SCSITA T10 Plenary Report

STA Technical Committee STA General

SCSI Trade Association

STA Technical Committee

- STA Technical meeting July 18th Colorado Springs 01s013r0
 - May 2nd Nashua Minutes 01s008r0 on www.scsita.org/STATech
 - Parallel SCSI roadmap to 2012 01s001r2, 2X2Y (twice the performance every 2 years) adopted for Ultra640 to Ultra5120 SCSI.
 - Ultra640 SCSI, Maxtor presentation 01s012r0
 - Ultra640 SCSI Key issues, restrictions and guidelines presentation was developed 01s014r0
 - The next meeting will be in Huntington Beach Sept 12, 2001.
 - Server and PC ease of use documents, approved May 4th -Rev_1.0 of both documents 00s018r4 and 00s019r4

STA General

STA

- Roadmap was approved
- 20th anniversary May 22nd Fairmont Hotel with IDC
 - Good turn out, excellent show of the history of SCSI and the roadmap chart to Ultra5120 SCSI.
- The last STA General was in Nashua 4-May-2001
 - Booth at Applied Computing coming up May 14-17
- Revise website went on line in December Marketing to web based, last year over 100,000 hits
- Product data base allows non STA member product listings for a fee
- Several Articles published, RTC, CTR, EDN, IEEE
- Next STA General meeting July 19th 1:30PM–
 Colorado Springs

Planned Steps

- Ultra640 SCSI SPI-5 2003
- First generation Multilevel- SPI-6 2005
 - Ultra1280 SCSI (1.2 Gigabyte/second)
- Step in 2007 Ultra2560 SCSI
- Step in 2009 to Ultra5120 SCSI

Requirements for drive performance

Marketing Roadmap

- Ultra640 SCSI 2003
 - Extension of the current technology developed for Ultra320
 - Expanders and Bus tuning may be required
- Ultra1280 SCSI Approximately 2005
 - Encoded SCSI backward compatible with LVD SCSI
 - Multimode transceivers will not be supported.
 - Expanders required for Single ended.
- Ultra2560 SCSI Approximately 2007
 - Second generation encoding.
- Ultra5120 SCSI Approximately 2009

Step Details

- Ultra640 SCSI
 - SPI-5, Fast-320 SCSI
 - adjustable Precomp or AAF
 - No major impedance mismatches
 - Expanders for cable to backplane matching
 - Tuning the termination
 - Expanded domain validation
- Ultra1280 SCSI
 - SPI-6, Fast-640 SCSI
 - Encoding with self clocking proposed
 - Multilevel proposed
 - Works on LVD SCSI bus

Step Details

- Ultra2560 SCSI
 - SPI-X, Fast-1280
 - Encoding, self clocking proposed
 - 2nd generation multilevel proposed
 - Works on the LVD SCSI bus
- Ultra5120 SCSI
 - SPI-x, Fast-2560

Summary

- The roadmap for performance is clear.
- The steps are in definition, but the technical community is starting down the roadmap with the new project proposals for SPI-5 and SPI-6
- SPI-6 involves a new technology approach that will take time to test and develop.
 - We are starting the work now to be ready in 4 years with the technology that will have follow on generations.
 - The long term roadmap to 2012 continues to double performance every 2 years.

Ultra640 SCSI

Key issues proposed
New Restrictions
Develop Guidelines for Ultra640 testing

SCSI Trade Association

Key issues

- Reflections as large as signals
- Major impedance mismatch between cables and backplanes.
- Crosstalk to signal ratio marginal on large configurations
- Periodic structure issues (Comb filter effects)
- SE 5 volt requirement problem for technology and eliminating will reduce capacitance
- Stub effects

New Restrictions

- Restricting applications
 - Cable assembly defined by Electrical parameters, not an open statement of wire gauge and distance.
 - Applications of unshielded cable restriction
 - Impedance problems, crosstalk, common noise, sweep attenuation – avoiding periodic structures
 - Expanders for heavily loaded backplanes and long cable applications
- SPI-5 cables marking Performance differences
- Programmable terminators
 - Reducing the impedance to match the loaded bus impedance for backplanes

New Restrictions

LVD only

- Drop MSE, there have been three generations for the transition to LVD SCSI
- Drop SE in SPI-5
- Series resistors for devices to reduce stub effects
- Backplane design rules
 - Reduce the effects of periodic structures
 - Reduce the crosstalk
- Twisted and flat cable spacing
 - Reduce the effects of periodic structures
 - Reduction of the impedance change of the flat section

Develop Guidelines for Ultra640 testing

- Cable to backplane restrictions
 - Cable to backplane
 - Electrical specifications that limit cable connections to backplanes. (Crosstalk)
 - 5 or X slot maximum backplane electrical specifications on backplanes
 - Backplanes over 5 or X slots
 - Restrict to expander
 - Termination on the backplane matches the impedance
 - Programmable termination that can be adjusted to the backplane loading.
 - Adjust with switch or I2C bus, out side of the SCSI bus to keep the terminator cost down – 55 to 135 ohm range, adjustable bias current for negation

Expanders, SES and SCSI should plan to control

Develop Guidelines for Ultra640 testing

- Reduce stub effects with series resistors on drives
- Backplanes
 - periodic structures at 160 MHz should not be used.
 - Crosstalk
 - Strip line? Tutorial or annex
 - Tutorial on designing backplanes
- SPI-5 cables marking Performance differences
- White Box profile definitions

