
July 5, 2001

To: John Lohmeyer, T10 Chairman
Ralph Weber, SPC-2 Technical Editor

From: Roger Cummings, VERITAS Software
Subject: Comments on the Response to the VERITAS Public Review Comment on

dpANS SCSI Primary Commands -2

John,

VERITAS would like to thank Ralph Weber for his consideration of our Public Review comment against
FCP-2 (01-175r0), and his response (contained in 01-194r2).

VERITAS has comments on the response, which are listed below. We are requesting an agenda item of
30 minutes in length at the next meeting of the SCSI Commands Architecture and Protocols Working
Group to discuss the response and these comments in detail. Subsequent to the presentation, VERITAS
will be pleased to accept the recommendation of the CAP WG, and the decision of the subsequent Tech-
nical Committee T10 Plenary, on this subject.

Regards,

Roger Cummings
VERITAS Software
roger.cummings@veritas.com
407.531.7257

VERITAS COMMENTS ON RESPONSES TO OUR PUBLIC REVIEW COMMENT on SPC-2
CONTAINED in 01-194r2

1) The first paragraph of response to the VERITAS Public Review comment states:

The changes requested substantially alter the behavior intended by T10 when defining the Persis-
tent Reservations feature. The intent of T10 is that releasing a reservation should be part of a con-
trolled software shutdown process during which cooperating members of a cluster should use
Persistent Reservation commands to gracefully transfer reservations ownership to remaining
cluster members. The behavior described in SPC-2 is consistent with that intent.

This wording is at odds with the overview of the Persistent Reservation management method in
SPC-2. The first and second paragraphs of subclause 5.5.3.1 state:

The persistent reservations management method is the mechanism specified by this standard for
use by multiple initiators that require operations to be protected across initiator failures, which
usually involve hard resets. Persistent reservations for failing initiators may be preempted by
another initiator as part of the recovery process.

The text quoted above is an accurate reflection of the behavior of persistent reservations. Underly-
ing the behavior is an assumption of a failure mechanism where an Initiator is unable to perform
cleanup activities such as deregistration. Nowhere in the text in SPC-2 is there a reference to a
controlled software shutdown process. In such a process, it would surely be expected that an Initi-
ator seek to release the system resources that have been dedicated to it, in the interests of effi-
ciency and system scalability. One of such resources is the registration held by a device server.
While the actual resources consumed by the registration may be trivial, because there is no indica-
tion of the maximum number of reservations that a device can support the removal of such a reg-
istration is good policy. However using the existing definition, the impact of the removal on the
remaining initiators is significant and, more than that, offers an advantage to an initiator that did
not participate in the original reservation in trying to establish a new reservation, with the result-
ing opportunity for data corruption.

2) The second and third paragraphs of response to the VERITAS Public Review comment state:

Furthermore, changing the definition in this way at this late date will materially harm those who
worked with T10 during the process of defining Persistent Reservations and as such would be a
disservice to the industry.

If the new behavior proposed is desired, it should be proposed for SPC-3 as a new Persistent Res-
ervation Type (e.g., Write Exclusive - All Registrants).

We understand the concern with changing an existing “code point” at this late date, but chose to
word our Public Review comment that was for the following reasons:

a) We did not feel it was appropriate to attempt to introduce new functionality at this stage in
the process, rather we only sought to correct what we saw as an issue with an existing def-
inition;

b) We believed that the change being requested was relatively minor and self-contained;

c) None of our partners had told us that the current definition of releasing a reservation upon
deregistration of the initiator that made the reservation was a “must have” function.

However since our Public Review comment was posted, a number of people have expressed some
concern to us regarding the change in definition at this stage in the process. While sympathizing
with those concerns, we are somewhat doubtful about establishing a precedent of those concerns
being the ONLY grounds for the rejection of a Public Review comment.

SUMMARY

The VERITAS position with regards to the Public Review comment and its response can be summarized
as follows:

a) We regret that the current definition of Registrants Only Persistent Reservations makes them
unsuitable for use in our clustering applications, due to the possibility for data corruption when
the initiator that made the reservation deregisters. This is unfortunate as the other features of Per-
sistent Reservations offer us a significant improvement upon our current approach using Reserves
and Releases.

b) We have not yet heard that the current functionality is a “must have”, only that the redefinition of
an existing code point at this stage in the development of a dpANS is a cause for concern. We
sympathize, but doubt that this being the only grounds for rejection of a Public Review comment
is a good precedent.

c) We will be happy to propose new functionality for SPC-3 in the event that this Public Review
comment is rejected, as below.

