
T10/02-078, revision 1

Page 1 Reservations & Nexus

Date: February 27, 2002
To: T10 Committee (SCSI)
From: Mallikarjun Chadalapaka (cbm@rose.hp.com) and Randy Haagens
(randy_haagens@hp.com), Hewlett-Packard.
Subject: Reservations & Nexus

1. Introduction and history
FCP-2 specifies that the Reserve-Release managed reservations (hereinafter referred to as “regu-
lar reservations”) are released when the PRLI session object is implicitly or explicitly destroyed.
iSCSI at the moment (as of rev10) takes its cue from FCP-2, largely to make it easier for the
iSCSI-to-FCP bridges, in specifying that regular reservations are cleared when the iSCSI Login
session is implicitly or explicitly destroyed. It is also to be noted that parallel SCSI (hereinafter
referred to as “pSCSI”) does not clear the reservations when the I_T nexus (roughly equivalent to
FCP-2 and iSCSI login sessions) object is destroyed. SRP is currently considering if reservations
should be retained across SRP logouts - i.e. generally similar to pSCSI’s behavior.

The purpose of this memo is to explore the reasons and options behind this divergence between
transports and to seek architectural guidance from the T10 committee. This will assist all SCSI
transport protocols to make considered design decisions consistent with SCSI architecture.

The authors gratefully acknowledge the comments from Marjorie Krueger, George Penokie,
Ralph Weber and Rob Elliott which helped frame the discussion presented here.

2. Why this divergence?
The authors believe that the following factors contributed to the aforementioned divergence in the
way different transport protocols defined the life of regular reservations.

• Networked storage transports like FCP-2 (and iSCSI for now) wanted to directly associate the
life of a regular reservation to that of an I_T nexus, and defined the I_T nexus as the protocol
“session” (process login session for FCP-2). This desire is based on the rationale that an initi-
ator that “disappears” from a storage fabric may or may not ever come back to reclaim (and
release) the reservation. These transports did not want the SCSI targets to continue to hold
the reservations forever - thus eventually forcing an initiator wanting access to use a target/LU
reset to clear the reservations, the consequences of which are likely to be severe on several
other initiators in a networked storage environment. [However, this desire unfortunately
raises some serious concerns about the efficacy of reservations should the transport allow the
reservation to disappear when none of the cluster principals requests releasing the reserva-
tion - i.e. an “implicit” release due to external factors. As far as the authors can tell, both
FCP-2 and iSCSI allow this. This concern is further elaborated in section 3.2.1.]

• SAM-2, rev 21, clause 4.10, defines a nexus object, and details the different kinds of nexuses
that are permissible: I_T, I_T_L, I_T_L_Q, or I_T_L_x nexus. But it does not define

 (a) the duration of validity (or life) of the objects, more specifically when each of these
objects comes into existence and when it is destroyed.

 (b) the inter-dependencies (or lack thereof) among these objects (for example, can I_T_L
nexus object exist in the absence of the corresponding I_T nexus object?)

T10/02-078, revision 1

Page 2 Reservations & Nexus

 (c) the dependencies (if any) of other SCSI abstractions like reservations on these objects.

• Neither SPC-3 nor SPC-2 specifically associates the life of a reservation to the duration of the
corresponding I_T_L nexus object, though one may argue that the association is implicit. If it
were explicit - since the transport protocols do not concern themselves with ULP-abstractions
such as LUNs (other than carrying a LUN in the transport envelope) - it might have motivated
FCP-2 (and thus iSCSI) not to require the reservations to be cleared on the disappearance of
an I-T nexus.

3. Regardless of which option we pick...

3.1.Underlying assumptions
Before we launch into a detailed analysis of a few design options, let us review the underlying
architectural assumptions made by all the options presented later.

• The I_T_L nexus object is completely in the domain of the SCSI ULP layer. What this means
is that the ULP owns the nexus object and the object (at least logically) exists at the ULP level
regardless of the transport. This needs to be so specified in SAM-2. (Each of the design
options presented in section 4 defines the duration of I_T_L nexus object for that case.)

• The regular reservation object is completely in the domain of the SCSI ULP layer.

