
01-131 Page 1 of 26

T10/01-131r2

To: T10 Technical Committee
From: Rob Elliott, Compaq Computer Corporation (Robert.Elliott@compaq.com)
Date: 6 July 2001
Subject: SPI-4 negotiation message rewrite

Revision History
Revision 0 (16 April 2001): first revision released to T10.
Revision 1 (30 June 2001): incorporated feedback from Brian Cockburn (Adva Optical) and the May
Parallel SCSI WG. Added figures for initiator-originated and target-originated WDTR and SDTR.
Revision 2 (6 July 2001): incorporated feedback from George Penokie (Tivoli/IBM). Change bars from
revision 1.

Related Documents
spi4r05 – SCSI Parallel Interface – 4 revision 5

Overview
The PPR, WDTR, and SDTR message descriptions are full of duplications and contain some errors. This
proposal rewrites the three sections, moving most of the text into a model section in clause 4 and
simplifying the individual sections in clause 16. It attempts to eliminate duplications and fix errors. It only
attempts to change behavior that needs to be changed.

Most of the errors are in the descriptions of error handling – parity errors and unexpected bus frees. The
standard is not clear on when the initiator and target should maintain their negotiated settings and when
they should reset them to asynchronous. This does not cause many problems in practice because errors
are rare, and today’s software probably issues a bus resets when errors occur, which brings all the
devices back to a known state. By providing better guidance, resorting to bus resets should be less
necessary.

Suggested Changes
Editor’s directions: Add the new model section to chapter 4. Remove sections 16.3.10 PPR, 16.3.14
SDTR, and 16.3.16 WDTR. Add a new Negotiation section 16.x (parallel to the Link section) with
subsections for PPR, SDTR, and WDTR.

The text was originally pulled from SPI-4 revision 0; some changes made through revision 5 may have
been missed.

01-131 Page 2 of 26

Table of contents:
4.1 Negotiation.. 3

4.1.1 Negotiation introduction.. 3
4.1.2 Negotiation algorithm ... 3
4.1.3 When to negotiate .. 4
4.1.4 Negotiable fields... 5

4.1.4.1 Negotiable fields introduction .. 5
4.1.4.2 Transfer agreements ... 6
4.1.4.3 Transfer period factor .. 6
4.1.4.4 REQ/ACK offset... 7
4.1.4.5 Transfer width exponent .. 8
4.1.4.6 Protocol options ... 9

4.1.4.6.1 Protocol options introduction... 9
4.1.4.6.2 IU_REQ... 9
4.1.4.6.3 DT_REQ.. 10
4.1.4.6.4 QAS_REQ... 10
4.1.4.6.5 HOLD_MCS .. 10
4.1.4.6.6 WR_FLOW.. 10
4.1.4.6.7 RD_STRM... 11
4.1.4.6.8 RTI... 11
4.1.4.6.9 PCOMP_EN.. 11

4.1.5 Negotiable field combinations .. 11
4.1.6 Message restrictions .. 12
4.1.7 Negotiation message sequences ... 13

4.1.7.1 Negotiation message sequences overview ... 13
4.1.7.2 Initiator originated PPR negotiation ... 14
4.1.7.3 Initiator originated WDTR negotiation.. 16
4.1.7.4 Initiator originated SDTR negotiation... 18
4.1.7.5 Target originated WDTR negotiation ... 20
4.1.7.6 Target originated SDTR negotiation .. 22
4.1.7.7 Asynchronous transfers ... 24
4.1.7.8 Synchronous transfers... 24
4.1.7.9 Paced transfers.. 24

10.6 SELECTION phase... 24
10.6.3 Selection without using attention condition .. 24

10.6.3.1 Information unit transfers enabled or disabled .. 24
16.1 Negotiation messages .. 24

16.1.1 Negotiation message codes... 24
16.1.2 PARALLEL PROTOCOL REQUEST message description ... 25
16.1.3 SYNCHRONOUS DATA TRANSFER REQUEST message description 25
16.1.4 WIDE DATA TRANSFER REQUEST message description .. 26

01-131 Page 3 of 26

4.1 Negotiation

4.1.1 Negotiation introduction
PARALLEL PROTOCOL REQUEST (PPR), SYNCHRONOUS DATA TRANSFER REQUEST (SDTR),
and WIDE DATA TRANSFER REQUEST (WDTR) messages are used to alter the transfer agreement
between two ports (see 3.1.76). The transfer agreement defines the protocol used during DATA phases
(e.g., transfer period, REQ/ACK offset, transfer width) and agreement on features not affecting DATA
phases (e.g., QAS). All other information transfer phases (COMMAND, MESSAGE, and STATUS) use
eight-bit asynchronous data transfers.

The default transfer agreement is narrow and asynchronous (see 4.1.4.2).

PPR, SDTR, and WDTR are called negotiation messages. When an initiator sends one of them, the
message names are PPR OUT, SDTR OUT, and WDTR OUT. When a target sends one of them, the
message names are PPR IN, SDTR IN, and WDTR IN. A negotiation sequence consists of at least one
matching set of negotiation messages (, e.g., PPR OUT and PPR IN).

A transfer agreement is maintained by each port for each pair of portsother port on the SCSI bus. Each
port (see 3.1.76) may be used as either a target port (see 3.1.xx) or an initiator port (see 3.1.xx). The
same transfer agreement applies whether the port is being used as a target port or as an initiator port All
communication that occurs though a port shall use the transfer agreement regardless of whether the port
is acting as a target port or an initiator port (e.g., if port 7 is used as an initiator port and port 0 is used as
a target port, the same transfer agreement also applies when port 7 is used as a target port and port 0 is
used as an initiator port).

Negotiations are maintained on a port basis. All logical units in a target share the same transfer
agreement.

4.1.2 Negotiation algorithm
An initiator port and target port exchange negotiation messages to perform negotiation. The originating
port is the one that sends the first negotiation message and the responding port is the one that replies.

Ports shall not set message fields to values they do not support. The originating port should set the fields
in the originating negotiation message to the maximum values (e.g., fastest transfer period, largest
REQ/ACK offset, etc.) it supports. If the responding port is able to support the requested values, it shall
return the same values in the responding negotiation message. If the responding port requires different
values (i.e., a subset of the originating port’s request), it shall return those values in the responding
negotiation message (e.g., if the originating port asks for a REQ/ACK offset of 32 and the responding port
only supports a REQ/ACK offset of 16, the originating message requests an offset of 32 and the
responding message replies with an offset of 16).

If the responding negotiation message contains values the originating port does not support, the
originating port shall respond with a MESSAGE REJECT message.

The valid error-free negotiation message sequences are shown in Figure 1. A description of all the
possible message sequences is in section 4.1.7.