SPC-3 PROPOSALS

VERITAS would like to get some feedback on the approach to be taken to the inclusion of new definitions in SPC-3
to address the issue of a reservation being removed when initiator that made the reservation deregisters. In line
with out Public Review comment, the two possibilities are:

1) Define two new Persistent reservation type codes (7h and 8h) as in Table 1 below;

2) Define two new Persistent reservation type codes (7h and 8h) as in Table 1 below, and mark codes 5h and 6h
as obsolete

In addition, VERITAS has found another approach which will we believe will provide the desired functionality, as
follows:

The sentence in subclause 5.5.3.6.1 that was the focus of the VERITAS Public Review comment, namely:

Any persistent reservation associated with that unregistered initiator shall be released.

requires a device server to keep track of the Initiator that created the reservation. However the device server has
no way to report that information in response to a query. A new service action for the PERSISTENT RESERVE IN
command, READ KEYS PLUS INITIATOR, could be defined which could return an Initiator identifier in addition to
the information currently contained in READ KEYS, as in Table 2 below. Using such a service action would obviate
the need for an Initiator undergoing a graceful shutdown to removes its registration, as when the Initiator is reinitial-
ized it could detect the existence of an existing registration, and not submit another registration.

.

Table 1 — Persistent reservation type codes

Code Name Description

0h Obsolete

1h Write
Exclusive

Reads Shared: Any application client on any initiator may initiate tasks that request
transfers from the storage medium or cache of the logical unit to the initiator.

Writes Exclusive: Any task from any initiator other than the initiator holding the per-
sistent reservation that requests a transfer from the initiator to the storage medium or
cache of the logical unit shall be terminated with RESERVATION CONFLICT status.

2h Obsolete

3h Exclusive
Access

Reads Exclusive : Any task from any initiator other than the initiator holding the per-
sistent reservation that requests a transfer from the storage medium or cache of the
logical unit to the initiator shall be terminated with RESERVATION CONFLICT sta-

tus.
Writes Exclusive: Any task from any initiator other than the initiator holding the per-
sistent reservation that requests a transfer from the initiator to the storage medium or
cache of the logical unit shall be terminated with RESERVATION CONFLICT status.

4h Obsolete

5h Write Exclu-
sive – Regis-

trants
Only

Reads Shared: Any application client on any initiator may initiate tasks that request
transfers from the storage medium or cache of the logical unit to the initiator.

Writes Exclusive: A task that requests a transfer to the storage medium or cache of
the logical unit from an initiator that is not currently registered with the device server

shall be terminated with RESERVATION CONFLICT status.

6h Exclusive
Access –

Registrants
Only

Reads Exclusive : A task that requests a transfer from the storage medium or cache
of the logical unit to an initiator that is not currently registered with the device server

shall be terminated with RESERVATION CONFLICT status.
Writes Exclusive: A task that requests a transfer to the storage medium or cache of
the logical unit from an initiator that is not currently registered with the device server

shall be terminated with RESERVATION CONFLICT status.

7h Write Exclu-
sive – All

Registrants

as in 5h above, with the exception that when the Initiator that created the reservation
deregisters, the reservation is not released (see 5.5.3.6.1)

8h Exclusive
Access – All
Registrants

as in 6h above, with the exception that when the Initiator that created the reservation
deregisters, the reservation is not released (see 5.5.3.6.1)

9h - Fh Reserved

Table 2 — PERSISTENT RESERVE IN parameter data for READ KEYS+INITIATOR

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
GENERATION

3 (LSB)

4 (MSB)
ADDITIONAL LENGTH (n-7)

7 (LSB)

Reservation key & initiator list

8 (MSB)
First reservation key

15 (LSB)

16 (MSB)
First initiator identifier

31 (LSB)

.

.

.

n-23 (MSB)
Last reservation key

n-16 (LSB)

n-15 (MSB)
Last initiator identifier

n (LSB)