• The I_T_L_Q nexus object is instantiated when the corresponding I_T_L nexus object is
already instantiated (thus exists) and when a task with a tag Q is issued on the nexus. The
I_T_L_Q nexus object is destroyed on the conclusion of the said task, or when the I_T_L
nexus object is destroyed. This needs to be so specified in SAM-2.

None of the deployed SCSI implementations needs to change regardless of the option we choose,
but SCSI transport protocol documents would need to appropriately reflect the option we choose
here. The purpose of this proposal is to define a sound, consistent architectural basis for future
transports, but not to require any implementation changes/upgrades of existing transports.

3.2.And the assertions
The authors believe that the following two behaviors must be upheld in the final choice we make.

3.2.1.Transport events must not implicitly clear regular reservations
Regular reservations come in to existence when one of the cluster principals establishes a reserva-
tion on an LU for a specific reason, likely one of: establishing the ownership (as shared tape
libraries generally operate), preventing ghost I/Os from a failed principal (as HP MC/Service
Guard intends to), or advertising the well-being in a challenge/defense scheme (as in Microsoft
Cluster Services). In other words, the establishment of reservation always happens on an explicit
action from the SCSI layer.

The set of events that clear the reservation must only consist of explicit SCSI-initiated events -
these may include error recovery actions like target reset or LU reset, or simply a RELEASE com-

T10/02-078, revision 1

Page 3 Reservations & Nexus

mand. Any “implicit” loss of reservations without the involvement of cluster principals is a sure
recipe for trouble.

Consider the case of an FCP-based principal who is in the middle of a multi-I/O transaction on an
LU, after having reserved the LU. Assume that the hardware path from the initiator to the target
suffered a failure due to physical link disconnect, causing an RSCN (about the initiator) to be
delivered to the target which in turn could result in target clearing its reservations before the phys-
ical link issue is addressed. Any other principal wanting to reserve the LU would find the LU
unreserved at this point, leading to data coherency problems. The same problem exists for
Nport_ID changes due to loop reconfigurations, or global fabric events (as in fabric name change,
merging of fabrics etc.) that imply an implicit logout.

The exact same scenario is applicable to an iSCSI-based principal faced with a TCP connection
failure in a single-connection session, which could then find itself locked out by another principal.
[assuming iSCSI rev10 behavior]

The fundamental issue in the above examples is that neither the cluster manager nor any other
principal sensed the original principal to be down (rightly so because it was not!) and so the tak-
ing-over principal does not suspect a problem with transactional integrity, and so no “roll-back”
of operations would be performed on the data!

3.2.2.Active tasks must be terminated when a transport session collapses
If tasks were to exist beyond a session failure, they would find themselves stranded on the target,
which has no clue as to the expected lifetime of each of the tasks. The session failure however
does not present any serious issues on the initiator - each task times out individually and the
appropriate task cleanup happens.

A target really has only two alternatives to deal with a set of stranded tasks -
 • terminate all the tasks along with the session failure - which is what FCP-2 specifies, and so

does iSCSI.
 • timeout the tasks after “sometime”
 (a) There is no SCSI-level way of conveying the expected lifetime for the tasks from the ini-

tiator - so the “sometime” is undefined, and likely to be implementation or even context
dependent.

 (b) Assuming that target picked an arbitrary value, this is an asymmetric timeout - the initia-
tor may have terminated tasks long before the target did, and could re-use the same task
tags (FC FQ_XID, or iSCSI ITT) on a new instantiation of the I_T_L nexus causing
conflicts with target view. Or worse still, the initiator may attempt to continue the tasks
on a new instantiation of the I_T_L nexus when the target had already terminated them.

Terminating the active tasks with the transport session failure/closure is the only decent choice.
This paper explores the right object relationships that result in this desired behavior.

4. What are the design options?
4.1.Option A: Reservations have nothing to do with transport layer dynamics

T10/02-078, revision 1

Page 4 Reservations & Nexus

This option argues that from a clean layering perspective, all regular reservations are abstractions
known only to the SCSI ULP layer and hence are unaffected by transport level dynamics, which
happen at a lower level. When an I_T nexus is re-established between the same SCSI ports, the
pre-existing I_T_L nexus objects and reservation objects are implicitly associated with the new
instantiation of the nexus. This would also imply that tasks somehow can be resumed on a new
session in the case of networked transports.