01-131 Page 4 of 26

PPR OUT

PPR IN

WDTR OUT

WDTR IN

SDTR OUT

SDTR IN

WDTR IN

WDTR OUT

SDTR IN

SDTR OUT

Initiator-port originated Target-port originated

Figure 1. Error-free negotiation message sequences.

4.1.3 When to negotiate
A target port shall consider its transfer agreement invalid after:
a) a reset event (see 12.5); or
b) an error occurs while transmitting a responding negotiation message.

An initiator port shall consider its transfer agreement invalid after:
a) a reset event (see 12.5));
b) a unit attention status is received with an additional sense code whose ADDITIONAL SENSE CODE field

contains 29h (e.g., POWER ON, RESET, OR BUS DEVICE RESET OCCURRED; POWER ON
OCCURRED; SCSI BUS RESET OCCURRED; BUS DEVICE RESET FUNCTION OCCURRED;
DEVICE INTERNAL RESET; TRANSCEIVER MODE CHANGED TO SINGLE-ENDED; or
TRANSCEIVER MODE CHANGED TO LVD);

NOTE nn: These additional sense codes are never reported in a status information unit because
SCSI devices default to information units disabled.

c) an unexpected COMMAND phase occurs when selecting without using attention condition (i.e., when
selecting a target with information units enabled),)the initiator port detects an unexpected COMMAND
phase (see 10.6.3.1). This may occur if the target has been hot-swapped; or

d) an error occurs while transmitting a responding negotiation message.

A logical unit reset (see 16.5.6) has no effect on a transfer agreement.

An initiator port shall originate negotiation before sending a command whenever it has an invalid transfer
agreement. A target port shall originate negotiation before accepting a command whenever it has an
invalid transfer agreement.

A port may originate negotiation even if it has a valid transfer agreement (e.g., to change the settings or
as part of integrity checking procedures). Negotiation should not be originated after every selection as this
may impact performance. Because ports remember their transfer agreements between connections,
negotiation is unnecessary and performance impact from extra negotiations is likely.

01-131 Page 5 of 27

NOTE nn: Target ports may have had their support for originating negotiation after power on
disabled to support broken initiator software. If an initiator port sends a command to a target that
has been powered on (e.g., after a hot plug) that results in a unit attention condition, the initiator
port realizes the transfer agreement is invalid and originates negotiation before the next
command. However, if the command is INQUIRY, REPORT LUNS, or REQUEST SENSE, a unit
attention condition is not created. An invalid data phase may occur if the target port does not
originate negotiation. If the initiator port always originates negotiation before sending those
commands, the data phase runs correctly. When information units are disabled, an initiator port
should may originate negotiation with its currently negotiated settings before each INQUIRY,
REPORT LUNS, or REQUEST SENSE command to avoid this problem. When information units
are enabled, the selection without attention results in an unexpected COMMAND phase that
notifies the initiator port that its transfer agreement is invalid, so extra negotiation is not needed.

4.1.4 Negotiable fields

4.1.4.1 Negotiable fields introduction
Table 1 lists the fields that may be negotiated and the effects of successful negotiation on those fields by
each of the different negotiation messages. Ports shall implement a given message if they implement
fields that are only negotiable with that message.

Table 1. Negotiable fields and effects of successful negotiation

Negotiation message pair Field Name
PPR WDTR SDTR

TRANSFER PERIOD FACTOR negotiated
(valid values:
08h-FFh)

No
requirement

negotiated
(valid values:
0Ah-FFh)

REQ/ACK OFFSET negotiated Resets to 00h negotiated
TRANSFER WIDTH EXPONENT negotiated negotiated unchanged

PCOMP_EN negotiated Resets to 0 Resets to 0
RTI negotiated Resets to 0 Resets to 0
RD_STRM negotiated Resets to 0 Resets to 0
WR_FLOW negotiated Resets to 0 Resets to 0
HOLD_MCS negotiated Resets to 0 Resets to 0
QAS_REQ negotiated Resets to 0 Resets to 0
DT_REQ negotiated Resets to 0 Resets to 0

PROTOCOL
OPTIONS

IU_REQ negotiated Resets to 0 Resets to 0

When negotiating, the responding port shall respond with values that are a subset of the values in the
originating message as indicated by the “Response shall be” column in Table 2 (e.g., if the originating
message requests a REQ/ACK offset of 10h, the responding message is has a REQ/ACK offset field set
to 10h or lower).

01-131 Page 6 of 27

Table 2. Responding message requirements

Field Name Message Response shall be numerically
TRANSFER PERIOD FACTOR PPR, SDTR Greater than or equal
REQ/ACK OFFSET PPR, SDTR Less than or equal
TRANSFER WIDTH EXPONENT PPR, WDTR Less than or equal

PCOMP_EN PPR Any value
RTI PPR Less than or equal
RD_STRM PPR Less than or equal
WR_FLOW PPR Less than or equal
HOLD_MCS PPR Less than or equal
QAS_REQ PPR Less than or equal
DT_REQ PPR Less than or equal

PROTOCOL
OPTIONS

IU_REQ PPR Less than or equal

4.1.4.2 Transfer agreements
The valid transfer agreements that are in effect for various combinations of field values are described in
Table 3. The terms are not exclusive; more than one may be in effect at the same time.

Table 3. Valid transfer agreements

Transfer agreement Description
default REQ/ACK offset set to 00h, transfer width exponent set to 00h, all

protocol options set to zero0.
asynchronous REQ/ACK offset set to 00h, all protocol options set to zero0.
synchronous REQ/ACK offset greater than or equal to 01h, transfer period

factor greater than or equal to 09h, all protocol options set to
zero0.

paced REQ/ACK offset greater than or equal to 01h, transfer width
exponent set to 01h, transfer period factor set to 08h, DT_REQ set
to 1.

wide Transfer width exponent set to 01h.
narrow Transfer width exponent set to 00h.
ST data REQ/ACK offset greater than or equal to 01h, DT_REQ set to

zero0.
DT data REQ/ACK offset greater than or equal to 01h, DT_REQ set to

one1.
data group REQ/ACK offset greater than or equal to 01h, DT_REQ set to one,

IU_REQ set to zero.
information unit REQ/ACK offset greater than or equal to 01h, DT_REQ set to one,

IU_REQ set to one.

[Editor’s note: add “data group” and “information unit”?]
[Editor’s note: sort the table?]

