a SCSI
initiator port or SCSI target port might be applicable or when other context in the description identifies the SCSI
initiator port or SCSI target port usage.

4.7.5 SCSI task router
The task router routes tasks and task management functions to the selected logical unit. Any task that is sent to a
logical unit that is not known to the task router shall be routed to a default logical unit (e.g., LUN 0). Any task

management function that is not sent to a specific logical unit shall be broadcast to all logical units known to the
task router.

not a revision of SCSI Architecture Model - 3 (SAM-3) 27



T10/02-119r0 revision -1 16 March 2002

4.7.6 SCSI device name

A SCSI device name is an optional name (see 3.1.67) for a SCSI device that is world wide unique within the
protocol of a SCSI domain in which the SCSI device has SCSI ports. A SCSI device may have more than one name
if that device has SCSI ports in different SCSI protocol domains. A SCSI device shall have no more than one name
for each supported SCSI protocol. A SCSI device name shall never change and may be used to persistently
identify a SCSI device in contexts where specific references to port names or port identifiers is not required.

A SCSiI protocol standard may require that a SCSI device include a SCSI device name if the SCSI device has SCSI
ports in a SCSI domain of that protocol. The SCSI device name may be made available to other SCSI devices or
SCSi ports in a given SCSI domain in protocol specific ways.

4.7.7 SCSI port name

A SCSI port name is an optional name (see 3.1.67) of a SCSI port that is world wide unique within the protocol of
the SCSI domain of that SCSI port. A SCSI port may have at most one name. A SCSI port name shall never
change and may be used to persistently identify a SCSI initiator port or SCSI target port in contexts similar to those
where a SCSI port identifier (see 4.7.4) may be used.

A SCSI protocol standard may require that a SCSI port include a SCSI port name if the SCSI port is in a SCSI

domain of that protocol. The SCSI port name may be made available to other SCSI devices or SCSI ports in the
given SCSI domain in protocol specific ways.

4.8 Logical units

A logical unit (see figure 14) contains:

a) A logical unit number;
b) A device server;
c) Atask manager; and
d) One or more task sets each may contain zero or more untagged tasks or a combination of zero or more
tagged tasks and zero or more untagged tasks.
Logical
Unit
|
| | ' |
Logical Unit Device Task Task
Number Server Set Manager
|
[ |
Untagged Tagged
Task Task

Figure 14 — Logical unit model

28 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

A logical unit number is a field containing up to 64 bits that identifies the logical unit within a SCSI target device. If
a SCSI target device contains 256 or fewer logical units none of which are dependent logical units (see 4.12) or
extended addressing logical units (see 4.13), then its Logical Unit Numbers shall have the format shown in table 1,
which is a single level subset of the format described in 4.12.

Table 1 — Single Level LUN structure

Bit
Byte 7 6 5 4 3 2 1 0
0 ADDRESS METHOD (00b) BUS IDENTIFIER (00h)
1 SINGLE LEVEL LUN (00h to FFh, inclusive)
2 (MSB)
Null second level LUN (0000h)
3 (LSB)
4 (MSB) Null third level LUN (0000h)
5 (LSB)
6 (MSB) Null forth level LUN (0000h)
7 (LSB)

In the single level subset format, all LUN structure fields shall be zero except the SINGLE LEVEL LUN field (see table
1). The value in the single level LUN field shall be between 0 and 255. The 00b in the ADDRESS METHOD field and
the 00h in the BUS IDENTIFIER field indicate addressing for a logical unit at the current level (see 4.12.3). When the
single level subset format is used, the HISUP bit shall be set to one in the standard INQUIRY data (see SPC-2)
returned by logical unit 0.

If any Logical Unit within the scope of a SCSI target device includes dependent logical units in its composition, all
logical unit numbers within the scope of the SCSI target device shall have the format described in 4.12.

A device server is the object that processes the operations requested by the received commands.

The task manager controls the sequencing of one or more tasks within a logical unit. The task manager also
carries out the task management functions specified in clause 6. There is one task manager per logical unit.

The order in which task management requests are processed is not specified by this standard. This standard does
not require in-order delivery of such requests, as defined in 4.6.2, or processing by the task manager in the order
received. To guarantee the processing order of task management requests referencing a specific logical unit, an
initiator should, therefore, not have more than one such request pending to that logical unit.

A task set is composed of zero or more untagged tasks or a combination of zero or more tagged tasks and zero or
more untagged tasks. See 4.9 for additional restrictions on the untagged tasks and tagged tasks in a task set.

For convenience, task (see 4.9) refers to either a tagged task or an untagged task. The interactions among the
tasks in a task set are determined by the requirements for task set management specified in clause 7 and the ACA
and CA requirements specified in 5.8.1. The number of task sets per logical unit and the boundaries between task
sets are governed by the TST field in the Control mode page (see SPC-2).

not a revision of SCSI Architecture Model - 3 (SAM-3) 29



T10/02-119r0 revision -1 16 March 2002

4.9 Tasks

4.9.1 The task object

The task object represents either a tagged task or an untagged task. The composition of a task includes a
definition of the work to be performed by the logical unit in the form of a command or a group of linked commands.
A tagged task is represented by an I_T_L_Q nexus (see 4.10) and is composed of a definition of the work to be
performed by the logical unit, and a task attribute (see 7.5). An untagged task is represented by an I_T_L nexus
(see 4.10) and is composed of a definition of the work to be performed by the logical unit, and implicitly a SIMPLE
task attribute (see 7.5).

The I_T_L_Q nexus representing a tagged task includes a tag (see 4.9.2) allowing many uniquely identified tagged
tasks to be present concurrently in a single task set. A tagged task also includes one of the task attributes
described in 7.5 that allows the initiator to specify processing relationships between various tagged tasks. An
untagged task does not include a tag in its I_T_L nexus, thus restricting the number of concurrent untagged tasks
in a single task set to one per initiator. Also, an untagged task is assumed to have a SIMPLE task attribute, leaving
the initiator no control over its relationship to other tasks in the task set.

Every SCSI protocol shall support tagged tasks and may support untagged tasks. If the SCSI protocol upon which
a SCSI device operates supports untagged tasks, the SCSI device is not required to support tagged tasks.

An I_T_L_x nexus that is in use shall be unique as seen by the initiator originating the command and the logical
unit to which the command was addressed, otherwise an overlapped command condition exists (see 5.8.2). An
I_T_L_x nexus is in use over the interval bounded by the events specified in 5.5). An I_T_L_x nexus is unique if one
or more of its components is unique within the specified time interval. An untagged task shall be unique with
respect to all tagged tasks in the task set.

By implication, therefore, an initiator shall not cause the creation of more than one untagged task having identical
values for the target identifier and logical unit number. An initiator also shall not create more than one task having
identical values for the target identifier, logical unit number, and tag.

4.9.2 Task tags

A tag is a field containing up to 64 bits that is a component of an I_T_L_Q nexus. An initiator assigns tag values in
each I_T_L_Q nexus in a way that ensures that the nexus uniqueness requirements stated in 4.9.1 are met.

4.10 The nexus object

The nexus object is a relationship between a SCSI initiator port, a SCSI target port, optionally a logical unit. and
optionally a task.

The nexus object may refer to any one or all of the following relationships:

a) One SCSI initiator port to one SCSI target port (an I_T nexus);

b) One SCSI initiator port to one SCSI target port to one logical unit (an I_T_L nexus);

c) One SCSl initiator port to one SCSI target port to one logical unit to one tagged task (an I_T_L_Q nexus);
or

d) Eitheran|_T_L nexus or an I_T_L_Q nexus (denoted as an I_T_L_x nexus).

30 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Table 2 maps the nexus object to other identifier objects.

Table 2 — Mapping nexus to SAM-2 identifiers

Nexus Identifiers that form nexus Reference
I_T Initiator Port Identifier 4.71
Target Port Identifier 4.7.2
I_T L Initiator Port Identifier 4.7 1
Target Port Identifier 4.7.2
Logical Unit Number 4.8
I_T_L_Q | Initiator Port Identifier 4.7 1
Target Port Identifier 4.7.2
Logical Unit Number 4.8
Tag 49.2

4.11 SCSI ports

4.11.1 SCSI port configurations

A SCSI device may contain only SCSI target ports, only SCSI initiator ports, only SCSI target/initiator ports or any
combination of ports. Some of the port configurations possible for a SCSI device are shown in figure 15.

Initiator Model

Target Model

Combined Model

Multi-port Target Model

SCSI Initiator SCSI Target SCSI Target/Initiator SCSI Target Device
Device Device Device
Appli— Logical Appli- Logical Logical
cation Unit cation Unit Unit
Client Client

LL

ik

S

a S Task = Task £ Task £ Task
] 5 |Router B Router 5 | Router % | Router
= o o o o
=y AlEE gl LIE bty
Y Y

Service Service Service Service Service
Delivery Delivery Delivery Delivery Delivery
Subsystem Subsystem Subsystem Subsystem Subsystem

Figure 15 — SCSI device functional models

not a revision of SCSI Architecture Model - 3 (SAM-3)

31




T10/02-119r0 revision -1 16 March 2002

A target/initiator SCSI device is referred to by the role it's port takes when it participates in an 1/O operation. When
a SCSI target/initiator device receives SCSI commands or task management functions, the SCSI target/initiator
device takes on the characteristics of and is referred to as a SCSI target device. When a SCSI target/initiator
device issues SCSI commands or task management functions, the SCSI target/initiator device takes on the charac-
teristics of and is referred to as a SCSI initiator device.

4.11.2 SCSI devices with multiple ports

The model for a SCSI device with multiple ports is a single SCSI target device (see 4.7.2), SCSI initiator device
(see 4.7.1), or SCSI target/initiator device (see 4.7.3) with multiple ports. Similarly, a single SCSI target port or
SCSil initiator port may respond to multiple SCSI identifiers. The model for such a SCSI device also is one of
multiple SCSI target ports or SCSl initiator ports, one for each SCSI identifier.

The SCSI identifiers representing the ports shall meet the requirements for initiator port identifiers (see 4.7.1) or
target port identifiers (see 4.7.2) or both. SCSI target/initiator devices with multiple ports implement both target and
initiator models and combine the SCSI target/initiator port structures in vendor specific ways that meet product
requirements while maintaining the multi-port model for the target and initiator functions performed by the product.
How a multiple port SCSI device is viewed by counterpart SCSI devices in the SCSI domain also depends on
whether a SCSI initiator port is examining a SCSI target port or SCSI target/initiator port, or a SCSI target port is
servicing a SCSI initiator port or SCSI target/initiator port. The structures and views of SCSI devices are
asymmetric for SCSI target ports, and SCSI initiator ports.

4.11.3 Multiple port target SCSI device structure
Figure 16 shows the structure of a SCSI target device with multiple SCSI target ports. Each SCSI target port

consists of a task router that is shared by a collection of logical units. Each logical unit contains a single task
manager and a device server.

SCSI Target Device
Target Port

Service
— Task Delivery
Router || Subsystem
Logical "
Unit Target Port
Dovice Service
) Task Delivery
Server Router || Subsystem
Task |
Manager iy
Target Port
Service
L Task Delivery

Router || Subsystem

Figure 16 — Multiple port target SCSI device structure model

32 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Two-way communications shall be possible between all logical units and all SCSI target ports, however, communi-
cations between any logical unit and any SCSI target port may occasionally be inactive. Two-way communications
shall be available between each task manager and all task routers. Each SCSI target port shall accept commands
sent to LUN 0 and the task router shall route them to a device server for processing. The REPORT LUNS
commands (see SPC-2) shall be accepted by logical unit 0 from any SCSI target port and shall return the logical
unit inventory available via that SCSI target port. The availability of the same logical unit through multiple SCSI
target ports is discovered by matching SCSI port identifier values in the INQUIRY command Device Identification
VPD page (see SPC-2).

4.11.4 Multiple port initiator SCSI device structure

Figure 17 shows the structure of a SCSI initiator device with multiple SCSI initiator ports. Each SCSI initiator port is
shared by a collection of application clients.

SCSiI Initiator Device

Initiator Port

Service
Delivery
Subsystem

Appli-
cation
Client

Initiator Port

Service
Delivery
Subsystem

Appli-
cation
Client

Initiator Port

Service
Delivery
Subsystem

Appli-
cation
Client

Figure 17 — Multiple port SCSI initiator device structure model
Two-way communications shall be possible between an application client and it's associated SCSI initiator port.

Mechanisms by which a SCSI target device would have the ability to discover that it is communicating with multiple
ports on a single SCSI initiator device are beyond the scope of any standards in the SCSI family of standards.

not a revision of SCSI Architecture Model - 3 (SAM-3) 33



T10/02-119r0 revision -1

4.11.5 Multiple port target/initiator SCSI device structure

16 March 2002

Figure 18 shows the structure of a SCSI target/initiator device with multiple SCSI target/initiator ports. Each SCSI
target/initiator port consists of a task router and is shared by a collection of logical units and application clients.
Each logical unit contains a single task manager and a device server.

SCSI Target/Initiator Device

—

Logical
Unit

Device
Server

Appli-
cation

Client

Appli-
cation

Client

Target/Initiator Port

Task
Manager B

Appli-
cation
Client

Initiator Role Service
Delivery
Target Role Subsystem
Task
Router
Target/Initiator Port
Initiator Role Service
Target Role Delivery
Task || Subsystem
Router

Target/Initiator Port

Initiator Role

Target Role

Task
Router

Service
Delivery
Subsystem

Figure 18 — Multiple port target/initiator SCSI device structure model

Two-way communications shall be possible between all logical units and all SCSI target/initiator ports, however,
communications between any logical unit and any SCSI target/initiator port may occasionally be inactive. Two-way
communications shall be possible between an application client and it's associated SCSI target/initiator port. Each
SCSI target/initiator port shall accept commands sent to LUN 0 and the task router shall route them to a device
server for processing. The REPORT LUNS commands (see SPC-2) shall be accepted by logical unit 0 from any
SCSiI target/initiator port and shall return the logical unit inventory available via that SCSI target/initiator port. The
availability of the same logical unit through multiple SCSI target/initiator ports is discovered by matching SCSI port
identifier values in the INQUIRY command Device Identification VPD page (see SPC-2).

Mechanisms by which a SCSI target device would have the ability to discover that it is communicating with multiple
ports on a SCSI target/initiator device are beyond the scope of any standards in the SCSI family of standards.

34

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

4.11.6 SCSl initiator device view of a multiple port SCSI target device

A SCSI target device may be connected to multiple domains such that a SCSI initiator port is only allowed to only
communicate with logical units using a single SCSI target port. This would restrict application clients from deter-
mining if a SCSI target device has multiple SCSI ports.

However, SCSI target devices with multiple SCSI ports may be configured where application clients have the ability
to discover that one or more logical units are accessible via multiple SCSI target ports. Figure 19 and figure 20
show two examples of such configurations.

Figure 19 shows a SCSI target device with multiple SCSI target ports participating in a single SCSI domain with
two SCSI initiator devices. There are three SCSI devices, one of which has two SCSI target ports, one with one
SCSil initiator port, and one with one SCSI initiator port. There are two SCSI target port identifiers and two initiator
port identifiers in this SCSI domain. Using the INQUIRY command Device Identification VPD page (see SPC-2),
the application clients in each of the SCSI initiator devices have the ability to discover the logical units in the SCSI
target devices are accessible via multiple SCSI target port identifiers (i.e., SCSI target ports) and map the configu-
ration of the SCSI target devices.

SCSI Domain

SCSil initiator device

SCSi target device

Target Port

Service Service M| otor AoDli-
| [ Task Delivery Delivery Port PP
Router ||Subsystem Subsystem %e:_tlor:
Logical 1en
Unit
Device || SCSl initiator device
Server Target Port
Selr_wce g erwce Initiator Appli-
Task | Task elivery elivery Port i
Manager | || L | Router ||Subsystem Subsystem Cliont

Figure 19 — SCSI target device configured in a single SCSI domain

Figure 20 shows a SCSI target device with multiple SCSI target ports participating in two SCSI domains and a
SCSil initiator device with multiple SCSI initiator ports participating in the same two SCSI domains. There is one
SCSiI target device with two SCSI target ports and one SCSI initiator device with two SCSI initiator ports. There is
one SCSI target port identifier and one initiator port identifier in each of the two SCSI domains. Using the INQUIRY

not a revision of SCSI Architecture Model - 3 (SAM-3) 35




T10/02-119r0 revision -1 16 March 2002

command Device Identification VPD page (see SPC-2), the application clients in the SCSI initiator device have the
ability to discover that logical units in the SCSI target device are accessible via multiple ports and map the configu-
ration. However, the methods available to application clients to distinguish between the configuration shown in
figure 20 and the configuration shown in figure 19 are beyond the scope of the SCSI family of standards.

SCSI target device SCSI Domain 1 SCSl initiator device

Target Port :

Service Service T iotor Appli-

. Task Delivery Delivery Port ;
Router || Subsystem Subsystem %a: |or:
Logical ien
Unit
n SCSI Domain 2
Device -

Server Target Port _ :

gelr_wce Serwce Initiator Appli-

Task | Task elivery elivery Port i

Manager | || "#| | Router ||Subsystem Subsystem o

Figure 20 — SCSI target device configured in multiple SCSI domains

Figure 21 shows the same configuration as figure 20 except that the two SCSI domains have been replaced by a
single SCSI domain.