In this model, I_T nexus object is completely contained in the transport layer and is completely
abstracted from the SCSI ULP. The presence/absence of I_T nexus object does not affect any of
the ULP objects including I_T_L nexus and reservation.

Pros -
• Enforces clean layering: transport layer doesn’t know or care about ULP abstractions.
• Relieves the transport protocols from specifying anything in relation to reservations.
• Transport exception conditions can not cause a surprise “implicit” loss of reservations.
• Substantiates the behavior of pSCSI since pSCSI’s I_T nexus does not affect reservations.
• Good for multi-protocol bridges.

Cons -
• Requires an exception for FCP-2’s reservation behavior.
• Does not address the requirement (described in section 3.2.1) that all tasks be terminated

deterministically on both ends when the “login session” collapses for connection-oriented
(networked) transports.

• Requires targets in networked transports to maintain reservation state indefinitely for disap-
peared initiators. [Sidenote: This issue can be addressed in one of two ways: (a) define a new
SCSI command that clears all third-party regular reservations (sort of a light-weight LU
reset), or (b) define a scheme of leases for reservations so they automatically expire.]

• This does not provide an architectural basis for lost reservations due to transport resets (such
as bus resets) on targets.

4.1.1.Life of I_T_L nexus and reservation objects
In this model, the I_T_L nexus object is instantiated when the first valid task to the LU is received
and accepted (i.e. the task enters the Dormant state) and it is destroyed when the target/LU is
reset.

The reservation object is instantiated on RESERVE, and destroyed on RELEASE, or upon
destruction of the I_T_L nexus object.

4.1.2.Object relationship diagram

T10/02-078, revision 1

Page 5 Reservations & Nexus

4.2. Option B: Transport influences when I_T_L nexus goes away, and can notify resets
(thus clearing reservations)

This school of thought argues that we need to:
a. make it explicit in SAM-2 that the SCSI ULP has a notion of “logical” I_T nexus. In other

words, make the architectural statement that the SCSI ULP is a connection-oriented protocol.
b. allow each transport to specify when to notify the SCSI ULP about a solicited/unsolicited

destruction of the “logical” I_T nexus object. This in turn causes the SCSI ULP to discard all
the associated I_T_L nexus objects (even though the object was instantiated upon ULP
actions). SAM-2 defines a new protocol notification service “LostNexus” to be communi-
cated across the protocol service interface from the transport layer into the SCSI ULP layer.

c. architect a new protocol service notification “TransportReset” to be communicated across the
protocol service interface from the transport layer into the SCSI ULP layer. This would pro-
vide the architectural support for transport-specific events (ex., bus reset, FC LR) that would
cause a target reset.

At first glance, this option seemingly presents a fundamental problem for pSCSI since the term
“I_T nexus” is traditionally used to represent the physical bus nexus, and clearly the reservations
are not discarded on every BUS FREE! But consider the following rationale:
When the physical bus nexus is not present (i.e. on BUS FREE), pSCSI already supports the
notion of
 •a logical I_T_L_Q nexus object (continuing tasks across disconnects and reconnects)
 •a logical I_T_L nexus object (supporting reservations even on a quiesced bus)
It appears merely a mental experiment to extend the same “logical-ness” to I_T nexus object.

To summarize, in this model, the I_T_L nexus object is dependent on the existence of the (logi-
cal) I_T nexus object (in the ULP domain), and transport dictates the duration of I_T nexus
object.

Spawning
relationship

I_T_L
nexus
object

I_T
nexus
object

I_T_L_Q
nexus
object

Regular
reservation
object

Dependency
relationship

Clearing
event

Legend

<Target/LU reset>

 <RELEASE>

Transport domain

ULP domain

T10/02-078, revision 1

Page 6 Reservations & Nexus

Pros -
• This acknowledges the connection-oriented nature of several new SCSI transports, by

abstracting that nature into SCSI ULP. A non-networked transport is merely a degenerate
case.

• This allows each transport to specify when to generate the LostNexus and TransportReset
notifications across the protocol service interface.

• The delinking of the reservation object from the I_T_L nexus object keeps frivolous storage
network transport conditions from clearing the reservations (for example, iSCSI TCP connec-
tion failure), even while it clears I_T and I_T_L nexus objects.