4.1.4.3 Transfer period factor
The TRANSFER PERIOD FACTOR field selects the transfer period (see 3.1.101) and determines which
timing values in tables 31 and 32 32, table 33, table 34, and table 35 shall be honored. The field values
are defined in Table 4. The TRANSFER PERIOD FACTOR field is negotiated with the PPR and SDTR
messages. If REQ/ACK OFFSET is greater than or equal to 01h, a value of 08h indicates that a paced
transfer agreement is in effect and that DT_REQ is set to 1, while a value of 09h indicates that a DT
transfer agreement is in effect and that DT_REQ is set to 1.

01-131 Page 7 of 27

Table 4. Transfer Period Factor

Value Description Message Timing Values
(see table 31
32,and table
3233, table 34,
and table 35)

00h - 07h Reserved. Faster transfer periods may be defined by
future standards.

08h Transfer period equals 6,25 ns. Only valid for paced
transfers.

PPR Fast-160

09h Transfer period equals 12,5 ns. Only valid for DT
transfers.

PPR Fast-80

0Ah Transfer period equals 25 ns PPR, SDTR Fast-40
0Bh Transfer period equals 30,3 ns PPR, SDTR Fast-40
0Ch Transfer period equals 50 ns PPR, SDTR Fast-20

0Dh - 18h Transfer period equals the TRANSFER PERIOD
FACTOR x 4

PPR, SDTR Fast-20

19h - 31h Transfer period equals the TRANSFER PERIOD
FACTOR x 4

PPR, SDTR Fast-10

32h - FFh Transfer period equals the TRANSFER PERIOD
FACTOR x 4

PPR, SDTR Fast-5

Table 5 shows which transfer period factors may be used with different types of data transfer agreements.

Table 5. Transfer Period Factor relationships

Value

Data group
transferstransf
er agreement

Information
unit
transferstransf
er agreement

Synchronous
data transfer
agreements

Paced data
transferstransf
er agreement

00h - 07h reserved
08h no yes no yes
09h yes yes yes no
0Ah yes yes yes no
0Bh yes yes yes no
0Ch yes yes yes no

0Dh - 18h yes yes yes no
19h - 31h yes yes yes no
32h - FFh yes yes yes no

Table 9 defines valid combinations of transfer period factor and other fields.

4.1.4.4 REQ/ACK offset
The REQ/ACK OFFSET field determines the maximum number of REQs allowed to be outstanding before a
corresponding ACK is received at the target. The REQ/ACK OFFSET field is negotiated with the PPR and
SDTR messages.

For ST data transfers (i.e., DT_REQ negotiated to zero) the REQ/ACK OFFSET is the maximum number of
REQ assertions allowed to be outstanding before a corresponding ACK assertion is received at the
target. The REQ/ACK offset represents the number of bytes if the transfer width is one byte or twice the
number of bytes if the transfer width is two bytes.

For DT synchronous data transfers (i.e., DT_REQ negotiated to one and IU_REQ negotiated to zero) the
REQ/ACK OFFSET is the maximum number of REQ transitions allowed to be outstanding before a

01-131 Page 8 of 27

corresponding ACK transition is received at the target. The REQ/ACK offset represents twice the number
of bytes, since DT data transfers always use a transfer width of two bytes.

For paced DT DATA IN transfers the REQ/ACK OFFSET is the maximum number of data valid state REQ
assertions (see 10.8.4.3) allowed to be outstanding before a corresponding ACK assertion is received at
the target. The REQ/ACK OFFSET represents four times the number of bytes.

For paced DT DATA OUT transfers the REQ/ACK OFFSET is the maximum number of data valid state REQ
assertions allowed to be outstanding before a corresponding data valid state ACK assertion is received at
the target. The REQ/ACK OFFSET represents four times the number of bytes.

[Editor’s note: does this table work better than those paragraphs?]
Transfer agreements in effect Definition of REQ/ACK offset REQ/ACK offset

represents
a) narrow transfer agreement;
b) synchronous transfer
agreement; and
c) ST data transfer agreement

Maximum number of REQ assertions
allowed to be outstanding before a
corresponding ACK assertion is received at
the target.

the number of bytes

a) wide transfer agreement;
b) synchronous transfer
agreement; and
ST data transfer agreement

Maximum number of REQ assertions
allowed to be outstanding before a
corresponding ACK assertion is received at
the target.

2 times the number of
bytes

a) synchronous transfer
agreement; and
b) DT data transfer agreement

Maximum number of REQ transitions
allowed to be outstanding before a
corresponding ACK transition is received at
the target.

2 times the number of
bytes

paced transfer agreement
(DT DATA IN phase)

Maximum number of data valid state REQ
assertions (see 10.8.4.3) allowed to be
outstanding before a corresponding ACK
assertion is received at the target

4 times the number of
bytes

paced transfer agreement
(DT DATA OUT phase)

Maximum number of data valid state REQ
assertions allowed to be outstanding before
a corresponding data valid state ACK
assertion is received at the target

4 times the number of
bytes

See 4.8 for an explanation of the differences between ST and DT data transfers.

The REQ/ACK OFFSET value is chosen to prevent overflow conditions in the port’s receive buffer and offset
counter. The values are defined in Table 6. Table 6 also indicates which timing values in table 31 32,
table 33, table 34, and table 35 shall be honored. A REQ/ACK OFFSET value of zero indicates asynchronous
data transfer mode and that the PERIOD FACTOR field and the PROTOCOL OPTIONS field shall be ignored; a
value of FFh indicates unlimited REQ/ACK offset. If the REQ/ACK offset is not zero either a synchronous
or paced transfer agreement is in effect.

01-131 Page 9 of 27

Table 6. REQ/ACK offset

Value Description Timing values
(See table 31 32,
and table 332,
table 34, and
table 35)

00h Asynchronous transfer agreement. Transfer period factor and
protocol options shall be ignored.

Asynch

01h-FEh Synchronous or paced transfer agreement. Specified offset. Determined by
Ttransfer Period
period
Factorfactor. See
Table 4.

FFh Synchronous or paced transfer agreement. Unlimited offset. Determined by
Transfer transfer
Pperiod
Factorfactor. See
Table 4.

Table 9 defines valid combinations of REQ/ACK offset and other fields.

4.1.4.5 Transfer width exponent
The TRANSFER WIDTH EXPONENT field defines the transfer width to be used during DATA IN and DATA OUT
phases during data transfers. The values are defined in Table 7. The TRANSFER WIDTH EXPONENT
field is negotiated with the PPR and WDTR messages. If any of the protocol options bits are set to one,
the only valid transfer width is 16 bits (01h). If all the protocol options bits are set to zero, a valid transfer
width is 8 bits (00h) or 16 bits (01h). A TRANSFER WIDTH EXPONENT field value of 02h is obsolete and
values greater than 02h are reserved.

If the transfer width is 8 bits a narrow transfer agreement is in effect. If the transfer width is 16 bits a wide
transfer agreement is in effect.