SCSI Domain
SCSil target device SCSil initiator device
Target Port :
Service Service ™| iotor Appli-
. Task Delivery Delivery Port )
Router || Subsystem Subsystem %e}i |c;]r:
Logical e
Unit
Device -
Server Target Port _ :
gelr_wce S erwce Initiator Appli-
Task | Task elivery elivery Port i
Manager | ||II L | Router ||Subsystem Subsystem o

Figure 21 — SCSI target device and SCSI initiator device configured in a single SCSI domain

This model for application client determination of multiple SCSI target port configurations relies on information that
is available only to the application clients via SCSI commands. The SCSI initiator ports in the SCSI initiator devices
(figure 19) or SCSI initiator device (figure 20 and figure 21) are unable to distinguish the multiple SCSI target ports
from individual SCSI target ports in two separate SCSI target devices.

36 not a revision of SCSI Architecture Model - 3 (SAM-3)




16 March 2002 T10/02-119r0 revision -1

4.11.7 SCSI target device view of a multiple port SCSI initiator device

An SCSI target device does not have the ability to detect the presence of an SCSI initiator device with multiple
SCSil initiator ports. Therefore, a SCSI target device handles an SCSI initiator device with multiple SCSI initiator
ports exactly as it would handle multiple separate SCSI initiator devices. For example, an SCSI target device
handles the configurations shown in figure 20 and figure 21 in exactly the same way it handles the configuration
show in figure 19.

NOTE 1 - The implications of this view of an SCSI initiator device are more far reaching than are immediately
apparent. For example, if an SCSI initiator device makes an exclusive access reservation via one SCSI initiator
port, then access will be denied to the other SCSI initiator port(s) on that same SCSI initiator device.

4.12 Model for dependent logical units

4.12.1 Introduction

Optionally, the model for a logical unit (see 4.8) may include one or more unique logical units embedded within
another logical unit. The embedded logical units are called dependent logical units (see 3.1.22). In such cases, the
model hierarchy diagram in 4.8 is enhanced to become the diagram shown in figure 22.

Logical

Unit

|
| | ' | |
Logical Unit Device Task Task Logical
Number Server Set Manager Unit
[
| |
Untagged Tagged
Task Task

Figure 22 — Dependent Logical Unit model

When the dependent logical unit model is utilized, the hierarchical logical unit structure defined in this subclause
shall be used. If any logical unit within a SCSI target device includes dependent logical units, all logical unit
numbers within the SCSI target device shall have the format described in this subclause. A device server that
implements the hierarchical structure for dependent logical units described in this subclause shall set the HISUP bit
to one in the standard INQUIRY data returned by logical unit 0 (see SPC-2). In the cases defined by 4.8, SCSI
target devices that do not implement dependent logical units are required to implement a subset of the logical unit
structure described in this subclause.

As shown in figure 23, the hierarchical logical unit structure is an inverted tree containing up to four addressable
levels. The example in figure 23 is a three-level system that consists of:

a) One initiator that has three SCSI devices attached on a single SCSI bus that is not expandable. One of the
SCSI devices is a dual ported SCSI bridge controller.

b) One initiator has three SCSI devices attached on a single SCSI bus that is expandable. One of the SCSI
devices contains a dual ported SCSI bridge controller.

not a revision of SCSI Architecture Model - 3 (SAM-3) 37



T10/02-119r0 revision -1 16 March 2002

¢) The SCSI bridge controller has three SCSI buses with SCSI devices attached and is capable of driving

more SCSI buses.

A) Two of the SCSI buses contain two SCSI devices each and these SCSI buses are not expandable. One
of the SCSI devices contains a SCSI bridge controller.

B) One of the SCSI buses contains two SCSI devices and is expandable.

C) The SCSI bridge controller has three SCSI buses with SCSI devices attached and is capable of driving
more SCSI buses.
a) Two of the SCSI buses contain two SCSI devices each and these SCSI buses are not expandable.
b) One of the SCSI buses contains two SCSI devices and is expandable.

Initiator Initiator
SCSi SCSi . SCSI SCSi
device device S(C))oSr:t:JOrlllige device o000 device Level 1
(LUN 0) (LUN 0) (LUN 0) (LUN 0)
[ N N J
Bus 1 Bus n
Bus 3 >
Bus 2
SCSi SCSI SCSi . SCSI SCSiI
device device device Sgos;]lt:)or;li?e device o000 device Level 2
(LUN 0) (LUN 0) (LUN 0) (LUN 0) (LUN 0)
o000
Bus 1 Bus n
Bus 3 >
Bus 2 ‘* ¢
SCSi SCSi SCSI SCSI SCSI SCSi Level 3
device device device device device o000 device
(LUN 0) (LUN 0) (LUN 0) (LUN 0) (LUN 0) (LUN 0)

Figure 23 — Example of hierarchical system diagram
Devices at each level in the tree are referenced by one of the following address methods:

a) Logical unit address method (see 4.12.4);
b) Peripheral device address method (see 4.12.5); and
c) Device type specific.

All peripheral device addresses, except LUN 0 (see 4.12.2), default to vendor specific values. All addressable
entities may default to vendor specific values or may be defined by an application client (e.g., by the use of SCC-2
configuration commands).

Within the hierarchical system there may be SCSI target devices that have multiple logical units connected to them
through separate physical interconnects. These physical interconnects are referred to as buses. A SCSI target
device that has SCSI devices attached to these buses shall assign numbers, other than zero, to those buses. The
bus numbers shall be used as components of the logical unit numbers to the logical units attached to those buses,
as described in the clauses below.

38 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

SCSI target devices shall assign a bus number of zero to all the logical units under control by the SCSI target
device that are not connected through a separate physical interconnect.

4.12.2 LUN 0 address

All SCSI devices shall accept LUN 0 as a valid address. For SCSI devices that support the hierarchical addressing
model the LUN 0 shall be the logical unit that an application client addresses to determine information about the
target and the logical units contained within the target.

To address the LUN 0 of a SCSI device the peripheral device address method shall be used.
4.12.3 Eight byte LUN structure

The eight byte LUN structure (see table 4) allows up to four levels of devices to be addressed under a single target.
Each level shall use byte 0 and byte 1 to define the address and/or location of the SCSI device to be addressed on
that level.

If the LUN indicates that the command is to be relayed to the next layer then the current layer shall use byte 0 and
byte 1 of the eight byte LUN structure to determine the address of the device to which the command is to be sent.
When the command is sent to the target the eight byte LUN structure that was received shall be adjusted to create
a new eight byte LUN structure (see table 3 and figure 24).

Devices shall keep track of the addressing information necessary to transmit information back through all inter-
vening layers to the task’s originating initiator.

Bytes 0 1 2 3 4 5 6 7
A : B C : D E : F G : H Level 1
C : D E : F G : H 0 : 0 Level 2
E : F G : H 0 : 0 0 : 0 Level 3
G : H 0 : 0 0 : 0 0 : 0 Level 4

Figure 24 — Eight Byte LUN structure adjustments

not a revision of SCSI Architecture Model - 3 (SAM-3) 39



T10/02-119r0 revision -1

Table 3 — Eight byte LUN structure adjustments

Byte position

Oid

New

0&1
2&3
4&5
6&7
N/A

Moves to
Moves to
Moves to

zero fill

Moves to | Not Used

0&1
2&3
4&5
6&7

16 March 2002

The eight byte LUN structure requirements as viewed from the application client are shown in table 4.

Table 4 — Eight Byte LUN structure

Bit
Byte 7 6 5 4 3 0
0 MSB
( ) FIRST LEVEL ADDRESSING
1 (LSB)
2 MSB
( ) SECOND LEVEL ADDRESSING
3 (LSB)
4 MSB
( ) THIRD LEVEL ADDRESSING
5 (LSB)
6 MSB
( ) FOURTH LEVEL ADDRESSING
7 (LSB)

The FIRST LEVEL ADDRESSING field indicates the first level address of a device. See table 5 for a definition of the
FIRST LEVEL ADDRESSING field.

The SECOND LEVEL ADDRESSING field indicates the second level address of a device. See table 5 for a definition of
the SECOND LEVEL ADDRESSING field.

The THIRD LEVEL ADDRESSING field indicates the third level address of a device. See table 5 for a definition of the
THIRD LEVEL ADDRESSING field.

The FOURTH LEVEL ADDRESSING field indicates the fourth level address of a device. See table 5 for a definition of the
FOURTH LEVEL ADDRESSING field.

The device pointed to in the FIRST LEVEL ADDRESSING, SECOND LEVEL ADDRESSING, THIRD LEVEL ADDRESSING, and
FOURTH LEVEL ADDRESSING fields may be any physical or logical device addressable by an application client.

Table 5 — Format of addressing fields

Bit
Byte 7 6 5 4 3 0
n-1 ADDRESS METHOD (MSB)
n ADDRESS METHOD SPECIFIC (LSB)

40

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

The ADDRESS METHOD field defines the contents of the ADDRESS METHOD SPECIFIC field. See table 6 for the address
methods defined for the ADDRESS METHOD field. The ADDRESS METHOD field only defines address methods for
entities that are directly addressable by an application client.

Table 6 — ADDRESS METHOD field values

Code Description Reference
10b Logical unit addressing method 4.12.4
00b Peripheral device addressing method 4125
01b Flat space addressing method 4.12.6
11b Extended logical unit addressing method 413

4.12.4 Logical unit addressing method

All SCSI commands are allowed when the logical unit address method is selected, however logical units are only
required to support mandatory SCSI commands. Devices are not required to relay commands, from the application
client, to a dependent logical unit. Any command that is not supported or relayed to a lower addressing layer shall
be terminated with a CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the
additional sense code shall be set to INVALID COMMAND OPERATION CODE.

If the logical unit addressing method is selected the device shall relay the received command, if not filtered, to the
addressed logical unit.

NOTE 2 - A SCSI device may filter commands to prevent an application client from issuing (e.g., a write command
to a specific logical unit). A reason for doing this would be to prevent an application client from bypassing configu-

ration requirements at an intermediate level of the hierarchy.

See table 7 for the definition of the ADDRESS METHOD SPECIFIC field used when the logical unit addressing method is
selected.

Table 7 — Logical unit addressing

Bit
Byte 7 6 5 4 3 2 1 0
n-1 1 0 TARGET
n BUS NUMBER ‘ LUN

The TARGET field, BUS NUMBER field, and LUN field address the logical unit to which the received command shall be
relayed. The command shall be relayed to the logical unit (LUN field value) within target (TARGET field value) located
on bus (BUs NUMBER field value). The target information in the TARGET field may be a target identifier (see 4.7.2) or
it may be a mapped representation of a target identifier, when the range of possible target identifiers is too large to
fit in the TARGET field.

NOTE 3 - The value of targets within the TARGET field are defined by individual standards. (e.g., SCSI Parallel
Interface -2 standard defines targets to be in the range 0 to 7, 0 to 15, and O to 31).

not a revision of SCSI Architecture Model - 3 (SAM-3) 41



T10/02-119r0 revision -1 16 March 2002

4.12.5 Peripheral device addressing method

All SCSI commands are allowed when the peripheral device address method is selected, however peripheral
devices are only required to support mandatory SCSI commands. Devices are not required to relay commands,
from the application client, to a lower layer. Any command that is not supported or relayed shall be terminated with
a CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense code
shall be set to INVALID COMMAND OPERATION CODE.

If the peripheral device addressing method is selected the device shall relay the received command, if not filtered,
to the addressed peripheral device.

NOTE 4 - A SCSI device may filter commands to prevent an application client from issuing (e.g., a write command
to a specific peripheral device). A reason for doing this would be to prevent an application client from bypassing

configuration requirements at an intermediate level of the hierarchy.

See table 8 for the definition of the ADDRESS METHOD SPECIFIC field used when the peripheral device addressing
method is selected.

Table 8 — Peripheral device addressing

Bit
Byte 7 6 5 4 3 2 1 0
n-1 0 0 BUS IDENTIFIER
n TARGET/LUN

The BUS IDENTIFIER field identifies the bus or path that the SCSI device shall use to relay the received command.
The BUS IDENTIFIER field may use the same value encoding as the BUS NUMBER field (see 4.12.4). However, bus
identifier zero shall indicate that the command is to be relayed to a logical unit within the SCSI device at the current
level.

The TARGET/LUN field indicates the address of the peripheral device to which the SCSI device shall relay the
received command. The meaning and usage of the TARGET/LUN field depends on whether the BUS IDENTIFIER field
contains zero.

A BUS IDENTIFIER field of zero indicates a logical unit at the current level. This representation of a logical unit may be
used either when the SCSI device at the current level does not use hierarchical addressing for assigning LUNs to
entities or when the SCSI device at the current level includes entities that need LUNs but are not attached to SCSI
buses (e.g., fans, cache, controllers, etc.). When the BUS IDENTIFIER field contains zero, the command shall be
relayed to the current level logical unit (TARGET/LUN field value) within or joined to the current level SCSI device.

A bus identifier field greater than zero represents physical SCSI interconnect that connects a group of SCSI
devices to the current level SCSI device. Each physical interconnect shall be assigned a unique number from 1 to
63. These bus identifiers shall be used in the Bus IDENTIFIER field when assigning addresses to peripheral devices
attached to the physical interconnects. When the BUS IDENTIFIER field is greater than zero, the command shall be
relayed to the logical unit zero within target (TARGET/LUN field value) located physical interconnect (BUS IDENTIFIER
field value). The target information in the TARGET/LUN field may be a target identifier (see 4.7.2) or it may be a
mapped representation of a target identifier, when the range of possible target identifiers is too large to fit in the
TARGET/LUN field.

NOTE 5 - The value of target identifiers within the TARGET/LUN field are defined by individual standards. (e.g.,
SCSI Parallel Interface -2 standard defines targets to be in the range 0 to 7, 0 to 15, and 0 to 31).

42 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

The SCSI device located within the current level shall be addressed by a BUS IDENTIFIER field and a TARGET/LUN field of all
zeros, also known as LUN 0 (see 4.12.2).

4.12.6 Flat Space Addressing Method

All SCSI commands are allowed when the flat space addressing method is used, however, the addressed logical
unit is not required to support all SCSI commands. Any command that is not supported shall be terminated with a
CHECK CONDITION status. The sense key shall be set to ILLEGAL REQUEST and the additional sense code
shall be set to INVALID COMMAND OPERATION CODE.

In the response to an INQUIRY command the addressed logical unit shall return a valid SCSI peripheral device
type.(e.qg., direct access device, streaming device).

See table 9 for the definition of the ADDRESS METHOD SPECIFIC field used when the flat space addressing method is
selected.

Table 9 — Flat space addressing

Bit
Byte 7 6 5 4 3 2 1 0
n-1 0 1 (MSB)
n LUN (LSB)

The LUN field indicates the address of the logical unit the current level shall direct the received command to.

4.13 Model for extended logical unit addressing

4.13.1 Introduction to extended logical unit addressing

Extended logical unit addressing builds on the formats defined for dependent logical units (see 4.12) but may be
used by SCSI devices having single level logical unit structure. In dependent logical unit addressing, the logical unit
information at each level fits in exactly two bytes. Extended logical unit addresses have sizes of two bytes, four
bytes, six bytes, or eight bytes.

4.13.2 Extended logical unit addressing formats
Extended logical units are identified by the ADDRESS METHOD field (see table 6 in 4.12) in the same manner as is the
case for dependent logical units. An ADDRESS METHOD field value of 11b specifies the extended logical unit

addressing method.

See table 10 for the definition of the ADDRESS METHOD SPECIFIC field used when the extended logical unit
addressing method is selected.

Table 10 — Extended logical unit addressing

Bit
7 6 5 4 3 2 1 0
Byte
n 1 1 LENGTH EXTENDED ADDRESS METHOD
m EXTENDED ADDRESS METHOD SPECIFIC

not a revision of SCSI Architecture Model - 3 (SAM-3) 43



T10/02-119r0 revision -1

16 March 2002

The LENGTH field (see table 11) specifies the length of the EXTENDED ADDRESS METHOD SPECIFIC field.

Table 11 — LENGTH field values

Length of the EXTENDED
Value ADDRESS METHOD SPECIFIC Field | Reference
00b One byte table 12
01b Three bytes table 13
10b Five bytes table 14
11b Seven bytes table 15

Table 12, table 13, table 14, and table 15 show the four extended logical unit addressing formats.

