
T10/01-248r1

FROM: Andy Green
Peter Johansson

TO: T10 SBP-3 working group

DATE: August 2, 2001

RE: Multi-processor enhancements to FAST_START

This document is a revision of the FAST_START enhancement proposal first suggest by David
Wooten, next discussed at the Colorado Springs T10 meeting and subsequently described by
Andy Green in 01-248r0. Most of the changes reflect editorial considerations in preparation
for addition of the material to the SBP-3 working draft, but there are also minor technical
changes.

In Colorado Springs the working group tentatively agreed that the target could cache “fast
start” packets received out of order, but conversations at the 1394 Trade Association meeting
in Vancouver, BC between Messrs. Anderson, Fuller, Johansson and Wooten exposed a flaw
in the reasoning. In short, we concluded that a target fetch agent could make safe use of
“fast start” packets only if the initiator guarantees their in-order delivery or if the previous
ORB pointer equals the current value of the ORB_POINTER register. Because of difficulties
with unordered delivery and processing of both “fast start” ORBs and fetched ORBs, it is not
possible for a target to accumulate ORBs (with their associated previous and next ORB
pointers) and later link them into a coherent list.

T10/01-248r1

1

6.4.7 FAST_START register

The FAST_START register permits an initiator to signal a new task to an idle fetch agent by means of a
single block write request addressed to the register. This write-only register shall support block write
requests whose destination_offset is equal to the address of the FAST_START register and whose
data_length is a multiple of four and less than or equal to the vendor-dependent size of the register (see
7.6.10) but shall reject all other requests. The format of this register is illustrated below.

Figure 46 – FAST_START format

The previous_ORB field shall conform to the address pointer format illustrated by Figure 12 and shall
either be a null pointer or reference an ORB in initiator memory whose next_ORB field is equal to the
this_ORB field in the block write request addressed to the FAST_START register. When previous_ORB is
not a null pointer, the ORB’s Serial Bus address shall be formed from the concatenation of the 16-bit node
ID of the initiator (available to the target as a result of login) and the previous_ORB field.

The ORB_offset_hi and ORB_offset_lo fields together form an ORB_offset field which shall reference
this_ORB field shall conform to the address pointer format illustrated by Figure 12 and shall contain the
address of an ORB in initiator memory whose contents are identical to the ORB field in the block write
request addressed to the FAST_START register. The corresponding ORB’s Serial Bus address shall be
formed from the concatenation of the 16-bit node ID of the initiator (available to the target as a result of
login) and the ORB_offset this_ORB field and two least significant bits of zero.

this_ORB

previous_ORB

definition
most significant

page_table

ORB

effect

undefined

read values

least significant

write effects

T10/01-248r1

2

The ORB field shall contain an ORB whose format conforms to those specified by 5.1. The length of the
ORB is variable and shall be determined by the combination of rq_fmt and the type of fetch agent (normal
or stream) associated with the FAST_START register. An initiator shall not address a block write request
to the FAST_START register whose data_length, in bytes, is less than eight plus the size of the ORB field.
The target shall reject a block write request addressed to the FAST_START register if its data_length, in
bytes, is less than eight sixteen plus the size of the ORB field.

The page_table field, if present, shall immediately follow the ORB field. If the format of the ORB field
includes a nonzero page_table_present bit, the page_table field shall contain zero or more page table
entries whose order and content shall be identical to those contained within the page table referenced by
the data_descriptor field in the ORB referenced by ORB_offset this_ORB. The page_table field may be a
subset of the page table referenced by the ORB, but no partial page table entries shall be present (see
5.2). The target shall derive the number of immediately available page table entries from the data_length
of the block write request addressed to the FAST_START. The number of page table entries is limited by
the maximum size of the FAST_START register.

The data_length of block write requests addressed to the FAST_START register shall be a multiple of four.

