o

4 I I I

tbl: Ll o OB

- CLL XF D

SctEF SEMICONDUCTOR

Proposal to modify isochronous recording format
Andy Green, 30 May 2001

Introduction

The isochronous recording format as currently described in SBP3 revision 1b
defines a recording format which includes all the data needed to recreate a
1394 stream at a later time. However, the inclusion of much of this data onto
the medium presents a number of problems for applications which directly
access this data asynchronously, e.g. video editing. This proposal describes
extensions to the proposed format (or preferably an alternative to the
proposed format) which will make such applications much simpler.

For a market application which just records the stream and plays it back later,
the current scheme is likely to be sufficient. However, for more intelligent A/V
solutions which require direct access for editing, trick play etc. it would be far
more appropriate to record in a format appropriate to the CONTENT, rather
than the 1394 traffic. Every application except record/play of a single stream
requires the drive to have some understanding of the content.

Background

The current format records data to the medium on every isochronous period,
which may be an isochronous data packet, an empty packet (just CIP
headers) or a cycle mark. In addition to these, section 11.4 describes a cycle
mark index scheme to enable software to find cycle marks in hard disk
sectors. A number of problems and inefficiencies have been identified with
this recording format:-

Recorded Cycle Marks are not useful for two reasons —
(1)discontinuities may occur on the bus during record, therefore cycle
marks are not ideal for pacing the data. (2) Also, if trick-play is required
on playback, the cycle marks will probably need to be discarded /
manipulated.

Multiple streams. If stream A is recorded to disk, and then at some
later date stream B is recorded to a different track, the cycle marks in
each track will almost certainly be completely out of sync. To play them
back simultaneously, one or both will have to be transformed by the
data anyway, so why store them at all?

DV images (normally fixed size) will be stored in variable-length
structures. Depending on the speed of the frame clock in a
camcorder, a variable number of null packets will be recorded to the
medium. Therefore a video-editing application would need to parse the
data, discarding some of the data to reconstruct every frame. In
addition to this, to jump forward n frames, every intervening frame must
be read and parsed just to find the required frame start.

Video files created on a PC/Mac. If a user creates a video file, and
then wishes to store it on an SBP3 A/V disk to be played back
autonomously, the host computer must generate all the cycle mark /
empty / null packets and insert them into the data stream at an
appropriate rate. Similarly, if an editing package replaces a frame in a
stream, the edited data will also likely include timestamp discontinuities
and rate discontinuities.

MPEG2-TS data. The lowest useful quantity in MPEG data is a
transport stream source packet. However in low bit-rate MPEG, the
source packets are split into multiple 1394 packets. Similarly for high
bit rate, several source packets can be sent in one 1394 packet.
Therefore, a single source packet may end up being stored with 1,2,4
or 8 cycle mark packets in the middle of it. In addition to this, if one of
the packets fails (e.g. data CRC error), the whole source packet should
be discarded, but in the current scheme, some of it may already have
been recorded to media. High bit-rate streams will contain multiple
source packets in each 1394 block.

Proposal

Extend (or preferably replace) the isochronous recording format as follows:

Isochronous data may be stored in raw format, but where the content is
understood by the drive, it shall be stored in blocks appropriate to the media
content being recorded. Every block, raw or formatted, shall begin with a
header quadlet and be followed by the recorded data. The header quadlet is
shown below.

block_type dependent block_type

HEEEEEE NN .

The block_type field is used to identify the format of the block, as encoded
below

Value Name Description
1 DV DV data block
2 MPEG2-TS MPEG2-TS source packet
3 AUDIO 61883-6 compliant audio stream blocks
8 CYCLE MARK | Mark time of a cycle start event
A RAW DATA Raw data recorded from stream
E NULL Nullffiller packet
All other values - Reserved

Cycle marks, raw data and null packets are as currently defined in SBP3rlb.

The new block types are described below. Note: In all cases, empty packets
are discarded. Only valid data is recorded to the medium. This ensures that
data structures have a predictable format for application software to access.

The general intention is to only store the actual content data, with enough out
of band information for the drive to play back the data autonomously, and
recover from errors while recording.

DV blocks

When the block_type field has a value of 1,6, the data stored on the medium
shall be of the format shown below:-

data_length | tag | reserved | 1 | sy
sjelel [| | |] reserved for use by disk implementor
CIP header 0
CIP header 1

480 bytes data

s = sy valid
c = CIP valid
e = error in data

MPEG2-TS block

When the block_type field has a value of 216, the data block shall represent a
single MPEG2-TS source packet, regardless of the data rate at which the
packet was received. For low bit-rate data, the intervening CIP headers are
discarded. For high bit-rate data, the CIP headers are replicated for all source
packets included in the 1394 packet. The data shall be stored in the format
shown below:-

data_length | tag | reserved | 2 | sy
sleclel | [[[] reserved for use by disk implementor
CIP header 0
CIP header 1

192 bytes source packet

s = sy valid
¢ = CIP valid
e = error in data

Note: The s and c bits are used for recording A/V from non-1394 sources, such as a webcam
on the host PC. In this case, the host PC can write the data with the s and c bits set to zero,
and the drive can generate this data when the data is played back isochronously.

The e bit signifies that there is some error in the data block, probably because it was not
received correctly during recording. On playback the disk will probably not send a packet at all

AUDIO block

Undefined until | or someone else reads and understands the content format!

Why not just record the data?

It would be possible to record just the data payload from any stream, and
discard the 1394 headers and CIP headers entirely. This would make it
possible for video-editing applications to read the data directly without parsing
it to remove headers etc. However such an approach has the following
limitations:-

The possibility of errors in the iso transport. When recording, a packet
could be missed, received in error, or a cycle start could be missed along with
iso data during that period. In this case, the most valid action for the disk to
take would be to discard the entire video frame. However, chances are that
most of the frame data is OK, so in this proposal the drive will create a block
with the error bit set; then the application should be able to implement some
more advanced error recovery (displaying most of the frame correctly)

The CIP headers provide the drive with ready information describing the
content (SD-DV, HD-DV, MPEG etc), and therefore it can play the track
without parsing the data stream to ascertain the format.