Table 12 — Two byte extended logical unit addressing format

Bit
Byte 7 6 5 4 3 2 1 0
n 1 1 LENGTH (00b) EXTENDED ADDRESS METHOD
n+1 EXTENDED ADDRESS METHOD SPECIFIC
Table 13 — Four byte extended logical unit addressing format
Bit
Byte 7 6 5 4 3 2 1 0
n 1 1 LENGTH (01b) EXTENDED ADDRESS METHOD
n+1 (MSB)
EXTENDED ADDRESS METHOD SPECIFIC
n+3 (LSB)
Table 14 — Six byte extended logical unit addressing format
Bit
Byte 7 6 5 4 3 2 1 0
n 1 1 LENGTH (10b) EXTENDED ADDRESS METHOD
n+1 (MSB)
EXTENDED ADDRESS METHOD SPECIFIC
n+5 (LSB)
Table 15 — Eight byte extended logical unit addressing format
Bit
Byte 7 6 5 4 3 2 1 0
0 1 1 LENGTH (01b) EXTENDED ADDRESS METHOD
1 (MSB)
EXTENDED ADDRESS METHOD SPECIFIC
7 (LSB)

44

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002

T10/02-119r0 revision -1

The EXTENDED ADDRESS METHOD field combined with the LENGTH field (see table 16) specifies the type and size of
extended logical unit address found in the EXTENDED ADDRESS METHOD SPECIFIC field.

Table 16 — Logical unit extended address methods

EXTENDED ADDRESS | LENGTH
METHOD Code Code(s) | Description Reference
Oh 00b - 11b | Reserved
1h 00b Well known logical unit 4.13.3
1h 01b - 11b | Reserved
2h - Fh 00b - 11b | Reserved

4.13.3 Well known logical unit addressing

A SCSI target device may support zero or more W-LUNSs. A single SCSI target device shall only support one
instance of each supported well known logical unit. All W-LUNs within a SCSI target device shall be accessible
from all target ports contained within the SCSI target device.

See table 17 for the definition of the EXTENDED ADDRESS METHOD SPECIFIC field used when the well known logical
unit extended address method is selected.

Table 17 — Well known logical unit extended address format

Bit
Byte 7 6 5 4 2 1
n 1 1 LENGTH (00b) Well known logical unit (1h)
n+1 W-LUN

The w-LUN field specifies well known logical unit to be addressed (see SPC-3).

not a revision of SCSI Architecture Model - 3 (SAM-3)

45



T10/02-119r0 revision -1 16 March 2002

4.14 The SCSI model for distributed communications

The SCSI model for communications between distributed objects is based on the technique of layering. In the
layering technique, the initiator and target I/O systems are viewed as being logically composed of the ordered set
of subsystems represented for convenience by the vertical sequence shown in figure 25.

Initiator 1/0 System Target 1/0 System
SCSI Application L SAM and
Layer S.CSI. - SCS Application > S.CSI. Command
Application Protocol Application Standards
Protocol
Service Interface
SCSI Protocol SCSI SCSI SCSI
Layer Protocol |« SCSIProtocol | protocol Protocol
Services Services Standard
Interconnect
Service Interface
Interconnect ) Interconnect
Interconnect Interconnect
Layer Servi ; Standard
ervices Services
+ Interconnect 4

Figure 25 — Protocol service reference model

The layers comprising this model and the specifications defining the functionality of each layer are denoted by
horizontal sequences. A layer consists of peer entities that communicate with one another by means of a protocol.
Except for the physical interconnect layer, such communication is accomplished by invoking services provided by
the adjacent lower layer. By convention, the layer from which a request for service originates is called the upper
level protocol layer or ULP layer. The layer providing the service is referred to as the lower level protocol layer or
LLP layer. The following layers are defined:

SCSI application layer: Contains the clients and servers that originate and process SCSI I/O operations by means
of a SCSI application protocol.

SCSiI protocol layer: Consists of the services and protocols through which clients and servers communicate; and

Physical interconnect layer: Comprised of the services, signaling mechanism and interconnect subsystem
needed for the physical transfer of data from sender to receiver. In the SCSI model, the physical interconnect layer
is known as the service deliver subsystem.

The set of protocol services implemented by the service delivery subsystem are intended to identify external
behavioral requirements that apply to SCSI protocol standards. While these protocol services may serve as a guide
for designing reusable software or firmware that is adaptable to different SCSI protocols, there is no requirement for
an implementation to provide the service interfaces specified in this standard.

46 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Interactions between the ULP and LLP layers are defined with respect to the ULP layer and may originate in either
layer. An outgoing interaction is modeled as a procedure call invoking an LLP service. An incoming interaction is
modeled as a signal sent by the LLP layer that may be accompanied by parameters or data. Both types of inter-
action are described using the notation for procedures specified in 3.6.2. In this model, input arguments are defined
relative to the layer receiving an interaction (i.e., an input is a parameter supplied to the receiving layer by the layer
initiating the interaction).

The following types of service interactions between layers are defined:
SCSI Protocol service request: A request from the ULP layer invoking a service provided by the LLP layer.

SCSI Protocol service indication: A signal from the LLP layer informing the ULP layer that an asynchronous
event has occurred (e.g., a reset or the receipt of a peer-to-peer protocol transaction).

SCSI Protocol service response: A call to the LLP layer invoked by the ULP layer in response to a SCSI protocol
service indication. A SCSI protocol service response may be invoked to return a reply to the ULP peer.

SCSI Protocol service confirmation: A signal from the LLP layer notifying the ULP layer that a SCSI protocol
service request has completed. A confirmation may communicate parameters that indicate the completion status of
the SCSI protocol service request or any other status. A SCSI protocol service confirmation may be used to convey
a response from the ULP peer.

The services provided by an LLP layer are either confirmed or unconfirmed. A ULP service request invoking a
confirmed service always results in a confirmation from the LLP layer.

Figure 26 shows the relationships between the four protocol service types.

ULP Layer
* LLP Layer *

SCSI Protoco \
Service Request
SCSI Protoco

Service Indication

/ SCSI Protocol
Service

Response

SCSI Protocol
Service
Confirmation

Figure 26 — Protocol service model

not a revision of SCSI Architecture Model - 3 (SAM-3) 47



T10/02-119r0 revision -1

16 March 2002

Figure 27 shows how protocol services may be used to process a client-server request-response transaction at the

SCSI application layer.

ULP Layer
Client Server *
. _ _ __ ServerRequest oI
. _ ___ _ __ SererResponse __ _ _ |4

LLP Layer
Protocol Service < LLP Protocol Protocol Service
Request Transactions Indication
Protocol Service - LLP Protocol Protocol Service

Confirmation

Transactions

\Protocol Service

Interface

Response

Figure 27 — Request-Response ULP transaction and related LLP services

The dashed lines in figure 27 show a SCSI application protocol transaction as it might appear to sending and
receiving entities within the client and server. The solid lines in figure 27 show the corresponding protocol services

and LLP transactions that are used to physically transport the data.

48

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002

5 SCSI Command Model

T10/02-119r0 revision -1

5.1 The Execute Command remote procedure

An application client invokes the following remote procedure to process a SCSI command:

Service response =Execute Command (IN (I_T_L_x Nexus, CDB, [Task Attribute], [Data-In Buffer Size],
[Data-Out Buffer], [Data-Out Buffer Size], [Autosense Request], [Command
Reference Number]), OUT ([Data-In Buffer], [Sense Data], Status))

Input Arguments:

I_T_L_x Nexus:
CDB:
Task Attribute:

Data-In Buffer Size:
Data-Out Buffer:

Data-Out Buffer Size:

Autosense Request:

Command Reference
Number (CRN):

Either an I_T_L nexus or an I_T_L_Q nexus (see 4.10).
Command descriptor block (see 5.2).

A value specifying one of the task attributes defined in 7.5. This argument shall
not be specified for an untagged command or the second and subsequent com-
mands in a sequence of linked commands. (Untagged tasks shall implicitly have
the SIMPLE attribute.) The attribute of a task that processes linked commands
shall be set according to the Task Attribute argument specified for the first com-
mand in the sequence.

The number of bytes available for data transfers to the Data-In Buffer (see 5.4.3).

A buffer containing command specific information to be sent to the logical unit,
such as data or parameter lists needed to service the command. The content of
the Data-Out Buffer shall not change during the lifetime of the command (see
5.5) as viewed by the initiator.

The number of bytes available for data transfers from the Data-Out Buffer (see
5.4.3).

An argument requesting the automatic return of sense data by means of the
autosense mechanism specified in 5.8.4.3. It is not an error for the application
client to provide this argument when autosense is not supported by the SCSI
protocol or logical unit. Protocols may require that the Autosense Request
argument always request automatic return of the sense data.

When this argument is used, all sequential commands of an I_T_L nexus shall
include a CRN argument that is incremented by one. The initial, wrap, and reset
CRN values shall be one. The CRN value zero shall be reserved for use as
defined by the SCSI protocol. It is not an error for the application client to
provide this argument when CRN is not supported by the SCSI protocol or
logical unit.

not a revision of SCSI Architecture Model - 3 (SAM-3) 49



T10/02-119r0 revision -1

Output Arguments:

Data-In Buffer:

Sense Data:

Status:

16 March 2002

A buffer to contain command specific information returned by the logical unit on
command completion. The application client shall not assume that the buffer
contents are valid unless the command completes with a status of GOOD,
INTERMEDIATE, or INTERMEDIATE-CONDITION MET. While some valid data
may be present for other values of status, the application client should obtain
additional information from the logical unit, such as sense data, to determine the
state of the buffer contents. If the command ends with a service response of
SERVICE DELIVERY OR TARGET FAILURE, the application client shall consider this
parameter to be undefined.

A buffer to contain sense data returned by means of the autosense mechanism
(see 5.8.4.3). If the command ends with a service response of SERVICE DELIVERY
OR TARGET FAILURE, the application client shall consider this parameter to be
undefined.

A one-byte field containing command completion status (see 5.3). If the com-
mand ends with a service response of SERVICE DELIVERY OR TARGET FAILURE, the
application client shall consider this parameter to be undefined.

Service Response assumes one of the following values:

TASK COMPLETE:

LINKED COMMAND
COMPLETE:

SERVICE DELIVERY OR
TARGET FAILURE:

A logical unit response indicating that the task has ended. The status parameter
shall have one of the values specified in 5.3 other than INTERMEDIATE or
INTERMEDIATE-CONDITION MET.

Logical unit responses indicating that a linked command has completed
successfully. As specified in 5.3, the status parameter shall have a value of
INTERMEDIATE or INTERMEDIATE-CONDITION MET.

The command has been ended due to a service delivery failure (see 3.1.111) or
SCSI target device malfunction. All output parameters are invalid.

The actual protocol events corresponding to a response of TASK COMPLETE, LINKED COMMAND COMPLETE Or SERVICE
DELIVERY OR TARGET FAILURE shall be specified in each SCSI protocol standard.

An application client requests processing of a linked command by setting the LINK bit to one in the CDB CONTROL
byte as specified in 5.2.3. The task attribute is determined by the Task Attribute argument specified for the first
command in the sequence. Upon receiving a response of LINKED COMMAND COMPLETE, an application client may
issue the next command in the series through an Execute Command remote procedure call having the same
I_T_L_x nexus and omitting the Task Attribute argument. If the application client issues the next command without
waiting for one of the linked command complete responses, the overlapped command condition described in 5.8.2

may result.

50

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.2 Command Descriptor Block (CDB)

5.2.1 CDB Format

The CDB defines the operation to be performed by the device server. For some commands, the CDB is accom-
panied by a list of command parameters contained in the Data-Out Buffer defined in clause 5. The parameters
required for each command are specified in the applicable SCSI command standards.

If a logical unit validates reserved CDB fields and receives a reserved field within the CDB that is not zero or
receives a reserved CDB code value, the logical unit shall terminate the command with CHECK CONDITION
status; the sense key shall be set to ILLEGAL REQUEST with an additional sense code of INVALID FIELD IN CDB
(see SPC-2). Also, a logical unit may interpret a field or code value in accordance with a future revision to a SCSI
standard.

For all commands, if the logical unit detects an invalid parameter in the CDB, then the logical unit shall complete
the command without altering the medium.

All CDBs shall have an OPERATION CODE as the first byte. All CDBs (except the CDB for operation code 7Fh) shall
have a CONTROL byte as the last byte. The format for the CDBs with operation code 7Fh is defined in SPC-2.

The general format for all CDBs except the CDB for operation code 7Fh is shown in table 18. The remaining
parameters depend on the command to be processed. All SCSI protocol standards shall accept CDBs less than or
equal to 16 bytes in length. CDBs using the format shown in table 18 shall not exceed sixteen bytes in length.

Table 18 — Command Descriptor Block (CDB) Format

Bit
Byte 7 6 5 4 3 2 1 0
0 OPERATION CODE
1
] Command specific parameters
n_
n CONTROL

5.2.2 OPERATION CODE byte

The first byte of a SCSI CDB shall contain an operation code. The OPERATION CODE (see table 19) of the CDB has
a GROUP COBDE field and a cOMMAND CODE field. The three-bit GROUP CODE field provides for eight groups of
command codes. The five-bit COMMAND CODE field provides for thirty-two command codes in each group. A total of
256 possible operation codes exist. Operation codes are defined in the SCSI command standards. The group code
value shall determine the length of the CDB (see table 20).

Table 19 — OPERATION CODE byte

Bit 7 6 5 4 3 2 1 0

GROUP CODE COMMAND CODE

not a revision of SCSI Architecture Model - 3 (SAM-3) 51



T10/02-119r0 revision -1 16 March 2002

The value in the GROUP CODE field specifies one of the groups shown in table 20.

Table 20 — Group Code values

Group
Code Meaning

000b 6 byte commands
001b 10 byte commands
010b 10 byte commands

011b | reserved 2

100b 16 byte commands
101b 12 byte commands
110b vendor specific
111b vendor specific

@ The format commands using the group code 011b and operation code
7Fh is described in SPC-2. With the exception of operation code 7Fh,
all group code 011b operation codes are reserved.

5.2.3 CONTROL byte

The CONTROL byte is the last byte of every CDB. The CONTROL byte is defined in table 21.

Table 21 — CONTROL byte

Bit 7 6 5 4 3 2 1 0

Vendor specific Reserved NACA Obsolete LINK

All SCSI protocol standards shall define as mandatory the functionality needed for a logical unit to implement the
NACA bit and LINK bit.

The NAcA (Normal ACA) bit is used to select whether a contingent allegiance (CA) or an auto contingent allegiance
(ACA) is established if the command returns with CHECK CONDITION status. An NACA bit of one indicates that an
ACA shall be established. An NACA bit of zero indicates that a CA shall be established. The actions for ACA and CA
are specified in 5.8.1.2. All logical units shall implement support for the NACA value of zero (i.e., CA) and may

support the NACA value of one (i.e., ACA). The ability to support a NACA value of one is indicated with the NORMACA
bit in the standard INQUIRY data (see SPC-2).

If the NACA bit is set to one but the logical unit does not support ACA, the logical unit shall complete the command
with a CHECK CONDITION status, sense key of ILLEGAL REQUEST, an additional sense code of INVALID FIELD
IN CDB and establish a CA condition. The requirements for handling the resulting ACA condition shall be in accor-
dance with the supported bit value.

The LINK bit is used to continue the task across multiple commands. Support for the LINK bit is optional. The initiator
sets the LINK bit to one to specify a request for continuation of the task across two or more SCSI commands. If the
LINK bit is one and the command completes successfully, a logical unit that supports the LINK bit shall continue the
task and return a status of INTERMEDIATE or INTERMEDIATE-CONDITION MET and a service response of
LINKED COMMAND COMPLETE (see 5.3). The logical unit shall complete the command with a status of CHECK
CONDITION and a sense key of ILLEGAL REQUEST if the LINK bit is set to one and the logical unit does not
support linked commands.

52 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Bit 1 provides an obsolete way to request interrupts between linked commands.

5.3 Status

5.3.1 Status codes

The status codes are specified in table 22. Status shall be sent from the logical unit to the application client
whenever a command ends with a service response of TASK COMPLETE or LINKED COMMAND COMPLETE. The receipt
of any status, except INTERMEDIATE or INTERMEDIATE-CONDITION MET, shall indicate that the associated task
has ended.

Table 22 — Status codes

Status Code | Status

00h GOOD
02h CHECK CONDITION
04h CONDITION MET
08h BUSY
10h INTERMEDIATE
14h INTERMEDIATE-CONDITION MET
18h RESERVATION CONFLICT
22h Obsolete
28h TASK SET FULL
30h ACA ACTIVE
40h TASK ABORTED

All other codes | Reserved

Definitions for each status code are as follows:
GOOD. This status indicates that the device server has successfully completed the task.

CHECK CONDITION. This status indicates that an ACA or CA condition has occurred (see 5.8.1). Autosense data
may be delivered (see 5.8.4.3).

CONDITION MET. This status shall be returned whenever the requested operation specified by an unlinked
command is satisfied (see the PRE-FETCH commands in the SBC standard).

BUSY. This status indicates that the logical unit is busy. This status shall be returned whenever a logical unit is
unable to accept a command from an otherwise acceptable initiator (i.e., no reservation conflicts). The recom-
mended initiator recovery action is to issue the command again at a later time. If the UA_INTLCK_CTRL field in the
Control mode page contains 11b (see SPC-3), termination of a command with BUSY status shall cause a unit
attention condition to be established for the initiator that sent the command with an additional sense code of
PREVIOUS BUSY STATUS unless such a unit attention condition is already pending.