Table 7. Transfer Width Exponent

Value Description
00h 8 bit data bus (narrow). Narrow transfer agreement.
01h 16 bit data bus (wide). Wide transfer agreement.
02h Obsolete

03h-FFh Reserved

Table 9 defines valid combinations of transfer width exponent and other fields.

4.1.4.6 Protocol options

4.1.4.6.1 Protocol options introduction
The protocol options fields affect the protocol used between the ports. They may only be negotiated
through PPR messages (which are originated only by initiator ports), and are set to zero by WDTR and
SDTR messages.

The target port uses the protocol options bits to indicate to the initiator port if it agrees to enable the
requested protocol options. Except for the PCOMP_EN bit, the target shall not enable any protocol
options that were not enabled in the negotiation message received from the initiator.

01-131 Page 10 of 27

Table 8 describes the protocol options bits.

Table 8. Protocol options bits

Name Description
PCOMP_EN Precompensation enable
RTI Retain training information
RD_STRM Read streaming and read flow control enable
WR_FLOW Write flow control enable
HOLD_MCS Hold margin control settings
QAS_REQ Quick arbitration and selection (QAS) enable request
DT_REQ Dual transition (DT) clocking enable request
IU_REQ Information units (IU) enable request

4.1.4.6.2 IU_REQ
The initiator port shall set IU_REQ to one in the PPR OUT message to request that information unit
transfers be enabled. In response, the target port shall set its IU_REQ to one if it agrees to use
information unit transfers or zero if it does not.

The initiator port shall set IU_REQ to zero in the PPR OUT message to request that information unit
transfers be disabled. In response, the target port shall set IU_REQ to zero in the PPR IN message.

If IU_REQ is one, an information unit transfer agreement is in effect. If IU_REQ is zero, an asynchronous,
synchronous or data group transfer agreement is in effect.

Table 9 defines valid combinations of IU_REQ and other fields.

Each time a negotiation results in the IU_REQ bit being changed from the previous agreement (i.e., zero to
one or one to zero) the target shall go to a BUS FREE phase on completion of the negotiation. Additional
requirements (see 14.1) shall be met if the IU_REQ bit is changed as a result of the negotiation.

4.1.4.6.3 DT_REQ
The initiator port shall set DT_REQ to one to request that DT DATA phases be enabled. In response, the
target port shall set DT_REQ to one if it agrees to use DT DATA phases or zero if it does not.

The initiator port shall set DT_REQ to zero to request that information unit transfers be disabled. In
response, the target port shall set DT_REQ to zero in the PPR IN message.

If DT_REQ is one, a DT data transfer agreement is in effect. If DT_REQ is zero, an ST data transfer
agreement is in effect.

Table 9 defines valid combinations of DT_REQ and other fields.

4.1.4.6.4 QAS_REQ
The initiator port shall set QAS_REQ to one to request that QAS be enabled. In response, the target port
shall set QAS_REQ to one if it supports QAS or zero if it does not.

The initiator port shall set QAS_REQ to zero to request that information unit transfers be disabled. In
response, the target port shall set QAS_REQ to zero in the PPR IN message.

Table 9 defines valid combinations of QAS_REQ and other fields.

When QAS is enabled, the port shall participate in QAS arbitrations when attempting to connect to a port
that has enabled QAS. When QAS is enabled and information unit transfers are enabled for a connected
target port, that target port may issue a QAS REQUEST message to release the bus after a DT DATA

01-131 Page 11 of 27

phase. When QAS is enabled and information unit transfers are disabled for a connected target port, that
target port shall not issue QAS REQUEST messages.

4.1.4.6.5 HOLD_MCS
The initiator port shall set HOLD_MCS to one to indicate that the target should hold any margin control
settings set with the margin control subpage of the port control mode page (see 18.1.4). In response, the
target port shall set HOLD_MCS to one if it is capable of retaining the settings and zero if it is not.

The initiator port shall set HOLD_MCS to zero to indicate that the target shall reset to their default values
any margin control settings set with the margin control subpage of the port control mode page (see
18.1.4). In response, the target port shall set HOLD_MCS to zero.

Table 9 defines valid combinations of HOLD_MCS and other fields.

4.1.4.6.6 WR_FLOW
The initiator port shall set WR_FLOW to one to indicate that the target should enable write flow control
during write streaming (see Table 29, 4.10.3.3 and 8.2). In response, the target port shall set WR_FLOW
to one if it is capable of write flow control and zero if it is not.

The initiator port shall set WR_FLOW to zero to indicate that the target shall disable write flow control
during write streaming. In response, the target port shall set WR_FLOW to zero.

Write streaming and write flow control only occurs during information unit transfers.

Table 9 defines valid combinations of WR_FLOW and other fields.

4.1.4.6.7 RD_STRM
The initiator port shall set RD_STRM to one to indicate that the target should enable read streaming and
read flow control (see Table 29, 4.10.3.3, 8.2, and 14.3.4). In response, the target port shall set
RD_STRM to one if it is agrees capable of read streaming and read flow control and zero if it is not.

The initiator port shall set RD_STRM to zero to indicate that the target shall disable read streaming and
read flow control. In response, the target port shall set RD_STRM to zero.

Read streaming and read flow control only occur during information unit transfers.

Table 9 defines valid combinations of RD_STRM and other fields.

4.1.4.6.8 RTI
The initiator port shall set RTI to one to indicate it is capable of request saving paced data transfer
training information (see 10.8.4.2.1) and to indicate that the target should not retrain. In response, the
target port shall set RTI to one if it is capable of saving paced data transfer training information and zero if
it is not.

The initiator port shall set RTI to zero to if it does not support reword saving paced data transfer training
information to indicate that the target shall retrain. In response, the target port shall set RTI to zero.

Table 9 defines valid combinations of RTI and other fields.

4.1.4.6.9 PCOMP_EN
The initiator port shall set PCOMP_EN to one to indicate that the target shall enable precompensation on
all signals transmitted during DT DATA phases (see 4.9, 7.3.2, and 10.8.4.1). The initiator port shall set
PCOMP_EN to zero to indicate that the target shall disable precompensation.

01-131 Page 12 of 27

The target port shall set PCOMP_EN to one to indicate that the initiator port shall enable
precompensation on all signals transmitted during DT DATA phases (see 4.9, 7.3.2, and 10.8.4.1). The
target port shall set PCOMP_EN to zero to indicate that the initiator port shall disable precompensation.

Table 9 defines valid combinations of PCOMP_EN and other fields. Ports that support fast-160 shall
support enabling and disabling precompensation of their drivers.