• This creates the architectural basis for FCP-2’s and iSCSI’s requirement to terminate the
active tasks on “session failure”.

• This option provides the architectural basis for the AccessID enrollment state to be associated
to the I_T nexus object (since both are in the ULP domain).

Cons -
• This introduces an asymmetry between the creation and destruction of the I_T_L nexus

object. While SCSI ULP always causes the instantiation of the object, either the transport or
the ULP (as in target reset task management function) directs the decision to discard the
object.

• FCP-2 requires an exception in this model, unless we decide to reason that the TransportReset
event is notified to the ULP on a session logout.

4.2.1.Life of I_T_L nexus and reservation objects
In this model, the I_T_L nexus object is instantiated when the first valid task to the LU is received
and accepted (i.e. the task enters the Dormant state) and destroyed upon LostNexus asynchronous
notification to the ULP (about the lost parent I_T nexus).

The reservation object is instantiated on RESERVE, and destroyed on RELEASE, target/LU
reset, or upon TransportReset asynchronous notification to the ULP.

4.2.2.Object relationship diagram

T10/02-078, revision 1

Page 7 Reservations & Nexus

4.2.3. How do transports behave in this model?
Since this new option proposes two new notifications, let us attempt to specify the behavior of
three transport protocols - pSCSI, FCP-2 and iSCSI - in this new model.

4.3.Option C: Validity of reservations is transport-specific and per LU
This line of reasoning argues that since the regular reservations are SCSI abstractions, it is reason-
able to indicate the nature of reservation handling via SCSI ULP means (even while the nature
may be protocol-defined). In this model, it is acceptable for regular reservations to be cleared
when the I_T nexus is destroyed and this option argues that all networked transports would

Transport
LostNexus is

notified on transport
event

TransportReset on
target is notified on

transport event

pSCSI Bus Reset BusReset

FCP-2 Session logout Session logout

iSCSI Session logout nonea

a. One may consider iSCSI’s “target cold reset” to be the fit in this place.
iSCSI defines target cold reset to be equivalent to a target powercycle.

Spawning
relationship

I_T_L
nexus
object

(logical) I_T
nexus
object

I_T_L_Q
nexus
object

Regular
reservation
object

Dependency
relationship

Clearing
event

Legend<LostNexus>

<RELEASE>

ULP domain

(transport) I_T
nexus
object

Transport domain

<Transport Reset>

<Target/LU reset>

 or
<Target/LU reset>

T10/02-078, revision 1

Page 8 Reservations & Nexus

choose to do it (for the “disappeared initiator” reason). However transports like pSCSI would
continue to delink (the physical) I_T nexus from regular reservations.

Rob Elliott presented a scheme to the T10 reflector on 02.21.2002 that generally falls under this
category. Rob suggested that a bit in an LU mode page may indicate if reservations are cleared in
a protocol-defined way (as in networked transports), or not (as in the case of pSCSI).

Pros -
• Most expedient solution, that essentially makes the architectural statement that the differing

behaviors are intended. Each transport protocol defines if it is of “networked” class or not.

Cons -
• This does not provide any architectural guidance to new transports, essentially allows diver-

gence as each sees fit.
• This would allow even unexpected transport exceptions to implicitly clear reservations.
• This does not provide an architectural basis for lost reservations due to transport resets (such

as bus resets) on targets.
• This approach continues to create issues for multi-protocol bridges unless future transports

decide to require both “networked” and non-networked behaviors from all LUs (which is
unlikely).

• Protocol-specific expectations are imposed all the way up to the LU level.

4.3.1.Life of I_T_L nexus and reservation objects
In this model, in the case of networked transport protocols, the I_T_L nexus object is instantiated
when the first valid task to the LU is received and accepted (i.e. the task enters the Dormant s tate)
and it is destroyed when the target/LU is reset, or when the I_T nexus object is destroyed.

In this model, in the case of non-networked transport protocols, the lifetime of I_T_L nexus
object is as described in section 4.1.1.

The reservation object is instantiated on RESERVE, and destroyed on RELEASE, or upon trans-
port-defined conditions.