INTERMEDIATE. This status or INTERMEDIATE-CONDITION MET shall be returned for each successfully
completed command in a series of linked commands (except the last command), unless the command is termi-
nated with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY status. If INTERMEDIATE
or INTERMEDIATE-CONDITION MET status is not returned, the series of linked commands is terminated and the
task is ended.

not a revision of SCSI Architecture Model - 3 (SAM-3) 53



T10/02-119r0 revision -1 16 March 2002

INTERMEDIATE-CONDITION MET. This status is returned whenever the operation requested by a linked
command is satisfied (see the PRE-FETCH commands in the SBC standard), unless the command is terminated
with CHECK CONDITION, RESERVATION CONFLICT, TASK SET FULL, BUSY status. If INTERMEDIATE or
INTERMEDIATE-CONDITION MET status is not returned, the series of linked commands is terminated and the
task is ended.

RESERVATION CONFLICT. This status shall be returned whenever an initiator attempts to access a logical unit or
an element of a logical unit that is reserved with a conflicting reservation type for another SCSI initiator. (See the
RESERVE, RELEASE, PERSISTENT RESERVE OUT and PERSISTENT RESERVE IN commands in SPC-2).
The recommended initiator recovery action is to issue the command again at a later time. Removing a persistent
reservation belonging to a failing initiator may require the processing of a PERSISTENT RESERVE OUT command
with the Preempt or Preempt and Clear service actions (see SPC-2).

If the UA_INTLCK_CTRL field in the Control mode page contains 11b (see SPC-3), termination of a command with
RESERVATION CONFLICT status shall cause a unit attention condition to be established for the initiator that sent
the command with an additional sense code of PREVIOUS RESERVATION CONFLICT STATUS unless such a unit
attention condition is already pending.

TASK SET FULL. This status shall be implemented if the logical unit supports the creation of tagged tasks (see
4.9). This status shall not be implemented if the logical unit does not support the creation of tagged tasks.

When the logical unit has at least one task in the task set for an initiator and a lack of task set resources prevents
accepting a received tagged task from that initiator in the task set, TASK SET FULL shall be returned. When the
logical unit has no task in the task set for an initiator and a lack of task set resources prevents accepting a received
tagged task from that initiator in the task set, BUSY should be returned.

When the logical unit has at least one task in the task set and a lack of task set resources prevents accepting a
received untagged task in the task set, BUSY should be returned.

The logical unit should allow at least one queued command for each supported initiator that has identified itself to
the target by a protocol specific procedure or by the successful transmission of a command.

If the UA_INTLCK_CTRL field in the Control mode page contains 11b (see SPC-3), termination of a command with
TASK SET FULL status shall cause a unit attention condition to be established for the initiator that sent the
command with an additional sense code of PREVIOUS TASK SET FULL STATUS unless such a unit attention
condition is already pending.

ACA ACTIVE. This status shall be returned when an ACA exists within a task set and an initiator issues a
command for that task set when at least one of the following is true:

a) There is a task with the ACA attribute (see 7.5.4) in the task set;
b) The initiator issuing the command did not cause the ACA condition; or
c) The task created to process the command did not have the ACA attribute and the NACA bit was set to one
in the CDB CONTROL byte of the faulting command (see 5.8.1).
The initiator may reissue the command after the ACA condition has been cleared.

TASK ABORTED. This status shall be returned when a task is aborted by another initiator and the Control mode
page TAS bit is one (see 5.6.3).

5.3.2 Status precedence

If more than one condition applies to a completed task, the report of a BUSY, RESERVATION CONFLICT, ACA
ACTIVE or TASK SET FULL status shall take precedence over the return of any other status for that task.

54 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.4 SCSI Protocol Services in Support of Execute Command

5.4.1 Overview

The SCSI protocol services that support the Execute Command remote procedure call are described in 5.4. Two
groups of protocol services are described. The protocol services that support the request and confirmation for the
Execute Command remote procedure call are described in 5.4.2. The protocol services that support the data
transfers associated with processing a SCSI command are described in 5.4.3.

5.4.2 Execute Command Request/Confirmation Protocol Services

All SCSI protocol standards shall define the protocol specific requirements for implementing the Send SCSI
Command SCSI protocol service request and the Command Complete Received confirmation. Support for the
SCSI Command Received indication and Send Command Complete response by a SCSI protocol standard is
optional. All SCSI 1/O systems shall implement these protocols as defined in the applicable protocol specification.

SCSI Protocol Service Request:

Send SCSI Command (IN (I_T_L_x Nexus, CDB, [Task Attribute], [Data-In Buffer Size],
[Data-Out Buffer], [Data-Out Buffer Size], [Autosense Request],
[Command Reference Number] ))

Input Arguments:

I_T_L_x Nexus: Eitheran|_T_L nexus oran I_T_L_Q nexus (see 4.10).
CDB: Command descriptor block (see 5.2).

Task Attribute: A value specifying one of the task attributes defined in 7.5. For specific require-
ments on the Task Attribute argument see 5.1.

Data-In Buffer Size: The number of bytes available for data transfers to the Data-In Buffer (see 5.4.3).

Data-Out Buffer: A buffer containing command specific information to be sent to the logical unit,
such as data or parameter lists needed to service the command (see 5.1). The
content of the Data-Out Buffer shall not change during the lifetime of the
command (see 5.5) as viewed by the initiator.

Data-Out Buffer Size: The number of bytes available for data transfers from the Data-Out Buffer (see
5.4.3).

Autosense Request: An argument (see 5.1) requesting the automatic return of sense data by means
of the autosense mechanism specified in 5.8.4.3.

Command Reference When this argument is used, all sequential commands of an I_T_L nexus shall
Number (CRN): include a CRN argument that is incremented by one (see 5.1).

not a revision of SCSI Architecture Model - 3 (SAM-3) 55



T10/02-119r0 revision -1

16 March 2002

SCSI Protocol Service Indication:

SCSI Command Received (IN (I_T_L_x Nexus, CDB, [Task Attribute], [Autosense Request],

Input Arguments:

I_T_L_x Nexus:
CDB:
Task Attribute:

Autosense Request:

Command Reference
Number (CRN):

[Command Reference Number] ))

Either an I_T_L nexus or an I_T_L_Q nexus (see 4.10).
Command descriptor block (see 5.2).

A value specifying one of the task attributes defined in 7.5. For specific require-
ments on the Task Attribute argument see 5.1.

This parameter is only present if the Autosense Request parameter was speci-
fied in the Send SCSI Command call and autosense delivery is supported by
the SCSI protocol and logical unit.

When this argument is used, all sequential commands of an I_T_L nexus shall
include a CRN argument that is incremented by one (see 5.1).

SCSI Protocol Service Response (from device server):

Send Command Complete (IN (I_T_L_x Nexus, [Sense Data], Status, Service Response ))

Input Arguments:

I_T_L_x Nexus:
Sense Data:

Status:
Service Response:

Either an I_T_L nexus or an I_T_L_Q nexus (see 4.10).

If present, this argument instructs the target's service delivery port to return
sense information to the initiator automatically (see 5.8.4.3).

Command completion status (see 5.1).
Possible service response information for the command (see 5.1).

SCSI Protocol Service Confirmation:

Command Complete Received (IN (I_T_L_x Nexus, [Data-In Buffer], [Sense Data], Status, Service

Input Arguments:

I_T_L_x Nexus:
Data-In Buffer:

Sense Data:
Status:
Service Response:

56

Response ))

Either an I_T_L nexus or an I_T_L_Q nexus (see 4.10).

A buffer containing command specific information returned by the logical unit on
command completion (see 5.1).

Autosense data (see 5.8.4.3).
Command completion status (see 5.1).
Service response for the command (see 5.1).

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.4.3 Data Transfer Protocol Services
5.4.3.1 Introduction

The data transfer services described in 5.4.3 provide mechanisms for moving data to and from the initiator in
response to commands transmitted using the Execute Command remote procedure call. All SCSI protocol
standards shall define the protocols required to implement these services.

The application client's Data-In Buffer and/or Data-Out Buffer each appears to the device server as a single,
logically contiguous block of memory large enough to hold all the data required by the command (see figure 28).
The model allows either unidirectional or bidirectional data transfer. The processing of a SCSI command may
require the transfer of data from the application client using the Data-Out Buffer, or to the application client using
the Data-In Buffer, or both to and from the application client using both the Data-In Buffer and the Data-Out Buffer.

A
Application
Client
Byte Count Buffer Offset
Requested by
Device Server
Application
Client
Buffer Size

Figure 28 — Model for Data-In and Data-Out data transfers

It is assumed that the buffering resources available to the logical unit are limited and may be less than the amount
of data that is capable of being transferred in one SCSI command. Such data needs to be moved between the
application client and the media in segments that are smaller than the transfer size specified in the SCSI command.
The amount of data moved per segment is usually a function of the buffering resources available to the logical unit.
Figure 28 shows the model for such incremental data transfers.

The movement of data between the application client and device server is controlled by the following arguments:

Application Client The total number of bytes in the application client's buffer (Data-In or Data-Out).
Buffer Size:

Application Client Offset in bytes from the beginning of the application client's buffer (Data-In or
Buffer Offset: Data-Out) to the first byte of transferred data.

Byte Count Requested Number of bytes to be moved by the data transfer request.
by Device Server:

For any specific data transfer SCSI protocol service request, the Byte Count Requested by Device Server is less
than or equal to the combination of Application Client Buffer Size minus the Application Client Buffer Offset.

not a revision of SCSI Architecture Model - 3 (SAM-3) 57



T10/02-119r0 revision -1 16 March 2002

If a SCSI protocol supports random buffer access, the offset and byte count specified for each data segment to be
transferred may overlap. In this case the total number of bytes moved for a command is not a reliable indicator of
highest byte transferred and shall not be used by an initiator or target implementation to determine whether all data
has been transferred.

All SCSI protocol standards shall define support for a resolution of one byte for the above arguments. A SCSI
initiator device shall support a resolution of one byte. A SCSI target device may support any resolution.

Random buffer access occurs when the device server requests data transfers to or from segments of the appli-
cation client's buffer that have an arbitrary offset and byte count. Buffer access is sequential when successive
transfers access a series of monotonically increasing, adjoining buffer segments. Support for random buffer
access by a SCSI protocol standard is optional. A device server implementation designed for any SCSI protocol
implementation should be prepared to use sequential buffer access when necessary.

The LLP confirmed services specified in 5.4.3.2 and 5.4.3.3 are used by the device server to request the transfer of
command data to or from the application client. The initiator SCSI protocol service interactions are unspecified.

5.4.3.2 Data-In Delivery Service
Request:

Send Data-In (IN (I_T_L_x Nexus, Device Server Buffer, Application Client Buffer Offset,
Request Byte Count ))

Argument descriptions:

I_T_L_x Nexus: eitheranI_T_L nexus oran I_T_L_Q nexus (see 4.10).
Device Server Buffer: Buffer from which data is to be transferred.

Application Client Offset in bytes from the beginning of the application client's buffer to the first byte
Buffer Offset: of transferred data.

Request Byte Count: Number of bytes to be moved by this request.
Confirmation:
Data-In Delivered (IN (I_T_L_x Nexus ))

This confirmation notifies the device server that the specified data was successfully delivered to the application
client buffer.

Argument descriptions:

I_T_L_x Nexus: eitheran I_T_L nexus oran I_T_L_Q nexus (see 4.10).

58 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.4.3.3 Data-Out Delivery service
Request:

Receive Data-Out (IN (I_T_L_x Nexus, Application Client Buffer Offset, Request Byte Count,
Device Server Buffer ))

Argument descriptions:

I_T_L_x Nexus: eitheranI_T_L nexus oran I_T_L_Q nexus (see 4.10).
Device Server Buffer: Buffer from which data is to be transferred.

Application Client Offset in bytes from the beginning of the application client's buffer to the first byte
Buffer Offset: of transferred data.

Request Byte Count: Number of bytes to be moved by this request.
Confirmation:

Data-Out Received (IN (I_T_L_x Nexus))

This confirmation notifies the device server that the requested data has been successfully delivered to its buffer.

Argument descriptions:

I_T_L_x Nexus: eitheran I_T_L nexus oran I_T_L_Q nexus (see 4.10).

5.5 Task and command lifetimes

This subclause specifies the events delimiting the beginning and end (i.e., lifetime) of a task or tendered SCSI
command from the viewpoint of the device server and application client.

The device server shall create a task upon receiving a SCSI Command Received indication unless the command
represents a continuation of a linked command as described in 5.1.

The task shall exist until:

a) The device server sends a SCSI protocol service response for the task of TASK COMPLETE; or
b) The task is aborted as described in 5.6.

The application client assumes that the task exists from the time the Send SCSI Command SCSI protocol service
request is invoked until it receives one of the following target responses:

a) A service response of TASK COMPLETE for that task;
b) Notification of a unit attention condition with one of the following additional sense codes:
A) COMMANDS CLEARED BY ANOTHER INITIATOR (if in reference to the task set containing the task);
B) Any additional sense code whose ADDITIONAL SENSE CODE field contains 29h (e.g., POWER ON,
RESET, OR BUS DEVICE RESET OCCURRED; POWER ON OCCURRED; SCSI BUS RESET
OCCURRED; BUS DEVICE RESET FUNCTION OCCURRED; DEVICE INTERNAL RESET; TRANS-
CEIVER MODE CHANGED TO SINGLE-ENDED; or TRANSCEIVER MODE CHANGED TO LVD);
c) A service response of SERVICE DELIVERY OR TARGET FAILURE for the command. In this case, system imple-
mentations shall guarantee that the task associated with the failed command has ended;

not a revision of SCSI Architecture Model - 3 (SAM-3) 59



T10/02-119r0 revision -1 16 March 2002

d) A service response of FUNCTION COMPLETE following an ABORT TASK task management request directed
to the specified task;

e) A service response of FUNCTION COMPLETE following an ABORT TASK SET or a CLEAR TASK SET task
management function directed to the task set containing the specified task; or

f) A service response of FUNCTION COMPLETE in response to a LOGICAL UNIT RESET or TARGET RESET.

To the application client, the command is tendered from the time it calls the Send SCSI Command SCSI protocol
service until one of the above responses or a service response of linked command complete is received.

When a SCSI protocol does not require state synchronization (see 4.6.1), there may be a time skew between the
completion of a device server request-response transaction as seen by the application client and device server. As
a result, the lifetime of a task or command as it appears to the application client normally is different from the
lifetime observed by the device server.

5.6 Aborting tasks

5.6.1 Mechanisms that cause tasks to be aborted

A task is aborted when an event or initiator action causes termination of the task prior to its normal successful
completion.

The following events cause a task or several tasks to be aborted:

a) The return of an Execute Command service response of SERVICE DELIVERY OR TARGET FAILURE as
described in 5.1;

b) A power on condition; or

c) Protocol specific events.

The action of an initiator may abort task(s) created by the initiator itself or task(s) created by another initiator or
both its own tasks and other initiator(s) task(s).

The following initiator actions affect only the task(s) created by the initiator that takes the action:

a) Completion of an ABORT TASK task management function directed to the specified task;

b) Completion of an ABORT TASK SET task management function under the conditions specified in 6.3;

c) An ACA or CA condition was established (see 5.8.1.2) and the QERR field was set to 01b or 11b in the
Control mode page (see SPC-2); or

d) An ACA condition was cleared and the task had the ACA attribute (see 6.4).

The following initiator actions affect the task(s) created by the initiator that takes the action and/or task(s) created
by other initiators:

a) Completion of a CLEAR TASK SET task management function referencing the task set containing the
specified task;

b) An ACA or CA condition was established (see 5.8.1.2) and the QERR field was set to 01b in the Control
mode page (see SPC-2);

c) Completion of a PERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action
directed to the initiator that created the task (see SPC-2);

d) A logical unit reset (see 5.8.7); or

e) A hard reset (see 5.8.6).

60 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.6.2 When an initiator aborts its own tasks

When an initiator causes its own task(s) to be aborted, no notification that the task(s) have been aborted shall be
returned to the initiator other than the completion response for the command or task management function action
that caused the task(s) to be aborted and notification(s) associated with related effects of the action (e.g., a target
reset unit attention condition).

5.6.3 When an initiator aborts another initiator's tasks
When an initiator causes the task(s) of another initiator to be aborted, the other initiator shall be notified that the
task(s) have been aborted. The method of notifying the other initiator shall depend on the setting of the TAS bit in

the Control mode page (see SPC-2) that applies to the other initiator.

If the TAS bit is zero, the method of notification shall be a unit attention condition. The additional sense code set for
the unit attention condition depends on the action that caused the task(s) to be aborted.

If the TAS bit is one, the method of notification shall be the termination of each aborted task with a TASK ABORTED
status. The COMMANDS CLEARED BY ANOTHER INITIATOR unit attention condition shall not be established,
however, the establishment of any other applicable unit attention condition shall not be affected.

When a device server is aborting one or more tasks from an initiator with the TASK ABORTED status it should
complete all of those tasks before entering additional tasks from that initiator into the task set.

not a revision of SCSI Architecture Model - 3 (SAM-3) 61



T10/02-119r0 revision -1 16 March 2002

5.7 Command processing examples

5.7.1 Unlinked command example

An unlinked command is used to show the events associated with the processing of a single device service request
(see figure 29). This example does not include error or exception conditions.