NOTE nn: Unlike other fields and bits in the PPR message the PCOMP_EN bit is not a negotiated
value; instead, it instructs the receiving SCSI device as to whether or not precompensation is to
be disabled or enabled. Because of this, precompensation may be enabled on one of the SCSI
devices and disabled on the other SCSI device at the completion of a successful PPR
negotiation.

4.1.5 Negotiable field combinations
Not all combinations of the negotiable fields are valid. Only the combinations defined in Table 9 shall be
allowed. All other combinations of the listed fields are reserved.

01-131 Page 13 of 27

Table 9. Valid negotiable field combinations

Protocol options Description

Transfer
period
factor

REQ/ACK
Offset

Transfer
width

exponent

PC
O

M
P_

EN

R
TI

R
D

_S
TR

M

W
R

_F
LO

W

H
O

LD
_M

C
S

Q
A

S_
R

EQ

D
T_

R
EQ

IU
_R

EQ

0Ah – FFh 00h 00h or
01h

0 0 0 0 0 0 0 0 Use ST DATA IN and ST
DATA OUT phases to transfer
data with asynchronous data
transfers

0Ah - FFh 01h - FFh 00h or
01h

0 0 0 0 0 0 0 0 Use ST DATA IN and ST
DATA OUT phases to transfer
data with synchronous data
transfers

09h - FFh 01h - FFh 01h 0 0 0 0 0 0 1 0 Use DT DATA IN and DT
DATA OUT phases with data
group transfers

09h - FFh 01h - FFh 01h 0 0 0 0 0 1 1 0 Use DT DATA IN and DT
DATA OUT phases with data
group transfers, and
participate in QAS arbitrations

09h – FFh 01h – FFh 01h 0 0 0
or
1

0
or
1

0 0 1 1 Use DT DATA IN and DT
DATA OUT phases with
information unit transfers

08h 01h - FFh 01h 0
or
1

0
or
1

0
or
1

0
or
1

0
or
1

0 1 1 Use DT DATA IN and DT
DATA OUT phases with
information unit transfers

09h – FFh 01h - FFh 01h 0 0 0
or
1

0
or
1

0 1 1 1 Use DT DATA IN and DT
DATA OUT phases with
information unit transfers,
participate in QAS
arbitrations, and use QAS for
arbitrationissue
QAS_REQUEST messages to
initiate QAS arbitrations

08h 01h - FFh 01h 0
or
1

0
or
1

0
or
1

0
or
1

0
or
1

1 1 1 Use DT DATA IN and DT
DATA OUT phases with
information unit transfers,
participate in QAS
arbitrations, and issue
QAS_REQUEST messages to
initiate QAS arbitrationsuse
QAS for arbitration

4.1.6 Message restrictions
PPR may be originated by initiator ports but shall not be originated by target ports. Initiator ports should
only use PPR when requesting values not attainable via WDTR and SDTR (e.g., selecting a transfer
period factor less than 0Ah or setting any protocol option bits to 1). If a target port responds to PPR with
values that are attainable via WDTR and SDTR, the initiator port should repeat negotiation starting with a
WDTR and SDTR negotiation sequence. This ensures that bus expanders that do not support PPR are
still able to handle the data phase correctly.

01-131 Page 14 of 28

WDTR and SDTR may be originated by either target ports or initiator ports. Since WDTR resets all the
values that SDTR sets (see 4.1.4.1), it shall be sent first if both are needed.

4.1.7 Negotiation message sequences

4.1.7.1 Negotiation message sequences overview
An initiator originated negotiation sequence contains up to four steps:
1) Initiator port’s originating message;
2) Target port response;
3) Initiator port response; and
4) Target port second response.

A target originated negotiation sequence contains up to four steps:
1) Target port’s originating message;
2) Initiator port response;
3) Target port response; and
4) Initiator port second response.

01-131 Page 15 of 27

4.1.7.2 Initiator originated PPR negotiation
Figure 2 shows how the initiator port shall respond to various target port responses to an originating PPR
OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

MESSAGE IN Phase

PPR OUT
PPR IN

a) first 3 bytes
indicate PPR IN,
then bad parity;

b) bad parity in
first 3 bytes; or

c) first 3 bytes
indicate a
message other
than PPR IN or
MESSAGE
REJECT IN, then
bad parity

MESSAGE
REJECT IN

BUS FREE phase

Another bus
phase

Reason: Target port faulty.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate a WDTR
OUT.

Reason: Target port faulty.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate a WDTR
OUT.

Reason: Target port detected an unrecoverable parity
error, or target faulty.
Initiator port shall invalidate its transfer agreement,
rearbitrate and select the target port, create an
attention condition and originate a WDTR.

Reason: Target port does not support PPR.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate a WDTR
OUT.
[don’t try to preserve any existing WDTR/SDTR
compatible settings; renegotiate everything]

Reasons:
a) Target port understands PPR, but responding
message was corrupted;
b) Target port response cannot be determined; or
c) Target port faulty.

Initiator port shall create an attention condition and
send MESSAGE PARITY ERROR OUT. Target port
retries at least once and creates a bus free condition if
it gives up.

Retry outcome: see other responses.

Reason: Successful negotiation message exchange.
The initiator port shall update it transfer agreement. If
any values are illegal, the initiator port shall issue a
MESSAGE REJECT OUT and invalidate its transfer
agreement. The target port then originates negotiation.

3. Initiator port response2. Target port response
1. Initiator

port’s
originating
message

A message other
than PPR IN or
MESSAGE
REJECT IN

Hang Reason: Target port faulty.
Initiator port may toggle ATN and ACK to try to wake
up the target port. Initiator port should create a bus
reset condition.

Figure 2. Initiator originated PPR negotiation: initiator response

01-131 Page 16 of 27

Figure 3 shows how the target port shall respond to various initiator port responses to a responding PPR
IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

Attention condition;
MESSAGE OUT
phase

PPR IN
MESSAGE
REJECT OUT

Another message

MESSAGE
PARITY ERROR
OUT

No attention
condition

Reason: Initiator port detected a parity error.
If the attention condition was created on one of the first
3 bytes, then the initiator port does not know which
message was being sent. If the attention condition was
created after the first 3 bytes, the initiator port knows a
PPR IN was being sent.

Target port shall retry the PPR IN at least once. If
parity errors persist, target port shall create a bus free
condition (unexpected).

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate its
transfer agreement and originate a WDTR IN on the
next connection if the initiator does not create an
attention condition and originate negotiation itself.

Reason: Successful negotiation.
Target port shall update its transfer agreement.
If IU_REQ was changed, target port shall ignore the
attention condition and create a bus free condition.

Reason: Successful negotiation.
Target port shall update its transfer agreement.
If IU_REQ was changed, target port shall create a bus
free condition.

Reason: Initiator port claims target provided
incompatible values.
Target port shall invalidate its transfer agreement and
originate a WDTR IN.