The effects of a write transaction to the FAST_START register are dependent upon the value of its
previous_ORB field and the value of st in the associated AGENT_STATE register. If the target fetch agent
is in the DEAD state, writes to the FAST_START register shall be ignored. If the target fetch agent is in the
ACTIVE state, a write to the FAST_START register shall be interpreted as if it were a quadlet write
request addressed to the fetch agent’s DOORBELL register (the data payload shall be ignored) register
may cause unpredictable target behavior. Otherwise, when the target fetch agent is in the RESET or
SUSPENDED state, the value of the previous_ORB field determines the effect of a write to this register
shall cause ORB_offset. If previous_ORB contains a null pointer, this_ORB shall be stored in the
associated ORB_POINTER register, the ORB and page_table fields shall be stored in the target's working
set and the agent shall transition to the ACTIVE state. When previous_ORB is not null, the target may
perform these actions if and only if previous_ORB is equal to the fetch agent’s ORB_POINTER register.
See 9.1.5 for a precise definition of fetch agent state transitions that involve the FAST_START register.

9.1.4 Use of the FAST_START register (informative)

An initiator aware that a fetch agent is in either the RESET or SUSPENDED state may signal new task(s)
to the fetch agent by a block write request addressed to the fetch agent's FAST_START register (see
6.4.6). The block write request contains the address of pointers both to the ORB to be commenced and to
the previous ORB (i.e., the ORB whose next_ORB field references the ORB to be commenced), a copy of
the ORB itself and, optionally, page table data associated with the ORB.

Significant overhead reductions may result from the use of the FAST_START register, since the target
need not fetch either the address of the ORB or the ORB itself. In cases where the block write request
contains the entire page table, the target need not fetch the page table; even if the entire page table is not
written to the FAST_START register (it may be too large), the target may significantly reduce startup
latency by fetching the remaining page table entries concurrently with task execution.

Although an initiator may achieve optimal performance improvement by writing to the FAST_START
register when the fetch agent is in either the RESET or SUSPENDED state, the register may also be used
when the fetch agent is active. In this case, the target ignores the data payload of the block write request
and behaves as if a quadlet write had been addressed to the fetch agent’s DOORBELL register. There are
several ways by which an initiator may securely know that a fetch agent is in the RESET or SUSPENDED
state. If the initiator has not written to either of the fetch agent's ORB_POINTER or FAST_START
registers since the most recently completed login or reconnect operation or the most recent write to the
fetch agent's AGENT_RESET register, the fetch agent is in the RESET state. Similarly, if the initiator has
not written to either of the fetch agent's ORB_POINTER or FAST_START registers since the target last
stored a status block with a src field equal to one (see 5.3.1), the fetch agent is in the SUSPENDED state.

T10/01-248r1

3

NOTE – An initiator may use the above methods to deduce fetch agent state whether or not the target
implements the FAST_START register. If the register is not supported, startup latency for an idle fetch agent
may be reduced by writing the address of an ORB directly to the ORB_POINTER register instead of a write to
the DOORBELL register.

There are two variants to the use of the FAST_START register, one suitable for single-threaded initiators
and the other suitable for multi-threaded (possibly multiprocessor) initiators. If the initiator implementation
guarantees that no more than one block write request to the FAST_START register is attempted while the
fetch agent is idle, it may set the previous_ORB field to a null pointer; this causes the idle fetch agent to
unconditionally update the ORB_POINTER register with the value of this_ORB. Multi-threaded initiators
may not be able to satisfy this constraint for ordered writes to the FAST_START register, in which case the
method outlined below may be used:

a) Construct the ORB (with a null next_ORB field) and associated data structures in system memory.
The address of the ORB is designated this_ORB;

b) In an effectively atomic operation (i.e., one protected within a critical section), obtain the current
tail pointer to the linked list of active ORBs, save it as previous_ORB and replace the tail pointer
with this_ORB;

c) Store this_ORB in the next_ORB field of the ORB referenced by previous_ORB;

d) Initiate a block write request to the fetch agent’s FAST_START register; its data payload should
include previous_ORB, this_ORB, a copy of the ORB and, optionally, page table information.