Initiator

Application Client

Task
‘ Working
@ Activity @ Time >
Target

Figure 29 — Command processing events
The numbers in figure 29 identify the events described as follows:

1) The application client performs an Execute Command remote procedure call by invoking the Send SCSI
Command SCSI protocol service to send the CDB and other input parameters to the logical unit.

2) The device server is notified through a SCSI Command Received indication containing the CDB and
command parameters. A task is created and entered into the task set. The device server may invoke the
appropriate data delivery service one or more times to complete command processing.

3) The task ends upon completion of the command. On command completion, the Send Command
Complete SCSI protocol service is invoked to return a status of GOOD and a service response of TASK
COMPLETE.

4) A confirmation of Command Complete Received is passed to the ULP by the initiator's service delivery
subsystem.

62 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.7.2 Linked command example

A task may consist of multiple commands linked together. After the logical unit notifies the application client that a
linked command has successfully completed, the application client issues the next command in the series.

The example in figure 30 shows the events in a sequence of two linked commands.

Initiator

Application Client Application Client

Activity Activity e Time

Task
¢ Working Working ﬁ

@ @ Activity @ @ Time

Device Server

-

Figure 30 — Linked command processing events

The numbers in figure 30 Identify the events described as follows:

1)

The application client performs an Execute Command remote procedure call by invoking the Send SCSI
Command SCSI protocol service to send the CDB and other input parameters to the logical unit. The LINK
bit is set to one in the CDB CONTROL byte (see 5.2.3).

The target's service delivery port issues SCSI Command Received to the device server. The device
server creates a task (Task A) and enters it into the task set.

Upon completion of the first command, the device server invokes the Send Command Complete SCSI
protocol service with the Status argument set to INTERMEDIATE or INTERMEDIATE-CONDITION MET
and a Service Response of LINKED COMMAND COMPLETE. Task A is not terminated.

The LLP returns the status and service response to the ULP by means of a Command Complete
Received confirmation.

The application client performs an Execute Command remote procedure call by means of the Send SCSI
Command SCSI protocol service as described in 1). The Task Attribute argument is omitted. The LINK bit
in the CDB CONTROL byte is zero.

The device server receives the last command in the sequence and processes the operation.

The command completes successfully. Task A is terminated. A Send Command Complete SCSI
protocol service response of TASK COMPLETE, with status GOOD, is sent to the application client.

The LLP delivers an Command Complete Received confirmation to the application client that contains
the service response and status.

not a revision of SCSI Architecture Model - 3 (SAM-3) 63



T10/02-119r0 revision -1 16 March 2002

5.8 Command processing considerations and exception conditions

5.8.1 Contingent Allegiance (CA) and Auto Contingent Allegiance (ACA)
5.8.1.1 Overview

There are two mechanisms for returning sense data when a command is terminated with a CHECK CONDITION
status: autosense (see 5.8.4.3) and the REQUEST SENSE command (see SPC-2). There are two mechanisms for
altering task processing when a command is terminated with a CHECK CONDITION status: CA and ACA. CA
alters task processing so that sense data is preserved for subsequent delivery. ACA alters task processing until a
CLEAR ACA task management function (see 6.4) is requested. Table 23 provides an overview of how autosense,
CA, and ACA interact.

Table 23 — Autosense, CA, and ACA Interactions

Tasks Blocked ©
Autosense
Requested 2 | NACA Value P From To d
\ 0 (i.e., CA) Receipt of a command ©
0 _
1 (i.e., ACA) Termination of a command Receipt of CLEAR ACA 9
. with CHECK CONDITION
v 0 (i.e., CA) status Transmission of autosense data |
es
1 (i.e., ACA) Receipt of CLEAR ACA 9
a8 Autosense is requested via the Execute Command remote procedure call (see 5.1).
b

The NACA bit is in the CONTROL byte in the CDB (see 5.2.3).

¢ The blocking of tasks is described in 5.8.1.2. If the QERR field in the Control mode page (see SPC-2)
contains 01b or 11b, tasks are aborted instead of being blocked. If the TST field in the Control mode
page contains 000b, tasks from all initiators are blocked or aborted. If the TST field in the Control mode
page contains 001b, only tasks from the faulted initiator are blocked or aborted.

This table covers only the normal methods for clearing a CA or ACA as seen by the faulted initiator.
Exception handling methods for clearing CA and ACA are described in 5.8.1.6 and 5.8.1.7.

€ The intent is that the next command from the faulted initiator be a REQUEST SENSE command but
the next command received clears the CA condition, regardless of what command that is.

Since the autosense data is transmitted coincident with the delivery of the CHECK CONDITION status
(see 5.8.4.3), the interval during which tasks are blocked is not detectable by the initiator. If the QERR
field in the Control mode page (see SPC-2) contains 01b or 11b, the specified blocked tasks are
aborted, an action that makes the CA condition detectable by the initiator.

9 The CLEAR ACA task management function is described in 6.4. During ACA new tasks received by
the logical unit are not allowed to enter the task set unless they have the ACA task attribute (see
7.5.4). One of the results of the ACA task attribute requirement is that commands in-flight when the
CHECK CONDITION status occurs are returned unprocessed to the initiator with an ACA ACTIVE
status. Multiple commands may be sent one at a time using the ACA task attribute to recover from the
CHECK CONDITION that caused the ACA condition without clearing the ACA.

64 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

5.8.1.2 Establishing a CA or ACA

When a device server terminates a command with a CHECK CONDITION status, either an ACA or CA condition is
established within the task set. If the NACA bit was zero in the CONTROL byte (see 5.2.3) of the faulting command,
the device server shall create a CA condition. If the NACA bit was one in the CONTROL byte of the faulting command,
the device server shall create an ACA condition.

When a CA or ACA condition is established, tasks in the dormant and enabled task states (see 7.4) shall either be
aborted or blocked based on the contents of the TST and QERR field in the Control mode page (see SPC-2) as
shown in table 24.

Table 24 — Blocking and aborting tasks when a CA or ACA is established

QERR | TST | Action

00b | 000b | All enabled tasks from all initiators shall transition to the blocked task state (see 7.6). All
dormant tasks from all initiators shall remain in the dormant task state.

001b | All enabled tasks from the faulted initiator shall transition to the blocked task state (see 7.6).
All dormant tasks from the faulted initiator shall remain in the dormant task state. All tasks
from initiators other than the faulted initiator shall not be affected by the establishment of this
CA or ACA condition.

01b n/a | All enabled and dormant tasks from all initiators shall be aborted (see 5.6).

11b | 000b | All enabled and dormant tasks from the faulted initiator shall be aborted (see 5.6). All
enabled tasks from initiators other than the faulted initiator shall transition to the blocked task
state (see 7.6). All dormant tasks from initiators other than the faulted initiator shall remain in
the dormant task state.

001b | All enabled and dormant tasks from the faulted initiator shall be aborted (see 5.6). All tasks
from initiators other than the faulted initiator shall not be affected by the establishment of this
CA or ACA condition.

After the CA or ACA conditions is established:

a) Tasks from the faulted initiator shall be handled as described in 5.8.1.4, and
b) Tasks from initiators other than the faulted initiator shall be handled as described in 5.8.1.5.

A CA or ACA condition shall not cross task set boundaries and shall be preserved until it is cleared as described in
5.8.1.6 or 5.8.1.7. If requested by the application client and supported by the SCSI protocol and logical unit, sense
data shall be returned via autosense as described in 5.8.4.3.

If the SCSI protocol does not enforce state synchronization as described in 4.6.1, there may be a time delay

between the occurrence of the CA or ACA condition and the time at which the initiator becomes aware of the
condition.

not a revision of SCSI Architecture Model - 3 (SAM-3) 65



T10/02-119r0 revision -1 16 March 2002

5.8.1.3 Handling tasks when neither CA or ACA is in effect

Table 25 describes the handling of tasks when neither a CA nor an ACA condition is in effect for the task set. The
number of initiators in the task set is influenced by the TST field in the Control mode page (see SPC-2).

Table 25 — Task handling when neither CA nor ACA is in effect

New Task Properties Condition Established if
New Task Terminates with
Attribute 2 | NACA Value P Device Server Action a CHECK CONDITION status
Any Attribute 0 . CA
Except ACA ] Process the task. ACA
0 Terminate the command with CHECK CA
CONDITION status, sense key of
ACA 1 ILLEGAL REQUEST and additional ACA
sense code of INVALID MESSAGE
ERROR.
8 Task attributes are described in 7.5.
b The NACA bit is in the CONTROL byte in the CDB (see 5.2.3).
€ All the conditions that affect the processing of commands (e.g., reservations) still apply.

66 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002

T10/02-119r0 revision -1

5.8.1.4 Handling new tasks from the faulted initiator when CA or ACA is in effect

Table 26 describes the handling of new tasks from the faulted initiator when CA is in effect.

Table 26 — Handling for new tasks from a faulted initiator during CA

New Task Properties

Condition Established If

New Task Terminates with a
Attribute 2 | NACA Value P Device Server Action CHECK CONDITION status ©
Any Attribute 0 CA
Exséept ACA ] Process the task. 9 ACA
0 Terminate the command with CHECK CA
CONDITION status, sense key of
ACA 1 ILLEGAL REQUEST, and additional ACA
sense code of INVALID MESSAGE
ERROR.

value of the NACA bit.

@ Task attributes are described in 7.5.

b The NACA bit is in the CONTROL byte in the CDB (see 5.2.3).

¢ The CA condition is cleared upon completion of any new task regardless of status. Termination of that new
task with CHECK CONDITION status shall result in the establishment of a new CA or ACA based on the

d" All the conditions that affect the processing of commands (e.g., reservations) still apply.

Table 27 describes the handling of new tasks from the faulted initiator when ACA is in effect.

Table 27 — Handling for new tasks from a faulted initiator during ACA

ACA Task
New Task Properties Present Condition Established If
in the New Task Terminates with
Attribute 2 | NACA Value P | Task Set Device Server Action a CHECK CONDITION status
0 No CA®C
Process the task. 9
ACA 1 No ACA ¢
0or1 Yes Terminate the task with n/a
ACA ACTIVE status.
Any Attribute 0ori n/a Terminate the task with n/a
Except ACA ACA ACTIVE status.

Q

8 Task attributes are described in 7.5.
b The NACA bit is in the CONTROL byte in the CDB (see 5.2.3).
C If a task with the ACA attribute terminates with a CHECK CONDITION status, the existing ACA condition
shall be cleared and a new CA or ACA condition shall be established based on the value of the NACA bit.
All the conditions that affect the processing of commands (e.qg., reservations) still apply.

not a revision of SCSI Architecture Model - 3 (SAM-3)

67



T10/02-119r0 revision -1 16 March 2002

5.8.1.5 Handling new tasks from initiators other than the faulted initiator when CA or ACA is in effect

The handling of tasks created by initiators other than the faulted initiator depends on the value in the TST field in the
Control mode page (see SPC-2).

Table 28 describes the handling of new tasks from initiators other than the faulted initiator when CA is in effect.

Table 28 — Handling for new tasks from non-faulted initiators during CA

ST Field | New Task Properties New Condition Established
Value in Command If New Task Termin-
Control Attribute NACA Permitted ates with a CHECK
mode page a Value ® | During CA ¢ | Device Server Action CONDITION status
Terminate the task with
ACA n/a n/a BUSY status. n/a
Terminate the task with
000b Any Oor No BUSY status. na
Attribute
Except 0 Yes CA ¢
ACA Process the task.
1 Yes ACA d
Terminate the command
0 with CHECK CA
CONDITION status,
ACA n/a | sense key of ILLEGAL
REQUEST and additional
001b 1 sense code of INVALID ACA
MESSAGE ERROR.
Any
AEt:::t;l'g,[e Oor1 n/a Process the task. € See 5.8.1.3.
ACA
@ Task attributes are described in 7.5.
b The NACA bit is in the CONTROL byte in the CDB (see 5.2.3).
¢ The device server shall permit (i.e., not terminate) the processing of specified commands from initiators other
than the faulted initiator while a CA condition is established. The device server shall process a PERSISTENT
RESERVE OUT command with a PREEMPT AND ABORT service action (see SPC-2) from an initiator other
than the faulted initiator during a CA condition.
difa permitted command terminates with a CHECK CONDITION status, the existing CA condition shall be
cleared and a new CA or ACA condition shall be established for a new faulted initiator based on the value of
the NACA bit.
€ When the TsT field in the Control mode page contains 001b, commands from initiators other than the faulted
initiator shall be processed as if the CA condition does not exist (see 5.8.1.3). In this case, the logical unit shall
be capable of handling concurrent CA conditions and sense data for all initiators.

68 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Table 29 describes the handling of new tasks from initiators other than the faulted initiator when ACA is in effect.

Table 29 — Handling for new tasks from non-faulted initiators during ACA

TST Field New Task Properties New
Value in Command Condition Established
Control Permitted If New Task Terminates
mode Attribute NACA During with a CHECK
page a Value P ACA ¢ Device Server Action CONDITION status
Terminate the task with
ACA na na ACA ACTIVE status. na
0 No Terminate the task with n/a
A BUSY status.
000b ny Terminate the task with
Aét):g’e“;te 1 No ACA ACTIVE status. na
ACA 0 Yes CA d
Process the task.
1 Yes ACA @
Terminate the command
0 with CHECK CA
CONDITION status,
ACA n/a | sense key of ILLEGAL
REQUEST and additional
001b 1 sense code of INVALID ACA
MESSAGE ERROR.
Any
Aégébeuptte Oor1 n/a Process the task. © See 5.8.1.3.
ACA
@ Task attributes are described in 7.5.
b The NACA bit is in the CONTROL byte in the CDB (see 5.2.3).
¢ The device server shall permit (i.e., not terminate) the processing of specified commands from initiators
other than the faulted initiator while an ACA condition is established. The device server shall process a
PERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action (see SPC-2) from
an initiator other than the faulted initiator during an ACA condition.
difa permitted command terminates with a CHECK CONDITION status, the existing ACA condition shall be
cleared and a new CA or ACA condition shall be established for a new faulted initiator based on the value of
the NACA bit.
€ When the TsT field in the Control mode page contains 001b, commands from initiators other than the faulted
initiator shall be processed as if the ACA condition does not exist (see 5.8.1.3). In this case, the logical unit
shall be capable of handling concurrent ACA conditions and sense data for all initiators.

5.8.1.6 Clearing a CA condition
A CA condition shall only be cleared:
a) As aresult of a power on or logical unit reset (see 5.8.7);
b) By an ABORT TASK SET task management function (see 6.3) from the faulted initiator;

c) By a CLEAR TASK SET task management function (see 6.5) from any initiator including the faulted initiator
if the TST field in the Control mode page (see SPC-2) contains 000b;

not a revision of SCSI Architecture Model - 3 (SAM-3) 69



T10/02-119r0 revision -1 16 March 2002

d) By a CLEAR TASK SET task management function from the faulted initiator if the TST field in the Control
mode page (see SPC-2) contains 001b;

e) By aPERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action from another
initiator that clears the tasks of the faulted initiator (see SPC-2);

f)  When a PERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action from
another initiator terminates in a CHECK CONDITION status;

g) Upon completion of a subsequent REQUEST SENSE command for the I_T_L nexus;

h) Upon accepting any subsequent command other than a REQUEST SENSE command for the I_T_L nexus;
or

i) Upon sending sense data by means of the autosense mechanism (see 5.8.4.3).

NOTE 6 - Case f) results in the establishment of a new CA or ACA for a new faulted initiator based on
the value of the NACA bit.

When a CA condition is cleared and no new CA or ACA condition is established, the state of all tasks in the task set
shall be modified as described in clause 7.

5.8.1.7 Clearing an ACA condition
An ACA condition shall only be cleared:

a) As the result of a power on or a logical unit reset (see 5.8.7);

b) By a CLEAR ACA task management function (see 6.4) from the faulted initiator;

c) By aPERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action with the ACA
task attribute from the faulted initiator that clears the tasks of the faulted initiator (see SPC-2);

d) By a PERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action with a task
attribute other than ACA from an initiator other than the faulted initiator that clears the tasks of the faulted
initiator;

e) When a command with the ACA task attribute from the faulted initiator terminates with a CHECK
CONDITION status; or

f)  When a PERSISTENT RESERVE OUT command with a PREEMPT AND ABORT service action termi-
nates in a CHECK CONDITION status.

NOTE 7 - Cases e) and f) result in the establishment of a new CA or ACA based on the value of the NACA bit.

When an ACA condition is cleared and no new CA or ACA condition is established, the state of all tasks in the task
set shall be modified as described in clause 7.

5.8.2 Overlapped commands

An overlapped command occurs when a task manager detects the use of a duplicate I_T_L_x nexus (see 4.9.1) in
a command before a pending task holding that I_T_L_x nexus completes its task lifetime (see 5.5). Each SCSI
protocol standard shall specify whether or not a task manager is required to detect overlapped commands.