3. Initiator port response 4. Target port second response 2. Target
port‘s

responding
message

a) Bad parity in
first byte; or

b) First byte
indicates a
message other
than MESSAGE
REJECT OUT or
MESSAGE
PARITY ERROR
OUT, then bad
parity

Reasons:
a) Initiator port response cannot be determined; or
b) Successful negotiation, but hung.

Target port shall repeat the MESSAGE OUT phase at
least once and create a bus free condition if it gives up.

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate its
transfer agreement and originate a WDTR IN.

Figure 3. Initiator originated PPR negotiation: target response

01-131 Page 17 of 27

4.1.7.3 Initiator originated WDTR negotiation
Figure 4 shows how the initiator port shall respond to various target port responses to an originating
WDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

MESSAGE IN Phase

WDTR
OUT

WDTR IN

a) first 3 bytes
indicate WDTR IN,
then bad parity;

b) bad parity in
first 3 bytes; or

c) first 3 bytes
indicate a
message other
than WDTR IN or
MESSAGE
REJECT IN, then
bad parity

MESSAGE
REJECT IN

BUS FREE phase

Another bus
phase

Reason: Target port faulty.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate an SDTR
OUT.

Reason: Target port faulty.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate an SDTR
OUT.

Reason: Target port detected an unrecoverable parity
error, or target port faulty.
Initiator port shall invalidate its transfer agreement,
rearbitrate and select the target, create an attention
condition and originate an SDTR OUT.

Reason: Target port does not support WDTR.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate an SDTR
OUT.
[don’t try to preserve any SDTR compatible settings;
renegotiate]

Reasons:
a) Target port understands WDTR, but responding
message was corrupted;
b) Target port response cannot be determined; or
c) Target port faulty.

Initiator port shall create an attention condition and
send MESSAGE PARITY ERROR OUT. Target port
retries at least once and creates a bus free condition
when it gives up.

Retry outcome: see other responses.

Reason: Successful negotiation message exchange.
The initiator port shall update it transfer agreement. If
any values are illegal, the initiator port shall issue a
MESSAGE REJECT OUT and invalidate its transfer
agreement. The target port then originates negotiation.

3. Initiator port response2. Target port response
1. Initiator

port’s
originating
message

A message other
than WDTR IN or
MESSAGE
REJECT IN

Hang Reason: Target port faulty.
Initiator port may toggle ATN and ACK to try to wake
up the target port. Initiator port should create a bus
reset condition.

Figure 4. Initiator originated WDTR negotiation: initiator response

01-131 Page 18 of 27

Figure 5 shows how the target port shall respond to various initiator port responses to a responding
WDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

Attention condition;
MESSAGE OUT
phase

WDTR IN
MESSAGE
REJECT OUT

Another message

MESSAGE
PARITY ERROR
OUT

No attention
condition

Reason: Initiator port detected a parity error.
If the attention condition was created on one of the first
3 bytes, then the initiator does not know which
message was being sent. If the attention condition was
created after the first 3 bytes, the initiator port knows a
WDTR IN was being sent.

Target port shall retry the WDTR IN at least once. If
parity errors persist, target port shall create a bus free
condition (unexpected).

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate its
transfer agreement and originate an SDTR IN on the
next connection if the initiator does not create an
attention condition and originate negotiation itself.

Reason: Successful negotiation.
Target port shall update its transfer agreement.
If IU_REQ was changed, target port shall ignore the
attention condition and create a bus free condition.

Reason: Successful negotiation.
Target port shall update its transfer agreement.
If IU_REQ was changed, target port shall create a bus
free condition.

Reason: Initiator port claims target provided
incompatible values.
Target port shall invalidate its transfer agreement and
originate an SDTR IN.

3. Initiator port response 4. Target port second response 2. Target
port‘s

responding
message

a) Bad parity in
first byte; or

b) First byte
indicates a
message other
than MESSAGE
REJECT OUT or
MESSAGE
PARITY ERROR
OUT, then bad
parity

Reasons:
a) Initiator response cannot be determined; or
b) Successful negotiation, but hung.

Target port shall repeat the MESSAGE OUT phase at
least once and create a bus free condition if it gives up.

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate
agreement and originate an SDTR IN.

Figure 5. Initiator originated WDTR negotiation: target response

01-131 Page 19 of 27

4.1.7.4 Initiator originated SDTR negotiation
Figure 6 shows how the initiator port shall respond to various target port responses to an originating
SDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

MESSAGE IN Phase

SDTR
OUT

SDTR IN

a) first 3 bytes
indicate SDTR IN,
then bad parity;

b) bad parity in
first 3 bytes; or

c) first 3 bytes
indicate a
message other
than SDTR IN or
MESSAGE
REJECT IN, then
bad parity

MESSAGE
REJECT IN

BUS FREE phase

Another bus
phase

Reason: Target port faulty.
Initiator port shall set its transfer agreement to the
default transfer agreement.

Reason: Target port faulty.
Initiator port shall set its transfer agreement to the
default transfer agreement.

Reason: Target port detected an unrecoverable parity
error, or target port faulty.
Initiator port shall set its transfer agreement to the
default transfer agreement.
[parity error => keep, fauly => default]

Reason: Target port does not support SDTR.
The initiator port shall set its transfer agreement to the
default transfer agreement.

Reasons:
a) Target port understands SDTR, but responding
message was corrupted;
b) Target port response cannot be determined; or
c) Target port faulty.

Initiator port shall create an attention condition and
send MESSAGE PARITY ERROR OUT. Target port
retries at least once and creates a bus free condition
when it gives up.

Retry outcome: see other responses.

Reason: Successful negotiation message exchange.
The initiator port shall update it transfer agreement. If
any values are illegal, the initiator port shall issue a
MESSAGE REJECT OUT and invalidate its transfer
agreement. The target port then originates negotiation.

3. Initiator port response2. Target port response
1. Initiator

port’s
originating
message

A message other
than SDTR IN or
MESSAGE
REJECT IN

Hang Reason: Target port faulty.
Initiator port may toggle ATN and ACK to try to wake
up the target port. Initiator port should create a bus
reset condition.

Figure 6. Initiator originated SDTR negotiation: initiator response

01-131 Page 20 of 27

Figure 7 shows how the target port shall respond to various initiator port responses to a responding
SDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

Attention condition;
MESSAGE OUT
phase

SDTR IN
MESSAGE
REJECT OUT

Another message

MESSAGE
PARITY ERROR
OUT

No attention
condition

Reason: Initiator port detected a parity error.
If the attention condition was created on one of the first
3 bytes, then the initiator port does not know which
message was being sent. If the attention condition was
created after the first 3 bytes, the initiator port knows a
SDTR IN was being sent.