The presence of a non-null previous_ORB field permits the fetch agent to ignore FAST_START write
requests that arrive out of order.

Either a single ORB or a linked list of ORBs may be signaled in a single block write request to the
FAST_START register, dependent upon the value of the next_ORB field in the ORB contained within the
block write.1 Once a successful completion response is received for the block write request, the initiator
may append to the linked list of ORBs by the methods described in 9.1.2.

9.1.5 Fetch agent state machine

The operations of a target fetch agent are specified by the figure below. The state of a fetch agent is
visible in the context displayed by the AGENT_STATE and ORB_POINTER registers described in 6.4. The
state machine diagram and accompanying text explicitly specify the conditions for transition from one state
to another and the actions taken within states.

The target shall qualify all writes to fetch agent CSRs by the source_ID of the currently logged-in initiator. A
write to a fetch agent CSR by any other Serial Bus node shall be rejected by the target by one of the
following methods:

– an acknowledgment of ack_type_error;

– an acknowledgment of ack_complete (although the write is ignored); or

– an acknowledgment of ack_pending. When the target subsequently responds, the response code
shall be resp_type_error.

The recommended target action is to indicate a type error, either by an acknowledgment of ack_type_error
or an acknowledgment of ack_pending followed by resp_type_error.

1 When more than one ORB is signaled by a write to the FAST_START register, the algorithm described for multi-

threaded operations is modified to update the linked list tail pointer with the address of the final ORB in the list to
be appended rather than with the value of this_ORB.

T10/01-248r1

4

Figure 68 – Fetch agent state machine

Transition Any:F0a. A power reset shall cause the fetch agent to transition to the RESET state from any
other state. The AGENT_STATE and ORB_POINTER registers (that control and make visible the
operations of the fetch agent) shall be reset to zeros.

Transition Any:F0b. A quadlet write request by the initiator to the AGENT_RESET register shall cause the
fetch agent to transition to state F0 from any other state. The fetch agent shall zero the AGENT_STATE
and ORB_POINTER registers before the transition to state F0. Transaction label(s) for outstanding
request subaction(s) shall not be reused until either the corresponding response subaction completes or a
split time-out expires; in the former case, the response data shall be discarded.

F2: Wait for ORB fetch

F3: Verify next_ORB
AGENT_STATE.st = ACTIVE

next_ORB is null
F3:F4

F0: Reset
AGENT_STATE.st = RESET

TR_DATA.indication(WRITE, AGENT_RESET)

AGENT_STATE = zeros
ORB_POINTER = zeros

TR_DATA.response(COMPLETE)

Any:F0b

F1:F2
Target resources available

Clear doorbell variable to zero
TR_DATA.request(READ, ORB_POINTER)

TR_DATA.response(COMPLETE)

TR_DATA.indication(WRITE, ORB_POINTER)
F0:F1

F1: Active
AGENT_STATE.st = ACTIVE

Target resources available
doorbell variable equal to one

Clear doorbell variable to zero
TR_DATA.request(READ, ORB_POINTER)

F4:F2

F4: Wait for doorbell
AGENT_STATE.st = SUSPENDED

F5: Dead
AGENT_STATE.st = DEAD

Fatal error
Any:F5

next_ORB is valid

ORB_POINTER = next_ORB
F3:F1

TR_DATA.confirmation(COMPLETE)

Set next_ORB to response data
Signal ORB to device server

F2:F3

Clear doorbell variable to zero
TR_DATA.response(COMPLETE)

TR_DATA.indication(WRITE, ORB_POINTER)
F4:F1

AGENT_STATE = zeros
ORB_POINTER = zeros

Power reset or logout
Any:F0a

TR_DATA.indication(WRITE, FAST_START)
(previous_ORB null) || (previous_ORB == ORB_POINTER)