A task manager that detects an overlapped command shall abort all tasks for the faulted initiator in the task set and
the device server shall return CHECK CONDITION status for that command. The sense key shall be set to
ABORTED COMMAND and the additional sense code shall be set to OVERLAPPED COMMANDS ATTEMPTED.

NOTES

8 An overlapped command may be indicative of a serious error and, if not detected, could result in corrupted
data. This is considered a catastrophic failure on the part of the initiator. Therefore, vendor specific error
recovery procedures may be required to guarantee the data integrity on the medium. The target logical unit

70 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

9

may return additional sense data to aid in this error recovery procedure (e.g., sequential-access devices may
return the residue of blocks remaining to be written or read at the time the second command was received).
Some logical units may not detect an overlapped command until after the CDB has been received.

5.8.3 Incorrect Logical Unit selection

The target's response to an incorrect logical unit number is described in this subclause.

The logical unit number may be incorrect because:

a)

c)

The target does not support the logical unit (e.g., some targets support only one peripheral device).

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense key and additional sense code shall be set to the
values specified for the REQUEST SENSE command in item b);

The target supports the logical unit, but the peripheral device is not currently attached to the target.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier
set to the value required in SPC-2. In response to a REQUEST SENSE command, the target shall return
sense data. The sense key shall be set to ILLEGAL REQUEST and the additional sense code shall be set
to LOGICAL UNIT NOT SUPPORTED.

In response to any other command except REQUEST SENSE and INQUIRY, the target shall terminate the
command with CHECK CONDITION status. Sense key and additional sense code shall be set to the
values specified for the REQUEST SENSE command in item b);

The target supports the logical unit and the peripheral device is attached, but not operational.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier
set to the value required in SPC-2. In response to REQUEST SENSE, the target shall return sense data.

The target's response to any command other than INQUIRY and REQUEST SENSE is vendor specific; or

The target supports the logical unit but is incapable of determining if the peripheral device is attached or is
not operational when it is not ready.

In response to an INQUIRY command the target shall return the INQUIRY data with the peripheral qualifier
set to the value specified in SPC-2. In response to a REQUEST SENSE command the target shall return
the REQUEST SENSE data with a sense key of NO SENSE unless an ACA exists.

The target's response to any other command is vendor specific.

5.8.4 Sense data

5.8.4.1 Sense data introduction

Sense data shall be made available by the logical unit in the event a command completes with a CHECK
CONDITION status or other conditions. The format, content and conditions under which sense data shall be
prepared by the logical unit are specified in this standard, SPC-2, the applicable device command standard and
applicable SCSI protocol standard.

Sense data shall be preserved by the logical unit for the initiator until it is transferred by one of the methods listed
below or until another task from that initiator is entered into the task set.

not a revision of SCSI Architecture Model - 3 (SAM-3) 71



T10/02-119r0 revision -1 16 March 2002

The sense data may be transferred to the initiator through any of the following methods:

a) The REQUEST SENSE command (see SPC-2);
b) An asynchronous event report (see 5.8.4.2); or
c) Autosense delivery (see 5.8.4.3).

The following clauses describe the last two transfer methods.
5.8.4.2 Asynchronous Event Reporting

Asynchronous Event Reporting is used by a logical unit to signal another device that an asynchronous event has
occurred. The mechanism automatically returns sense data associated with the event. Each SCSI protocol
standard shall describe a mechanism for Asynchronous Event Reporting. (In this subclause, references to
Asynchronous Event Reporting assume that the device to be notified has enabled asynchronous event reports
from the target.) Support for asynchronous event reporting is a logical unit option.

NOTE 10 - A SCSI device that is capable of producing asynchronous event reports at initialization time should
provide means to defeat these reports. This may be done with a switch or jumper wire. Devices that implement
saved parameters may alternatively save the asynchronous event reporting permissions either on a per SCSI
device basis or as a system wide option.

Parameters managing the use of asynchronous event reporting are contained in the Control mode page (see
SPC-2).

Asynchronous Event Reporting is used to signal a device that one of the four events listed below has occurred:

a) An exception condition was encountered after command completion;
b) A newly initialized device is available;

c) Some other type of unit attention condition has occurred; or

d) An asynchronous event has occurred.

An example of a) occurs in a device that implements a write cache. If the target is unable to write cached data to
the medium, it may use an asynchronous event report to inform the initiator of the failure.

An example of b) is a logical unit that generates an asynchronous event report, following a power-on cycle, to notify
other SCSI devices that it is ready to accept I/O commands.

An example of ¢) occurs in a device that supports removable media. Asynchronous event reporting may be used to
inform an initiator of a not-ready-to-ready transition (medium changed) or of an operator initiated event (e.g.,
activating a write protect switch or activating a start or stop switch).

An example of d) is a sequential-access device performing a REWIND command with the IMMEDIATE bit set to one
(see SSC). An asynchronous event report may be used to inform an initiator that the beginning of medium has
been reached. Completion of a CD-ROM AUDIO PLAY command (see MMC-2) started in the immediate mode is
another example of this case.

Sense data accompanying the report identifies the condition (see 5.8.4.1).

An exception condition encountered after command completion shall be reported to a specific initiator once per
occurrence of the event causing it. The logical unit may choose to use an asynchronous event report or to return
CHECK CONDITION status on a subsequent command, but not both. Notification of an exception condition
encountered after command completion shall be reported only to the initiator or initiators that sent the affected task
or tasks.

72 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Asynchronous event reports may be used to notify devices that a system resource has become available. If a
logical unit uses this method of reporting, the sense key in the AER sense data shall be set to UNIT ATTENTION.

5.8.4.3 Autosense

Autosense is the automatic return of sense data to the application client coincident with the completion of a SCSI
command under the conditions described in this subclause. All protocols shall support autosense.

If supported by the protocol and logical unit and requested by the Execute Command remote procedure call (see
5.1), the device server shall only return sense data in this manner coincident with the completion of a command
with a status of CHECK CONDITION. After autosense data is sent the following shall be cleared:

a) The CA condition (see 5.8.1.6), if any; and
b) The sense data, except sense data associated with a unit attention condition when the UA_INTLCK_CTRL
field in the Control mode page (see SPC-3) contains 10b or 11b.

Autosense shall not affect ACA (see 5.8.1) or the sense data associated with a unit attention condition when the
UA_INTLCK_CTRL field contains 10b or 11b.

SCSiI protocol standards that support autosense shall require an autosense implementation to:

a) Notify the logical unit when autosense data has been requested for a command; and
b) Inform the application client when autosense data has been returned upon command completion (see 5.1).

It is not an error for the application client to request the automatic return of sense data when autosense is not
supported by the SCSI protocol or logical unit implementation. If the application client requested the return of
sense data through the autosense facility and the SCSI protocol layer does not support this feature, then the confir-
mation returned by the SCSI initiator port should indicate that no sense data was returned. If the SCSI protocol
layer supports autosense but the logical unit does not, then the target should indicate that no sense data was
returned. In either case, sense information shall be preserved and the application client may issue a command to
retrieve it.

5.8.5 Unit Attention condition

Each logical unit shall generate a unit attention condition whenever the logical unit has been reset as described in
5.8.7 or by a power-on reset. In addition, a logical unit shall generate a unit attention condition for each initiator
whenever one of the following events occurs:

A removable medium may have been changed;

The mode parameters in effect for this initiator have been changed by another initiator;

The version or level of microcode has been changed;

Tasks for this initiator were cleared by another initiator;

INQUIRY data has been changed;

The logical unit inventory has been changed;

The mode parameters in effect for the initiator have been restored from non-volatile memory;
A change in the condition of a synchronized spindle; or

Any other event requiring the attention of the initiator.

~— — ~— — —

FJJQZ>20 000
-

=

~

Logical units may queue unit attention conditions. After the first unit attention condition is cleared, another unit
attention condition may exist (e.g., a power on condition followed by a microcode change condition).

A unit attention condition shall persist on the logical unit for each initiator until that initiator clears the condition as
described in the following paragraphs.

not a revision of SCSI Architecture Model - 3 (SAM-3) 73



T10/02-119r0 revision -1 16 March 2002

If an INQUIRY command enters the enabled task state, the logical unit shall perform the INQUIRY command and
shall neither report nor clear any unit attention condition.

If a REPORT LUNS command enters the enabled task state, the logical unit shall perform the REPORT LUNS
command and shall not report any unit attention condition. The logical unit shall clear any unit attention condition
established in response to a change in the logical unit inventory for all logical units for the initiator that sent the
REPORT LUNS command. The logical unit shall not clear any other unit attention condition.

If a REQUEST SENSE command enters the enabled task state while a unit attention condition exists for the
initiator that sent the REQUEST SENSE command, then the logical unit shall either:

a) Report any pending sense data and preserve all unit attention conditions on the logical unit; or,
b) Report a unit attention condition for the initiator that sent the REQUEST SENSE command. The logical unit
may discard any pending sense data and shall clear the reported unit attention condition for that initiator.

If the logical unit has already generated the ACA or CA condition for a unit attention condition, the logical unit shall
report the unit attention condition (i.e., option b) above).

If a command other than INQUIRY, REPORT LUNS, or REQUEST SENSE enters the enabled task state while a
unit attention condition exists for the initiator that sent the command, the logical unit shall terminate the command
with a CHECK CONDITION status. The logical unit shall provide sense data that reports a unit attention condition
for the initiator that sent the command.

If a logical unit reports a unit attention condition with autosense (see 5.8.4.3) or with an asynchronous event report
(see 5.8.4.2) and the UA_INTLCK_CTRL field in the Control mode page contains 00b (see SPC-3), then the logical
unit shall clear the reported unit attention condition for that initiator on the logical unit. If the UA_INTLCK_CTRL field in
the Control mode page contains 10b or 11b, the logical unit shall not clear unit attention conditions reported with
autosense or an asynchronous event report.

5.8.6 Hard reset
A hard reset is a target port action in response to a reset event within the service delivery subsystem. A wakeup
event (see 3.1.141) is a reset event. The definition of additional reset events is protocol specific. Each SCSI

protocol standard that defines reset events shall specify the target port’s action in response to reset events.

The target port’s response to a hard reset shall include initiating the equivalent of a logical unit reset for all logical
units as described in 5.8.7.

While the task manager response to task management requests is subject to the presence of access restrictions,
as managed by ACCESS CONTROL OUT commands (see SPC-3), a hard reset in response to a reset event
within the service delivery subsystem shall be unaffected by access controls.
5.8.7 Logical unit reset
A logical unit reset is:

a) An action in response to a LOGICAL UNIT RESET task management request (see 6.6) or some other

logical unit reset event; or
b) Part of an action in response to a TARGET RESET task management function (see 6.7) or a hard reset

(see 5.8.6).

The definition of logical unit reset events is dependent on the SCSI protocol.

74 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

To process a logical unit reset the logical unit shall:

a) Abort all tasks as described in 5.6;

b) Clear a CA (see 5.8.1.6) or ACA (see 5.8.1.7) condition, if one is present;

c) Release all reservations established using the reserve/release management method (persistent reserva-
tions shall not be affected);

d) Return the logical unit’'s operating mode to the appropriate initial conditions, similar to those conditions that
would be found following device power-on. The MODE SELECT parameters (see SPC-2) shall be restored
to their last saved values if saved values have been established. MODE SELECT parameters for which no
saved values have been established shall be returned to their default values;

e) Set a unit attention condition (see 5.8.5); and

f) Initiate a logical unit reset for all dependent logical units (see 4.12).

In addition to the above, the logical unit shall perform any additional functions required by the applicable standards.

not a revision of SCSI Architecture Model - 3 (SAM-3) 75



T10/02-119r0 revision -1

16 March 2002

6 Task Management Functions

6.1 Introduction

Task management functions control the processing of one or more tasks. An application client requests a task
management function by means of a procedure call having the following format:

Service Response = Function name (IN (nexus) )

Service Response:

One of the following SCSI protocol specific responses shall be returned:

FUNCTION COMPLETE:

FUNCTION REJECTED:

SERVICE DELIVERY
OR TARGET FAILURE:

A task manager response indicating that the requested function is complete.
The task manager shall unconditionally return this response upon completion of
a task management request supported by the logical unit or SCSI target device
to which the request was directed. Upon receiving a request to process an
unsupported function, the task manager may return this response or the function
rejected response described below.

An optional task manager response indicating that the operation is not
supported by the object to which the function was directed (e.g., the logical unit).

The request was terminated due to a service delivery failure (see 3.1.111) or
target malfunction. The task manager may or may not have successfully
performed the specified function.

Each SCSI protocol standard shall define the actual events comprising each of the above service responses.

The task management functions are summarized in table 30.

Table 30 — Task Management Functions

Task Management Function Nexus Reference
ABORT TASK I_T L. Q 6.2
ABORT TASK SET I_T L 6.3
CLEAR ACA I_T_L 6.4
CLEAR TASK SET I_T L 6.5
LOGICAL UNIT RESET I_T_L 6.6
TARGET RESET T 6.7
WAKEUP I_T 6.8
Argument descriptions:
Nexus: An I_T Nexus, |_T_L Nexus, or I_T_L_Q Nexus (see 4.10).
I_T Nexus: An initiator and target nexus (see 4.10).
I_T_L Nexus: An initiator, target, and logical unit nexus (see 4.10).
I_T_L_Q Nexus: An initiator, target, logical unit, and tag nexus (see 4.10).

NOTE 11 - The ABORT TASK, ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET RESET,
and WAKEUP functions provide a means to abort one or more tasks prior to normal completion.

76

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

The task manager response to task management requests is subject to the presence of access restrictions, as
managed by ACCESS CONTROL OUT and ACCESS CONTROL IN commands (see SPC-3), as follows:

a) A task management request of ABORT TASK, ABORT TASK SET or CLEAR ACA shall not be affected by
the presence of access restrictions;

b) A task management request of CLEAR TASK SET or LOGICAL UNIT RESET received from an initiator
that is denied access to the logical unit (either because it has no access rights or because it is in the
pending-enrolled state) shall cause no change to the logical unit;

c) A TARGET RESET task management request shall initiate a logical unit reset as described in 5.8.7 for all
logical units to which the initiator has access, and shall cause no change to any logical units to which the
initiator is denied access; and

d) The task management function Service Response shall not be affected by the presence of access restric-
tions.

6.2 ABORT TASK

Function call:
Service Response = ABORT TASK (IN (L_T_L_Q Nexus) )

Description:

This function shall be supported by a logical unit if it supports tagged tasks and may be supported by a logical unit
if it does not support tagged tasks.

The task manager shall abort the specified task if it exists. Previously established conditions, including MODE
SELECT parameters, reservations, ACA, and CA shall not be changed by the ABORT TASK function.

If the logical unit supports this function, a response of FUNCTION COMPLETE shall indicate that the task was aborted
or was not in the task set. In either case, the target shall guarantee that no further responses from the task are sent
to the initiator.

All SCSI protocol standards shall provide the functionality needed for a task manager to implement the ABORT
TASK task management function.

6.3 ABORT TASK SET

Function Call:
Service Response = ABORT TASK SET (IN (L_T_L Nexus) )
Description:
This function shall be supported by all logical units.
The task manager shall abort all tasks in the task set that were created by the initiator as described in 5.6.
The task manager shall perform an action equivalent to receiving a series of ABORT TASK requests. All tasks from

that initiator in the task set serviced by the logical unit shall be aborted. Tasks from other initiators or in other task
sets shall not be aborted. A CA shall be cleared by the ABORT TASK SET function from the faulted initiator (see

not a revision of SCSI Architecture Model - 3 (SAM-3) 77



T10/02-119r0 revision -1 16 March 2002
5.8.1.6). Other previously established conditions, including MODE SELECT parameters, reservations, and ACA
shall not be changed by the ABORT TASK SET function.

All SCSI protocol standards shall provide the functionality needed for a task manager to implement the ABORT
TASK SET task management function.

6.4 CLEAR ACA

Function Call

Service response = CLEAR ACA (IN (IL_T_L Nexus) )
Description:
This function shall be supported by a logical unit if it supports ACA (see 5.2.3).
The initiator issues CLEAR ACA to clear an ACA condition from the task set serviced by the logical unit as
specified in 5.8.1.7. For tasks with the ACA attribute (see 7.5.4) receipt of an CLEAR ACA function shall have the
same effect as receipt of an ABORT TASK function (see 6.2). If successful, this function shall be terminated with a

service response of FUNCTION COMPLETE.

If the task manager clears the ACA condition, any task within that task set may be completed subject to the require-
ments for task set management specified in clause 7.

While a CA is in effect (see 5.8.1), a logical unit that supports the CLEAR ACA task management function shall
ignore all CLEAR ACA requests and shall return a service response of FUNCTION COMPLETE.

All SCSI protocol standards shall provide the functionality needed for a task manager to implement the CLEAR
ACA task management function.

6.5 CLEAR TASK SET

Function Call:
Service response = CLEAR TASK SET (IN (IL_T_L Nexus))
Description:

This function shall be supported by all logical units, except in the following cases, when support for this function is
optional:

a) The logical unit does not support tagged tasks (see 4.9); or
b) The logical unit supports the basic task management model (see 7.2).