Target port shall retry the SDTR IN at least once. If
parity errors persist, target port shall create a bus free
condition (unexpected).

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate its
transfer agreement and originate an SDTR negotiation
on the next connection if the initiator does not create an
attention condition and originate negotiation itself.

Reason: Successful negotiation.
Target port shall update its transfer agreement.
If IU_REQ was changed, target port shall ignore the
attention condition and create a bus free condition.

Reason: Successful negotiation.
Target port shall update its transfer agreement.
If IU_REQ was changed, target port shall create a bus
free condition.

Reason: Initiator port claims target provided
incompatible values.
If any value was not set to zero, the target port shall
originate an SDTR IN with every value set to zero.
If every value was zero, the target port shall set its
transfer agreement to the default transfer agreement.

3. Initiator port response 4. Target port second response 2. Target
port‘s

responding
message

a) Bad parity in
first byte; or

b) First byte
indicates a
message other
than MESSAGE
REJECT OUT or
MESSAGE
PARITY ERROR
OUT, then bad
parity

Reasons:
a) Initiator port response cannot be determined; or
b) Successful negotiation, but hung.

Target port shall repeat the MESSAGE OUT phase at
least once and create a bus free condition if it gives up.
[a => invalidate/default, b => update… too complex?]
Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall set its transfer
agreement to the default transfer agreement.

Figure 7. Initiator originated SDTR negotiation: target response

01-131 Page 21 of 27

4.1.7.5 Target originated WDTR negotiation
Figure 8 shows how the target port shall respond to various initiator port responses to an originating
WDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

Attention condition;
MESSAGE OUT
phase

WDTR IN

MESSAGE
REJECT OUT

WDTR OUT

MESSAGE
PARITY ERROR
OUT

No attention
condition

Reason: Initiator port detected a parity error.
Target port shall retry the WDTR IN at least once. If
parity errors persist, target port shall create a bus free
condition (unexpected).
Note: If the attention condition was created on one of
the first 3 bytes, then the initiator does not know which
message was being sent. If the attention condition was
created after the first 3 bytes, the initiator port knows a
WDTR IN was being sent.

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate its
transfer agreement and originate an SDTR on the next
connection if the initiator does not create an attention
condition and do so first.

Reason: Successful negotiation message exchange.
If any values are illegal, target port shall issue a
MESSAGE REJECT IN and invalidate its transfer
agreement and originate an SDTR IN if initiator does
not originate negotiation first. Otherwise, target port
shall update its transfer agreement.
If IU_REQ was changed, target port shall create a bus
free condition.

Reason: Initiator port faulty.
Target port shall invalidate its transfer agreement and
originate an SDTR if the initiator does not create an
attention condition and do so first.

Reason: Initiator port does not support WDTR.
Target port shall invalidate its transfer agreement and
originate an SDTR IN.
[don’t try to preserve SDTR settings; renegotiate]

2. Initiator port response 3. Target port response 1. Target
port‘s

originating
message

a) Bad parity in
first byte; or

b) First byte
indicates a
message other
than WDTR OUT,
MESSAGE
REJECT OUT or
MESSAGE
PARITY ERROR
OUT, then bad
parity

Reasons:
a) Initiator response cannot be determined; or
b) Initiator port faulty.

Target port shall repeat the MESSAGE OUT phase at
least once and create a bus free condition if it gives up.

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall invalidate its
transfer agreement and originate an SDTR IN.

Figure 8. Target originated WDTR negotiation: target response

01-131 Page 22 of 27

Figure 9 shows how the initiator port shall respond to various target port responses to a responding
WDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

MESSAGE IN Phase

WDTR
OUT

Another message

a) first 3 bytes
indicate WDTR IN,
then bad parity;

b) bad parity in
first 3 bytes; or

c) first 3 bytes
indicate a
message other
than MESSAGE
REJECT IN, then
bad parity

MESSAGE
REJECT IN

BUS FREE phase

Another bus
phase

Reason: Successful negotiation.
Initiator port shall update its transfer agreement.

Reason: Target port detected an unrecoverable parity
error, IU_REQ changed, or target faulty.
Initiator port shall invalidate its transfer agreement,
rearbitrate and select the target, create an attention
condition and originate an SDTR.

Reason: Target port claims initiator port provided
incompatible values.
Initiator port shall invalidate its transfer agreement,
create an attention condition and originate an SDTR
OUT.

Reasons:
a) Target port understands WDTR, but responding
message was corrupted;
b) Target port response cannot be determined; or
c) Target port faulty.

Initiator port shall create an attention condition and
send MESSAGE PARITY ERROR OUT. Target port
retries at least once and creates a bus free condition
when it gives up.

Target port retry outcome: see other responses.

Reason: Successful negotiation message exchange.
If any values are illegal, initiator port shall issue a
MESSAGE REJECT OUT and invalidate its transfer
agreement. The initiator port shall then originates
negotiation. Otherwise, initiator port shall update its
transfer agreement.

4. Initiator port second response 3. Target port response
2. Initiator

port’s
responding
message

Hang Reason: Target port faulty.
Initiator port should toggle ATN and ACK to try to wake
up the target port. Finally, initiator port should create a
bus reset condition.

Figure 9. Target originated WDTR negotiation: initiator response

01-131 Page 23 of 27

4.1.7.6 Target originated SDTR negotiation
Figure 10 shows how the target port shall respond to various initiator port responses to an originating
SDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

Attention condition;
MESSAGE OUT
phase

SDTR IN

MESSAGE
REJECT OUT

SDTR OUT

MESSAGE
PARITY ERROR
OUT

No attention
condition

Reason: Initiator port detected a parity error.
Target port shall retry the SDTR IN at least once. If
parity errors persist, target port shall create a bus free
condition (unexpected).

If the attention condition was created on one of the first
3 bytes, then the initiator port does not know which
message was being sent. If the attention condition was
created after the first 3 bytes, the initiator port knows
an SDTR IN was being sent.

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall set its transfer
agreement to the default transfer agreement.

Reason: Successful negotiation message exchange.
If any values are illegal, target port shall issue a
MESSAGE REJECT IN and set its transfer agreement
to the default transfer agreement. Otherwise, target
port shall update its transfer agreement.
If IU_REQ was changed, target port shall create a bus
free condition.

Reason: Initiator port faulty.
Target port shall set its transfer agreement to the
default transfer agreement.

Reason: Initiator port does not support SDTR.
Target port shall set its transfer agreement to the
default transfer agreement.