TR_DATA.confirmation(COMPLETE)
Set ORB_POINTER and next_ORB from request data

Signal ORB to device server

F0:F3

TR_DATA.indication(WRITE, FAST_START)
(previous_ORB null) || (previous_ORB == ORB_POINTER)

TR_DATA.confirmation(COMPLETE)
Set ORB_POINTER and next_ORB from request data

Signal ORB to device server

F4:F3

T10/01-248r1

5

State F0: Reset. Upon entry to this state, the st field in the AGENT_STATE register shall be set to RESET.
The fetch agent is inactive and available to be initialized by an initiator.

Transition F0:F1. An 8-byte block write of a valid ORB_offset to the ORB_POINTER register shall update
the register and cause the fetch agent to transition to state F1. The target shall confirm the block write
request with a response subaction of COMPLETE.

Transition F0:F3. A block write of a valid ORB_offset, ORB and optional page table data to the
FAST_START register may affect the state of the fetch agent. If the previous_ORB_ field does not contain
a null pointer and is not equal to the ORB_POINTER register, the fetch agent state shall not change and
the target shall confirm the block write request with a response subaction of COMPLETE. Otherwise the
fetch agent shall update the ORB_POINTER register with the value of ORB_offsetthis_ORB, shall update
the next_ORB variable with the contents of the next_ORB field from the ORB contained within the block
write request and shall cause the fetch agent to transition to state F3. The fetch agent shall also make the
ORB and any page table data available to the device server for execution. Once these actions are
complete, the target shall confirm the block write request with a response subaction of COMPLETE.

NOTE – If the previous_ORB_ field is either null or equal to the ORB_POINTER register, a target may interpret
a block write addressed to its FAST_START register as if the first eight bytes this_ORB field had been written
to its ORB_POINTER register. Although it is less efficient to elect transition F0:F1, it is functionally equivalent to
transition F0:F3.

NOTE – When the fetch agent is in the RESET state, it is not necessary to write to the DOORBELL register
upon either transition F0:F1 or F0:F3.

State F1: Active. Upon entry to state F1, the st field in the AGENT_STATE register shall be set to
ACTIVE. In this state, the fetch agent may use the address information in the ORB_POINTER register to
fetch ORBs from the initiator as resources permit.

Transition F1:F2. The availability of target resources is an implementation-dependent decision. Typically,
the resources might be space in device memory to hold an image of the ORB while the command is
scheduled for execution and subsequently completed. In any case, the fetch agent clears the doorbell
variable to zero and then issues a block read request to obtain the ORB from system memory.

State F2: Wait for ORB fetch. The fetch agent is suspended and awaiting a read response for a block
read directed to the address contained in the ORB_POINTER register.

Transition F2:F3. Subsequent to a block read request, issued as described above, the fetch agent may
accept a block read response that contains either the next_ORB data or an entire ORB intended for
execution by the device server. If a read response is received whose source_ID, destination_ID and tl
fields match the destination_ID, source_ID and tl fields, respectively, of the read request, the fetch agent
shall copy the next_ORB field from the response data to the next_ORB variable before making the
transition to state F3. When the response data contains an entire ORB not yet in the device server’s
working set, the fetch agent shall make the ORB available to the device server for execution.

State F3: Verify next_ORB. Upon entry to state F3, the st field in the AGENT_STATE register shall be set
to ACTIVE.2 The next_ORB variable contains information about a subsequent ORB that may be linked in
order after the one just fetched. As described in 5.1, the next_ORB pointer encodes the address of the
next ORB. The actions of this state determine whether or not the next_ORB pointer is null.

Transition F3:F1. If the next_ORB variable does not indicate a null pointer the fetch agent shall update
the ORB_POINTER register with the value of next_ORB.