4.3.2.Object relationship diagram

T10/02-078, revision 1

Page 9 Reservations & Nexus

4.4.Option D: Let’s obsolete reservations!
It was pointed out to the authors that regular reservations are not heavily used in practice, and per-
haps not the right mechanism to deploy going forward in any case. If deployment and usage of
persistent reservations is the desired objective, we can choose to deprecate regular reservations to
encourage all SCSI implementations to move away from using them.

Pros -
• May be just the right step from a long-term perspective.
• No need to rationalize the existing contradictions in different transports.
• No need for new transport protocols to address this issue at all.

Cons -
• Forces everyone to transition to a mechanism that is relatively more involved than simple reg-

ular reservations.
• Deprecating reservations will not address other architectural issues on hand! Certain changes

are called for in any case, this can’t be the only element in a solution package.

4.4.1.Life of I_T_L nexus and reservation objects
The existing differences in the life expectancy of I_T_L nexus object will continue until the pro-
tocols are obsoleted.

The existing differences in the life expectancy of regular reservation object will continue until the
protocols are obsoleted.

4.4.2.Object relationship diagram

Spawning
relationship

I_T_L
nexus
object

I_T
nexus
object

I_T_L_Q
nexus
object

Regular
reservation
object

Dependency
relationship

Clearing
event

Legend

<Target/LU reset>

<RELEASE>

Transport domain

ULP domain

<some transports,
 likely session drop>

<some transports,
 likely session drop>

T10/02-078, revision 1

Page 10 Reservations & Nexus

5. Now the windfall
While this proposal for the formalization of nexus objects in the SCSI documents was made pri-
marily focusing on Reservations, it turns out that the proposed changes enable other highly desir-
able changes as well. The authors have identified the following so far.
• SAM-2 currently defines the reset value of CRN (Command Reference Number) to be 1. It

should be augmented to state that the CRN is reset when the I_T_L nexus object is instanti-
ated.

• SPC-3 should be modified to state that the mode pages are reset (to the default or to the saved
pages) upon the instantiation of the I_T_L nexus object. In particular, the authors propose
that “Table 6 - Management of mode pages during PRLI and PRLO" in FCP-2 Revision 7a
with minor changes be adopted into SPC-3 (essentially with login and logout wording
replaced with I_T_L nexus object instantiation and I_T_L nexus object destruction respec-
tively).

• SAM-2 lists the events that can clear a CA (Contingent Allegiance) and ACA. The list of
events for both CA and ACA should be enhanced to include the event “I_T_L Nexus Object
destroyed”.

• SAM-2 lists the events that generate a Unit Attention condition. The list of events should
include “I_T_L Nexus Object instantiated”.

• If Option B is chosen: SPC-3 should specify that the AccessID enrollment state should be
reset to either “pending-enrolled” or “not-enrolled” state (the choice being vendor specific) on
the “I-T Nexus Object instantiated” event.

6. Conclusion
It is hoped that this memo will provide a suitable framework for deliberation of various architec-
tural alternatives and help the T10 committee in providing guidance to SCSI transport protocols
on the right course of action.

Spawning
relationship

I_T_L
nexus
object

I_T
nexus
object

I_T_L_Q
nexus
object

Regular
reservation
object

Dependency
relationship

Clearing
event

Legend

<Target/LU reset>

<RELEASE>

Transport domain

ULP domain

<some transports,
 likely session drop>

<some transports,
 likely session drop>

Don’t care anymore!

T10/02-078, revision 1

Page 11 Reservations & Nexus

In general, more specific language and a precise definition of lifetime for all nexus objects is nec-
essary in SCSI documents (SAM-2 and/or SPC-3) to achieve the following goals -
• an unambiguous architectural direction for new SCSI transport protocols,
• more precision to the current SCSI architecture and protocol documents,
• less burden on existing and emerging SCSI transport protocols since they do not need to spec-

ify actions and text that are more appropriate to the SCSI architecture and protocol documents
(the PRLI/PRLO table 6 in FCP-2 is an example).

• reaping the additional benefits described in section 5.

The authors would also like to point out that while the proposed list of changes in section 5 may
not be exhaustive, they are certainly representative of the type of changes that are to be made to
SCSI architecture and command documents.