All tasks in the appropriate task set as defined by the TST field in the Control mode page (see SPC-2) shall be
aborted as described in 5.6. The medium may have been altered by partially processed commands.

The CA condition (see 5.8.1.6), and all pending status and sense data for the task set defined by the TST field in the

Control mode page shall be cleared. Other previously established conditions, including MODE SELECT param-
eters, reservations, and ACA shall not be changed by the CLEAR TASK SET function.

78 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

All SCSI protocol standards shall provide the functionality needed for a task manager to implement the CLEAR
TASK SET task management function.

6.6 LOGICAL UNIT RESET

Function Call:
Service Response = LOGICAL UNIT RESET (IN (I_T_L Nexus) )
Description:
This function shall be supported by all logical units.
Before returning a FUNCTION COMPLETE response, the logical unit shall perform the logical unit reset functions
specified in 5.8.7. A unit attention condition for all initiators that have access shall be created on the logical unit and

dependent logical unit(s), if any, as specified in 5.8.5.

NOTE 12 - Previous versions of this standard only required LOGICAL UNIT RESET support in logical units that
supported hierarchical logical units.

All SCSI protocol standards shall provide the functionality needed for a task manager to implement the LOGICAL
UNIT RESET task management function.

6.7 TARGET RESET

Function Call:
Service Response = TARGET RESET (IN (I_T Nexus) )
Description:
Before returning a FUNCTION COMPLETE response, the target port shall perform logical unit reset functions specified
in 5.8.7 for every logical unit. A unit attention condition for all initiators that have access shall be created on each of

these logical units as specified in 5.8.5.

An initiator should issue LOGICAL UNIT RESETSs only to the logical units it is using rather than issuing a TARGET
RESET. This avoids resetting logical units that other initiators may be using.

NOTE 13 - Previous versions of this standard required TARGET RESET support in all targets. SCSI protocols may
or may not require that TARGET RESET be supported. SCSI protocols may require additional actions beyond
those specified here.

not a revision of SCSI Architecture Model - 3 (SAM-3) 79



T10/02-119r0 revision -1 16 March 2002

6.8 WAKEUP

Function Call:

Service response = WAKEUP (IN (I_T Nexus) )
Description:
SCSI protocols may or may not define the WAKEUP function. This function may be supported by SCSI protocols
whose interconnects support a shared wakeup signal or individual wakeup signals for each SCSI target port. This
function may be supported by SCSI devices on SCSI protocols which support the function.

This function causes a wakeup event (see SPC-3) to be sent to either:

a) The specified SCSI target port, on SCSI protocols supporting individual wakeup signals; or
b) All SCSI target ports connected to the interconnect, on SCSI protocols supporting a shared wakeup signal.

The wakeup function is a reset event and shall cause a hard reset in the recipient target port(s).

6.9 Task management protocol services

The protocol services described in this subclause are used by an initiator and target to process a task
management remote procedure call. The following arguments are passed:

Nexus: An I_T Nexus, |_T_L Nexus, or I_T_L_Q Nexus (see 4.10).
Function Identifier: Parameter encoding the task management function to be performed.

All SCSI protocol standards shall define the protocol specific requirements for implementing the Send Task
Management Request SCSI protocol service and the Received Function-Executed confirmation described below.
Support for the Task Management Request Received indication and Task Management Function Executed SCSI
protocol service response by the SCSI protocol standard is optional. All SCSI devices shall implement these
protocol services as defined in the applicable SCSI protocol standard.
Request sent by an initiator and application client to a target’s task manager:

Send Task Management Request (IN (Nexus, Function Identifier ) )

Argument descriptions:

Nexus: An I_T Nexus, I_T_L Nexus, or I_T_L_Q Nexus (see 4.10).
Function Identifier: Parameter encoding the task management function to be performed.

Indication received by the task manager:
Task Management Request Received (IN (Nexus, Function Identifier ) )

Argument descriptions:

Nexus: An I_T Nexus, I_T_L Nexus, or I_T_L_Q Nexus (see 4.10).
Function Identifier: Parameter encoding the task management function to be performed.

80 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Response from task manager to initiator and application client:
Task Management Function Executed (IN (Nexus, Service Response ) )

Argument descriptions:

Nexus: An I_T Nexus, I_T_L Nexus, or I_T_L_Q Nexus (see 4.10).

Service Response: An encoded value representing one of the following:
FUNCTION COMPLETE: The requested function has been completed.
FUNCTION REJECTED: The task manager does not implement the requested
function.

Confirmation received by application client:
Received Function-Executed (IN (Nexus, Service Response ))

Argument descriptions:

Nexus: An I_T Nexus, I_T_L Nexus, or I_T_L_Q Nexus (see 4.10).

Service Response: An encoded value representing one of the following:
FUNCTION COMPLETE: The requested function has been completed.
FUNCTION REJECTED: The task manager does not implement the requested
function.

Since the nexus may not uniquely identify the transaction, there may be no way for an initiator to associate a confir-

mation with a request. A SCSI protocol that does not provide such an association should not allow an initiator to
have more than one pending task management request per I_T_L nexus.

not a revision of SCSI Architecture Model - 3 (SAM-3) 81



T10/02-119r0 revision -1 16 March 2002

6.10 Task management function example

Figure 31 shows the sequence of events associated with a task management function.

Initiator

Application Client

Task Manager

‘ Working
@ Activity @ Time >
Target

Figure 31 — Task management processing events

The numbers in figure 31 identify the events described below.

82

1.

The application client issues a task management request by invoking the Send Task Management Request
SCSI protocol service.

The task manager is notified through a Task Management Request Received and begins processing the
function.

The task manager performs the requested operation and responds by invoking the Task Management
Function Executed SCSI protocol service to notify the application client. The Service Response
parameter is set to a value of FUNCTION COMPLETE.

. A Received Function-Executed confirmation is received by the application client.

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

7 Task Set Management

7.1 Introduction to task set management

Clause 7 describes some of the controls application clients have over task set management behaviors (see 7.2).
Clause 7 also specifies task set management requirements in terms of:

Task states (see 7.4),
Task attributes (see 7.5),
The events that cause transitions between task states (see 7.3 and 7.4), and

a
b
c
d) A map of task state transitions (see 7.6).

~— — — —

Clause 7 concludes with several task set management examples (see 7.7).

Task behavior, as specified in clause 7, refers to the functioning of a task as observed by an application client,
including the results of command processing and interactions with other tasks.

The requirements for task set management only apply to a task after it has been entered into a task set. A task
shall be entered into a task set unless a condition exists that causes that task to be completed with a status of
BUSY, RESERVATION CONFLICT, TASK SET FULL, or ACA ACTIVE. A CHECK CONDITION status caused by
the detection of an overlapped command or certain protocol specific errors also should not keep a task from being
entered in the task set.

7.2 Controlling task set management

The Control mode page (see SPC-2) contains fields that specify particular task set management behaviors. The
standard INQUIRY data CmdQue bit (see SPC-2) indicates support for tagged tasks (command queuing). One
specific combination of task set management behaviors is identified as the basic task management model.
Support for the basic task management model is indicated by values returned in the CMDQUE and BQUE bits in the
standard INQUIRY data (see SPC-2). The basic task management model requires the following task set
management behaviors:

a) The only task attribute supported shall be SIMPLE;

b) The device server may reorder the actual processing sequence of tasks in any manner. Any data integrity
exposures related to task sequence order shall be explicitly handled by the application client using the
appropriate commands;

c) All the tasks shall be aborted when an ACA or CA condition is established;

d) It shall not be possible to disable tagged queuing; and

e) Support for the CLEAR TASK SET task management function is optional.

not a revision of SCSI Architecture Model - 3 (SAM-3) 83



T10/02-119r0 revision -1 16 March 2002

7.3 Task management events
The following describe the events that cause changes in task state.

All older tasks ended: If the TST field in the Control mode page (see SPC-2) equals 000b, all tasks have
ended that were accepted from all initiators earlier in time than the referenced
task. If the TST field in the Control mode page equals 001b, all tasks have ended
that were accepted from the referenced initiator earlier in time than the
referenced task.

All older Head of Queue If the TST field in the Control mode page equals 000b, all Head of Queue and
and older Ordered tasks Ordered tasks have ended that were accepted from all initiators earlier in time
ended: than the referenced task. If the TST field in the Control mode page equals 001b,
all Head of Queue and Ordered tasks have ended that were accepted from the

referenced initiator earlier in time than the referenced task.

CA or ACA establishment: A CA or ACA condition has been established (see 5.8.1).
task abort: A task has been aborted as described in 5.6.

task completion: The device server has sent a service response of TASK COMPLETE for the task
(see 5.1 and 5.5).

task ended: A task has completed or aborted.
CA cleared: An CA condition has been cleared (see 5.8.1.6).
ACA cleared: An ACA condition has been cleared (see 5.8.1.7).

7.4 Task states

7.4.1 Overview
The model employs four tasks states, described in 7.4.2, 7.4.3, 7.4.4, and 7.4.5.
To simplify the discussion in clause 7:

a) "Enabled task" may be used to refer to a task in the enabled task state,

b) "Blocked task" may be used to refer to a task in the blocked task state,

c) "Dormant task" may be used to refer to a task in the dormant task state, and
d) "Ended task" may be used to refer to a task in the ended task state.

7.4.2 Enabled task state

A task in the enabled task state may become a current task and may complete at any time, subject to the task
completion constraints specified in the Control mode page (see SPC-2). A task that has been accepted into the
task set shall not complete or become a current task unless it is in the enabled task state.

Except for the use of resources required to preserve task state, a task shall produce no effects detectable by the
application client before the task's first transition to the enabled task state. Although, before entering this state for
the first time, the task may perform other activities visible to lower layers — such as pre-fetching data to be written to
the media — this activity shall not result in a detectable change in state as perceived by an application client. In
addition, the behavior of a completed task, as defined by the commands it has processed, shall not be affected by
the task's states before it enters the enabled task state.

84 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

7.4.3 Blocked task state

A task in the blocked task state is prevented from completing due to an ACA or CA condition. A task in this state
shall not become a current task. While a task is in the blocked task state, any information the logical unit has or
accepts for the task shall be suspended. If the TST field in the Control mode page (see SPC-2) equals 000b the
blocked task state is independent of the initiator. If the TST field equals 001b the blocked task state applies only to
the faulted initiator.

7.4.4 Dormant task state

A task in the dormant task state is prevented from completing due to the presence of certain other tasks in the task
set. A task in this state shall not become a current task. While a task is in the dormant task state, any information
the logical unit has or accepts for the task shall be suspended.

7.4.5 Ended task state

A task in the ended task state is removed from the task set.

7.4.6 Task states and task lifetimes

Figure 32 shows the events corresponding to two task processing sequences. Except for the dormant task state
between times A and B in case 1, logical unit conditions and the commands processed by the task are identical.

Assuming in each case the task completes with a status of GOOD at time C, the state observed by the application
client for case 1 shall be indistinguishable from the state observed for case 2.

Case 1
¢—— Task Dormant —»
Timeline
A A A
A
A B C
Task Task Task Ended
Created Enabled L .
Application client
observes state
Case 2
Timeline
A A
B C
Task Created Task Ended
and Enabled

Figure 32 — Example of Dormant state task behavior

not a revision of SCSI Architecture Model - 3 (SAM-3) 85



T10/02-119r0 revision -1 16 March 2002

7.5 Task Attributes

7.5.1 SIMPLE Task

A task having the Simple attribute shall be accepted into the task set in the dormant task state. The task shall not
enter the enabled task state until all older Head of Queue and older Ordered tasks in the task set have ended (see
7.3).

7.5.2 ORDERED Task

A task having the Ordered attribute shall be accepted into the task set in the dormant task state. The task shall not
enter the enabled task state until all older tasks in the task set have ended (see 7.3).

7.5.3 HEAD OF QUEUE Task
A task having the Head of Queue attribute shall be accepted into the task set in the enabled task state.
7.5.4 ACA Task

A task having the ACA attribute shall be accepted into the task set in the enabled task state. There shall be no
more than one ACA task per task set (see 5.8.1.2).

86 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

7.6 Task state transitions

This subclause describes task state transitions, actions and associated triggering events as they appear to an
application client. The logical unit response to events affecting multiple tasks (e.g., a CLEAR TASK SET) may be
different from the response to an event affecting a single task. To the application client, the collective behavior
appears as a series of state changes occurring to individual tasks.

The task state diagram of figure 33 shows the behavior of a single task in response to an external event.

S0: New Task
S1: Dormant New task accepted S2: Enabled
<«——— S0:S1 S0:S2 ————————
SIMPLE or ORDERED HEAD OF QUEUE or ACA
task attribute task attribute
S1:S2
No ordering or blocking conditions 2
S4: Ended
Remove task from task set S3: Blocked
lq———— S2:S3
ACA or CA
———— S3:54 —— ;
Task Abort Established
S3:52 —
ACA or CA
Cleared
S1:54 ] S2:54
Task Abort Task End

8 Neither ACA nor CA active and:
a) For simple tasks, all older head of queue and all older ordered tasks have ended; or
b) For ordered tasks, all older ordered tasks have ended.

Figure 33 — Task states

Transition S0:S1: If a newly accepted task has the SIMPLE or ORDERED task attribute, it shall transition to the
dormant task state.

Transition S0:S2: If a newly accepted task has the HEAD OF QUEUE or ACA task attribute, it shall transition to
the enabled task state.

not a revision of SCSI Architecture Model - 3 (SAM-3) 87



T10/02-119r0 revision -1 16 March 2002

Transition S1:S2: The task attribute of a dormant task shall affect the transition to the enabled task state as
follows:

a) A dormant task having the SIMPLE task attribute shall enter the enabled task state when all older Head of
Queue and older Ordered tasks (see 7.3) have ended; or

b) A dormant task having the ORDERED task attribute shall enter the enabled task state when all older tasks
(see 7.3) have ended.

If the TST field in the Control mode page (see SPC-2) contains 000b, then the transition from dormant task to
enabled task shall not occur while a CA or ACA is in effect for any initiator (see 5.8.1.4 and 5.8.1.5). If the TST field
in the Control mode page contains 001b, then dormant tasks from the faulted initiator shall not transition to the
enabled task state while a CA or ACA is in effect for that initiator (see 5.8.1.4).

Transition S2:S3: The establishment of a CA or ACA condition (see 7.3) shall cause zero or more enabled tasks
to enter the blocked task state as described in 5.8.1.2.

Transition S3:5S2: When a CA or ACA condition is cleared (see 7.3), tasks that entered the blocked state the CA
or ACA condition was established (see 5.8.1.2) shall re-enter the enabled task state.

Transition S2:S4: A task that has completed (see 7.3) or aborted (see 7.3 and 5.6) shall enter the ended task
state. This is the only state transition that applies to an ACA task.

Transitions S1:54, S3:S4: A task abort event (see 7.3 and 5.6) shall cause the task to unconditionally enter the
ended task state.

7.7 Task set management examples

7.7.1 Introduction

Several task set management scenarios are shown in 7.7.2, 7.7.3, and 7.7.4. The examples are valid for single or
multi-initiator cases, when the TST field contains 000b (i.e., the interaction among tasks in a task set is independent
of the initiator originating a task). The examples are also valid for a single initiator, when the TST field contains 001b
(i.e., task set management proceeds independently for each initiator and the events and transitions in one initiator’s
task set do not affect the task set management for another initiator’s task set. Throughout these examples, the
scope of the task set box drawn in each snapshot depends on the setting of the TST field in the Control mode page
(see SPC-2).

The figure accompanying each example shows successive snapshots of a task set after various events, such as
task creation or completion. In all cases, the constraints on task completion order established using the QUEUE
ALGORITHM MODIFIER field and DQUE bit in the Control mode page (see SPC-2) are not in effect.

A task set is shown as an ordered list or queue of tasks with the head of the queue towards the top of the figure. A

new Head of Queue task always enters the task set at the head, displacing older Head of Queue tasks. Simple,
Ordered and ACA tasks always enter the task set at the end of the queue.

88 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002 T10/02-119r0 revision -1

Tasks, denoted by rectangles, are numbered in ascending order from oldest to most recent. Fill, shape and line
weight are used to distinguish task states and attributes are shown in table 31.

Table 31 — Task attribute and state indications in examples

Task Attribute Box Shape Line Weight Task State | Box Fill
SIMPLE Rounded Corners | Thin Enabled White
ORDERED Square Corners | Thin Dormant Grey
HEAD OF QUEUE Square Corners | Thick Blocked Black
ACA Square Corners | Thin Dashed

The conditions preventing a dormant task from entering enabled task state (except for ACA and CA conditions) are
shown by means of “blocking boundaries”. Such boundaries appear as horizontal lines with an arrow on both
ends. The tasks causing the barrier condition are described as part of each example. A task is impeded by the
barrier if it is between the boundary and the end of the queue. When no ACA or CA is in effect, a task enters the
enabled task state after all intervening barriers have been removed.

7.7.2 Head of Queue tasks

Figure 34 shows task set conditions when several Head of Queue tasks are processed.