2 Although this action is redundant in the case of transition F2:F3, it is necessary for transitions F0:F3 and F4:F3.

T10/01-248r1

6

Transition F3:F4. The fetch agent shall transition to a suspended state, F4, if next_ORB contains a null
pointer. A null pointer is defined in 5.1 and exists if the most significant bit of the variable is one.

State F4: Wait for doorbell. Upon entry to state F4, the st field in the AGENT_STATE register shall be set
to SUSPENDED. The fetch agent is suspended; the ORB_POINTER register contains the address of the
ORB whose next_ORB field was null at the time state F4 was entered.

Transition F4:F1. If an indication of a write to the ORB_POINTER register is received, the fetch agent
shall clear the doorbell variable to zero and confirm the write transaction with a response subaction of
COMPLETE. After the confirmation, the fetch agent shall transition to state F1.

Transition F4:F2. Whenever the doorbell variable is equal to one, the fetch agent shall clear the doorbell
variable to zero, issue a read request to obtain a fresh copy of the next_ORB field from the ORB whose
address is contained in the ORB_POINTER register and then transition to state F2. The doorbell variable
is set to one as the result of a quadlet write request of any value to the DOORBELL register, whether the
write request is received in this or any other state.

The fetch agent may issue either an 8-byte block read request (to fetch just the next_ORB field) or it may
reread the entire ORB. The initiator shall insure that system memory occupied by the ORB remains
accessible, as described in 9.3.

Transition F4:F3. A block write of a valid ORB_offset, ORB and optional page table data to the
FAST_START register may affect the state of the fetch agent. If the previous_ORB_ field does not contain
a null pointer and is not equal to the ORB_POINTER register, the fetch agent state shall not change and
the target shall confirm the block write request with a response subaction of COMPLETE. Otherwise the
fetch agent shall update the ORB_POINTER register with the value of ORB_offset this_ORB, shall update
the next_ORB variable with the contents of the next_ORB field from the ORB contained within the block
write request and shall cause the fetch agent to transition to state F3. The fetch agent shall also make the
ORB and any page table data available to the device server for execution. Once these actions are
complete, the target shall confirm the block write request with a response subaction of COMPLETE.

NOTE – If the previous_ORB_ field is either null or equal to the ORB_POINTER register, a target may interpret
a block write addressed to its FAST_START register as if the first eight bytes this_ORB field had been written to
its ORB_POINTER register. Although it is less efficient to elect transition F4:F1, it is functionally equivalent to
transition F4:F3.

Transition Any:F5. Upon the detection of any fatal error, the fetch agent shall transition to state F5.
Examples of fatal errors include, but are not limited to:

– the failure of the addressed node to acknowledge a read request;

– the failure of the addressed node to respond to a read request (split time-out);

– a busy condition at the addressed node that exceeds the target’s busy retry limit;

– a data CRC error in a response subaction.

Some of these errors may be recoverable if retried by the target.

The fetch agent may also be instructed to transition to the dead state as a result of an error in command
execution detected by the device server.

State F5: Dead. The dead state is a unique state that preserves fetch agent information in the
AGENT_STATE and ORB_POINTER registers. Writes to any fetch agent register except AGENT_RESET
shall have no effect while in state F5.

T10/01-248r1

7

E.2 ORB_POINTER or FAST_START write request

A consequence of a write to either the ORB_POINTER or FAST_START register is valid only when the
target fetch agent is in the RESET or SUSPENDED state. A consequence of the write is that, if successful,
the target fetch agent transitions to the ACTIVE state. If no acknowledgement is received by the initiator
after a write to either the ORB_POINTER or FAST_START register when the fetch agent is in either of
these states, the initiator should not retry the write. The recommended method for error recovery is a write
to the AGENT_RESET register. An exception is a write to the FAST_START register with a non-null
previous_ORB field; because the target compares the previous_ORB field to the ORB_POINTER register,
the write may be retried.