Task Set Task Set Task Set
Head of Queue Head of Queue Head of Queue
Task 1 Task 3 Task 1

Blocking boundarL Head of Queue Blocking boundarL
task 1 Task 1 task 1

Blockin
task 1

Blocking boundar
task 3 L

Snapshot 1 Snapshot 2 Snapshot 3

Time

Figure 34 — Head of Queue tasks and blocking boundaries (example 1)

In snapshot 1 the task set initially contains one Head of Queue and one Simple task. As shown by the blocking
boundary, simple task 2 is in the dormant task state because of the older Head of Queue task. Snapshot 2 shows
the task set after Head of Queue task 3 and Simple task 4 are created. The new Head of Queue task is placed at
the front of the queue in the enabled task state, displacing task 1. Snapshot 3 shows the task set after task 3
completes. Since the conditions indicated by the task 1 blocking boundary are still in effect, tasks 2 and 4 remain in
the dormant task state.

not a revision of SCSI Architecture Model - 3 (SAM-3) 89



T10/02-119r0 revision -1 16 March 2002

Figure 35 is the same as the previous example, except that task 1 completes instead of task 3.

Task Set Task Set Task Set
Head of Queue Head of Queue Head of Queue
Task 1 Task 3 Task 3

Blocking boundar
Head of Queue .
B task 1 - Task 1 Simple Task 2
Blocki Blocki
- < ocking boundarL < ocking boundarL
task 1 task 3

Blocking boundar
task 3 L

Snapshot 1 Snapshot 2 Snapshot 3

Time

Figure 35 — Head of Queue tasks and blocking boundaries (example 2)

The completion of task 1 allows task 2 to enter the enabled task state. Simple task 4 is placed in the dormant task
state until task 3 completes.

90 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002

7.7.3 Ordered tasks

An example of Ordered and Simple task interaction is shown in figure 36.

T10/02-119r0 revision -1

Task Set

Task Set

Task Set

Simple Task 1

'

Blocking boundarL

tasks 1 and 2

Blocking boundar
task 2 L

llA

Blocking boundarL
tasks 1-4 task 5

Ordered Task 2

[

Simple Task 3 j

Blocking boundar
task 2 L

Blocking boundarL
tasks 2-4 task 5

Simple Task 4

Blocking boundar

tas

ks 3 and 4 task

Snapshot 1

Snapshot 2

Snapshot 3

Time

Figure 36 — Ordered tasks and blocking boundaries

The state of dormant tasks 2 through 5 is determined by the requirements shown in table 32.

Table 32 — Dormant task blocking boundary requirements

Task | Reason for blocking boundary
2 An Ordered task is not allowed to enter the enabled task state
5 until all older tasks have ended.
3 A Simple task is not allowed to enter the enabled task state until
4 all older Head of Queue and older Ordered tasks have ended.

The table 32 constraints are shown by the blocking boundaries in snapshot 1.

In snapshot 2, the completion of task 1 allows ordered task 2 to enter the enabled task state. Since the initial
constraints on tasks 3, 4 and 5 are still in effect, these tasks must remain in the dormant task state. As shown in
snapshot 3, the completion of task 2 triggers two state changes: the transitions of task 3 and task 4 to the enabled
task state. Task 5 must remain in the dormant task state until these tasks end.

not a revision of SCSI Architecture Model - 3 (SAM-3)

91



T10/02-119r0 revision -1

7.7.4 ACA task

16 March 2002

Figure 37 shows the effects of an ACA condition on the task set. This example assumes the QERR field contains
00b in the Control mode page (see SPC-2). Consequently, clearing an ACA condition does not cause tasks to be

aborted.

Task Set

Task Set

Task Set

Task Set

Simple Task 1

Simple Task 2

Blocking boundar
tasks 1 and 2 task 3

i

\/
A

Blocking boundarL

Simple Task 1

Blocking boundar
task 1 and task 3

Blocking boundarL

Simple Task 1

Blocking boundar
task 1 and task 3

Blocking boundarL

Simple Task 1

Simple Task 4

task 3 task 3 task 3
| ACATask5 |
Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4
—
Time

Figure 37 — ACA task example

The completion of task 2 with CHECK CONDITION status causes task 1 to enter the blocked task state shown in
snapshot 2. In snapshot 3, Ordered task 3 is aborted using the ABORT TASK task management function and ACA
task 5 is created to perform additional handling for the exception. Once the ACA condition is cleared, (snapshot 4)
Simple task 1 is allowed to reenter the enabled task state. Since there are no Head of Queue or Ordered tasks
older than task 4, it too is allowed enter the enabled task state.

92

not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002

T10/1355-D revision -1

Annex A
(informative)

Identifiers and names for objects

A.1 Identifiers and names overview

There needs to be a clear understanding of what SCSI identifiers and names are and how those relate to the
objects defined in this standard and SCSI protocol standards. This annex summarizes SCSI identifiers and names.

The following SCSI architecture model objects (i.e., objects) have identifiers and names summarized in this annex:

a) SCSl initiator port (see 3.1.93)
b) SCSI target port (see 3.1.103)

c) Logical unit (see 3.1.59)

d) SCSl initiator device (see 3.1.92)
e) SCSI target device (see 3.1.102)

A.2 SCSI object and nexus relationship

The I_T_L_Q nexus defines the routing for tasks and task management functions and the identification of tasks.
The relationship between the nexus elements and the objects is defined in table A.1.

Table A.1 — Nexus element to object relationship

Nexus
Element

Object

Use

O rr 4

Initiator port

Target port

Logical unit
Task

Routing and task identification information
Routing and task identification information
Routing and task identification information
Task identification information

not a revision of SCSI Architecture Model - 3 (SAM-3)

93



T10/1355-D revision -1 16 March 2002

A.3 Identifiers and names

This standard defines the identifiers and name for the objects listed in A.1. The size requirements placed on identi-
fiers and names by this standard are as shown in table A.2. Table A.2 also lists whether this standard or SPC-2
requires SCSI protocols and logical units to support identifiers and names for an object.

Table A.2 — Object size and support requirements

Identifier 2 Name P
Support Support
Object Size Requirements Size Requirements
Initiator device n/a n/a not specified optional
Target device n/a n/a not specified optional
Initiator port not specified mandatory not specified optional
Target port not specified mandatory not specified © optional
Logical unit 8 bytes (max) mandatory not specified © mandatory
a8 As defined in this standard.
b There are no names currently defined in this standard.
¢ Reported in the Device Identification VPD page (see SPC-2).

Each SCSI protocol defines the size and format of identifiers and names for each object.

See table A.3 for a list of the size of the identifiers for each SCSI protocol. See table A.4 for a list of the format of the
identifiers for each SCSI protocol.

Table A.3 — Object identifier size for each protocol

Identifier size
Object SPI-4 FCP-2 SRP iSCSI SBP-3
Initiator port | 4 pits @ 3 bytes 16 bytes 262 bytes 2 bytes
Target port 4 bits @ 3 bytes 16 bytes 258 bytes 11 bytes
Logical unit 6 bits 8 bytes 8 bytes 8 bytes 2 bytes
(data group
transfers)
8 bytes
(packetized
transfers)
8 SPI-4 uses a bit significant representation of the SCSI port identifier, therefore,
the maximum number of SCSI ports is 16.

94 not a revision of SCSI Architecture Model - 3 (SAM-3)



16 March 2002

Table A.4 — Object identifier format for each protocol

T10/1355-D revision -1

Identifier format
Object SPI-4 FCP-2 SRP iSCSI SBP-3
Initiator | bit significant | binary value EUI 64 iSCSI name binary value
port (a max of 16 + 8 byte + Initiator
ports; one for extension 2 Session
each bit) Identifier
(ISID) © ¢
Target bit significant | binary value EUI 64 + 8 iSCSI name EUI 64 +
port (a max of 16 byte + Target Discovery ID
ports; one for extension @ | Portal Group e
each bit) Tag P d
Logical binary value | As specified As specified As specified As specified
unit (6 bit) or in this in this in this in this
As specified standard standard standard standard
in this
standard
(8 byte)

8 Required to be worldwide unique and recommend to be EUI 64 + 8 byte extension.
b The iSCSI name should be worldwide unique, 255 bytes maximum in UTF-8 format with
null termination.

The Initiator Session Identifier (ISID) is a non-zero six byte integer.
The Target Portal Group Tag is a non-zero two byte integer.
€ See IEEE Std P1212 for more information on the Discovery ID.

Table A.5 — Object name size for each protocol

Name size
Object SPI-4 FCP-2 SRP iSCSI SBP-3
Initiator name | not specified | not specified | not specified 256 bytes not specified
Target name | not specified | not specified | not specified 256 bytes not specified
Initiator port | not specified 8 bytes 16 bytes 262 bytes 8 bytes
Target port not specified 8 bytes 16 bytes 258 bytes 11 bytes
Logical unit not specified 8or16 not specified | notspecified | notspecified
a byteS a a a a

a8 Reported in the Device Identification VPD page (see SPC-2).

not a revision of SCSI Architecture Model - 3 (SAM-3)

See table A.5 for a list of the size of the names for each SCSI protocol. See table A.6 for a list of the formation of
the names for each SCSI protocol.

95



T10/1355-D revision -1 16 March 2002

Table A.6 — Object name format for each protocol

Name format

Object SPI-4 FCP-2 SRP iSCSI SBP-3
Initiator name | not specified not specified not specified iSCSI name 2 not specified
Target name not specified not specified not specified iSCSI name 2 not specified
Initiator port not specified Fibre Channel | EUI 64 + 8 byte iISCSI name EUI 64

name_identifier | axtension P + Initiator
Session
Identifier (ISID)
a c
Target port not specified Fibre Channel | EUI 64 + 8 byte iISCSI name EUI 64 +
name_identifier | axtension P + Target Portal | Discovery ID ©
Group Tag @ ¢
Logical unit | Device ldentifi- 8 or 16 byte not specified not specified As specified in
cation VPD Fibre Channel this standard
page name name_identifier
(see SPC-2)

The iSCSI name should be worldwide unique, 255 bytes maximum in UTF-8 format with null
termination.

Required to be worldwide unique and recommend to be EUI 64 + 8 byte extension.
The Initiator Session Identifier (ISID) is a non-zero six byte integer.

The Target Portal Group Tag is a non-zero two byte integer.

See IEEE Std P1212 for more information on the Discovery ID.

A.4 SCSI protocol acronyms and bibliography

A.4.1 EUI-64 (Extended Unique Identifier, a 64-bit globally unique identifier): The IEEE maintains a tutorial
describing EUI-64 at http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

A.4.2 FCP-2: SCSI Fibre Channel Protocol -2 (see 1.3).

A.4.3 IEEE Std P1212: Standard for a Control and Status Register (CSR) Architecture for Microcomputer Buses.
See http://www.ieee.org/.

A.4.4 iSCSI: As of this writing, the most recently published iSCSI internet draft is: http://www.ietf.org/
internet-drafts/draft-ietf-ips-iscsi-10.txt. Newer drafts may be identified at http://http://www.ietf.org/html.charters/
ips-charter.html.

A.4.5 SBP-3: Serial Bus Protocol -3 (see 1.3).

A.4.6 SPI-4: SCSI Parallel Interface -4 (see 1.3).

A.4.7 SRP: SCSI RDMA Protocol (see 1.3).

A.4.8 UTF-8: See ISO/IEC 10646-1:2000, Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane. See http://www.iso.org/.

96 not a revision of SCSI Architecture Model - 3 (SAM-3)



	1 Approved Documents Included
	2 Revision History
	2.1 Revision -1 (6 March 2002, 02-119r0)
	2.2 Revision 0 (?? May 2002)

	3 Plans for Future Revisions
	3.1 Minor Changes
	3.2 Substantial Changes

	Foreword
	Introduction
	1 Scope
	1.1 Introduction
	1.2 Requirements precedence
	1.3 SCSI standards family

	2 Normative references
	2.1 Normative references
	2.2 Approved references
	2.3 References under development

	3 Definitions, symbols, abbreviations, and conventions
	3.1 Definitions
	3.2 Acronyms
	3.3 Keywords
	3.4 Editorial Conventions
	3.5 Numeric Conventions
	3.6 Notation Conventions
	3.6.1 Hierarchy diagram conventions
	3.6.2 Notation for procedures and functions
	3.6.3 Notation for state diagrams


	4 SCSI Architecture Model
	4.1 Introduction
	4.2 The SCSI distributed service model
	4.3 The SCSI client-server model
	4.4 The SCSI structural model
	4.5 SCSI domain
	4.6 The service delivery subsystem
	4.6.1 Synchronizing client and server states
	4.6.2 Request/Response ordering

	4.7 SCSI devices
	4.7.1 SCSI initiator device
	4.7.2 SCSI target device
	4.7.3 SCSI target/initiator device
	4.7.4 SCSI port identifier
	4.7.5 SCSI task router
	4.7.6 SCSI device name
	4.7.7 SCSI port name

	4.8 Logical units
	4.9 Tasks
	4.9.1 The task object
	4.9.2 Task tags

	4.10 The nexus object
	4.11 SCSI ports
	4.11.1 SCSI port configurations
	4.11.2 SCSI devices with multiple ports
	4.11.3 Multiple port target SCSI device structure
	4.11.4 Multiple port initiator SCSI device structure
	4.11.5 Multiple port target/initiator SCSI device structure
	4.11.6 SCSI initiator device view of a multiple port SCSI target device
	4.11.7 SCSI target device view of a multiple port SCSI initiator device

	4.12 Model for dependent logical units
	4.12.1 Introduction
	4.12.2 LUN 0 address
	4.12.3 Eight byte LUN structure
	4.12.4 Logical unit addressing method
	4.12.5 Peripheral device addressing method
	4.12.6 Flat Space Addressing Method

	4.13 Model for extended logical unit addressing
	4.13.1 Introduction to extended logical unit addressing
	4.13.2 Extended logical unit addressing formats
	4.13.3 Well known logical unit addressing

	4.14 The SCSI model for distributed communications

	5 SCSI Command Model
	5.1 The Execute Command remote procedure
	5.2 Command Descriptor Block (CDB)
	5.2.1 CDB Format
	5.2.2 operation code byte
	5.2.3 control byte

	5.3 Status
	5.3.1 Status codes
	5.3.2 Status precedence

	5.4 SCSI Protocol Services in Support of Execute Command
	5.4.1 Overview
	5.4.2 Execute Command Request/Confirmation Protocol Services
	5.4.3 Data Transfer Protocol Services
	5.4.3.1 Introduction
	5.4.3.2 Data-In Delivery Service
	5.4.3.3 Data-Out Delivery service


	5.5 Task and command lifetimes
	5.6 Aborting tasks
	5.6.1 Mechanisms that cause tasks to be aborted
	5.6.2 When an initiator aborts its own tasks
	5.6.3 When an initiator aborts another initiator's tasks

	5.7 Command processing examples
	5.7.1 Unlinked command example
	5.7.2 Linked command example

	5.8 Command processing considerations and exception conditions
	5.8.1 Contingent Allegiance (CA) and Auto Contingent Allegiance (ACA)
	5.8.1.1 Overview
	5.8.1.2 Establishing a CA or ACA
	5.8.1.3 Handling tasks when neither CA or ACA is in effect
	5.8.1.4 Handling new tasks from the faulted initiator when CA or ACA is in effect
	5.8.1.5 Handling new tasks from initiators other than the faulted initiator when CA or ACA is in ...
	5.8.1.6 Clearing a CA condition
	5.8.1.7 Clearing an ACA condition

	5.8.2 Overlapped commands
	5.8.3 Incorrect Logical Unit selection
	5.8.4 Sense data
	5.8.4.1 Sense data introduction
	5.8.4.2 Asynchronous Event Reporting
	5.8.4.3 Autosense

	5.8.5 Unit Attention condition
	5.8.6 Hard reset
	5.8.7 Logical unit reset


	6 Task Management Functions
	6.1 Introduction
	6.2 ABORT TASK
	6.3 ABORT TASK SET
	6.4 CLEAR ACA
	6.5 CLEAR TASK SET
	6.6 LOGICAL UNIT RESET
	6.7 TARGET RESET
	6.8 WAKEUP
	6.9 Task management protocol services
	6.10 Task management function example

	7 Task Set Management
	7.1 Introduction to task set management
	7.2 Controlling task set management
	7.3 Task management events
	7.4 Task states
	7.4.1 Overview
	7.4.2 Enabled task state
	7.4.3 Blocked task state
	7.4.4 Dormant task state
	7.4.5 Ended task state
	7.4.6 Task states and task lifetimes

	7.5 Task Attributes
	7.5.1 SIMPLE Task
	7.5.2 ORDERED Task
	7.5.3 HEAD OF QUEUE Task
	7.5.4 ACA Task

	7.6 Task state transitions
	7.7 Task set management examples
	7.7.1 Introduction
	7.7.2 Head of Queue tasks
	7.7.3 Ordered tasks
	7.7.4 ACA task


	Annex A
	Identifiers and names for objects
	A.1 Identifiers and names overview
	A.2 SCSI object and nexus relationship
	A.3 Identifiers and names
	A.4 SCSI protocol acronyms and bibliography