2. Initiator port response 3. Target port response 1. Target
port’s

originating
message

a) Bad parity in
first byte; or

b) First byte
indicates a
message other
than SDTR OUT,
MESSAGE
REJECT OUT or
MESSAGE
PARITY ERROR
OUT, then bad
parity

Reasons:
a) Initiator port response cannot be determined; or
b) Initiator port faulty.

Target port shall repeat the MESSAGE OUT phase at
least once and create a bus free condition if it gives up.

Retry outcome:
Successful retry: see other responses
Bus free condition: Target port shall set its transfer
agreement to the default transfer agreement.

Figure 10. Target originated SDTR negotiation: target response

01-131 Page 24 of 27

Figure 11 shows how the initiator port shall respond to various target port responses to a responding
SDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

MESSAGE IN Phase

SDTR
OUT

Another message

a) bad parity in
first byte; or

b) first byte
indicates a
message other
than MESSAGE
REJECT IN, then
bad parity

MESSAGE
REJECT IN

BUS FREE phase

Another bus
phase

Reason: Successful negotiation.
Initiator port shall update its transfer agreement.

Reason: Target port detected an unrecoverable parity
error, IU_REQ changed, or target faulty.
Initiator port shall set its transfer agreement to the
default transfer agreement.

Reason: Target port claims initiator port provided
incompatible values.
If any value was not set to zero, initiator port shall
create an attention condition and originate an SDTR
OUT with every value set to zero. If every value was
zero, initiator port shall set its transfer agreement to the
default transfer agreement.

Reasons:
a) Target port response cannot be determined; or
b) Negotiation successful, but hung.

Initiator port shall create an attention condition and
send MESSAGE PARITY ERROR OUT. Target port
retries at least once and creates a bus free condition
when it gives up.

Retry outcome: see other responses.

Reason: Successful negotiation message exchange.
If any values are illegal, initiator port shall issue a
MESSAGE REJECT OUT and invalidate its transfer
agreement. The initiator port shall then originate
negotiation. Otherwise, initiator port shall update its
transfer agreement.

4. Initiator port second response 3. Target port response
2. Initiator

port’s
responding
message

Hang Reason: Target port faulty.
Initiator port should toggle ATN and ACK to try to wake
up the target port. Finally, initiator port should create a
bus reset condition.

Figure 11. Target originated SDTR negotiation: initiator response

01-131 Page 25 of 27

Data transfer modes

4.1.7.7 Asynchronous transfers
SCSI parallel interface devices default to 8-bit asynchronous transfers.

The 8-bit asynchronous transfers are used for all information transfers except DATA phases. ST DATA
phases use 16-bit asynchronous transfers when a wide transfer agreement (see 10.8.5) is in effect.
Asynchronous transfers are not permitted when DT DATA phases are enabled.

4.1.7.8 Synchronous transfers
Synchronous transfers shall only be used in DATA phases when a synchronous transfer agreement is in
effect (see 10.8.5).

ST DATA phases shall transfer data using synchronous transfers when a ST DATA phase enabled
agreement is in effect. ST DATA phases use 16-bit synchronous transfers when a wide transfer
agreement (see 10.8.5) is in effect.

DT DATA phases shall transfer data using synchronous transfers when a DT DATA phase enabled
agreement is in effect (see 10.8.5). DT DATA phases shall only use 16-bit synchronous transfers.

4.1.7.9 Paced transfers
Paced transfers shall only be used in DT DATA phases when a fast-160 agreement is in effect (see
10.8.5). DT DATA phases shall only use 16-bit paced transfers.

10.6 SELECTION phase

10.6.3 Selection without using attention condition

10.6.3.1 Information unit transfers enabled or disabled
…
If an initiator, when selecting without using an attention condition, detects an unexpected COMMAND
phase it should shall invalidate all prior negotiations with the selected target. In this case, the initiator shall
create an attention condition and on the corresponding MESSAGE OUT phase shall issue an ABORT
TASK message. On the next selection of the target that received the ABORT TASK message the initiator
should do a selection using the attention condition and negotiate to enable information unit transfers.

16.1 Negotiation messages
[Editor’s note: create a new section 16.x parallel to the Link control messages section.]

16.1.1 Negotiation message codes
[Editor’s note: Move PPR, WDTR, and SDTR out of the Link control message codes table into a new
table here. Split the OUT and IN messages into separate rows]

01-131 Page 26 of 27

Table 10. Negotiation message codes

Extended
Message,
Length, and
Code

Init Targ Message Name In Out Clear
Attention
Condition

01h, 06h, 04h O O PARALLEL PROTOCOL
REQUEST (PPR) OUT

In Out Yes

01h, 06h, 04h O O PARALLEL PROTOCOL
REQUEST (PPR) IN

In

01h, 03h, 01h O O SYNCHRONOUS DATA
TRANSFER REQUEST
(SDTR) OUT

In Out Yes

01h, 03h, 01h O O SYNCHRONOUS DATA
TRANSFER REQUEST
(SDTR) IN

In

01h, 02h, 03h O O WIDE DATA TRANSFER
REQUEST (WDTR) OUT

In Out Yes

01h, 02h, 03h O O WIDE DATA TRANSFER
REQUEST (WDTR) IN

In

Key: M=Mandatory support, O=Optional support
In=Target to initiator, Out=Initiator to target
Yes=When sending the message in a MESSAGE OUT phase, the initiator shall
clear the attention condition before the last ACK of the MESSAGE OUT phase.
Init=initiator, Targ=target

16.1.2 PARALLEL PROTOCOL REQUEST message description
PARALLEL PROTOCOL REQUEST (PPR) messages (see Table 11) are used to negotiate the transfer
period factor, REQ/ACK offset, transfer width exponent, and protocol options between two SCSI devices.

Table 11. PARALLEL PROTOCOL REQUEST message format

Bit
Byte

7 6 5 4 3 2 1 0

0 Extended Message (01h)
1 EXTENDED MESSAGE LENGTH (06h)
2 Parallel Protocol Request (04h)
3 TRANSFER PERIOD FACTOR
4 Reserved
5 REQ/ACK OFFSET
6 TRANSFER WIDTH EXPONENT [“m” removed]

PROTOCOL OPTIONS 7
PCOMP_EN RTI RD_STRM WR_FLOW HOLD_MCS QAS_REQ DT_REQ IU_REQ

PPR messages shall be supported by ports supporting transfer period factors less than 0Ah or supporting
any of the protocol options. PPR messages shall be supported by target ports with a CLOCKING field
indicating DT support, IUS set to 1, or QAS set to 1 in the INQUIRY page of all their logical units (see
SPC-2).

Usage of this message is defined in 4.1. Fields are defined in 4.1.4.

16.1.3 SYNCHRONOUS DATA TRANSFER REQUEST message description
SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) messages (see Table 12) are used to negotiate
the transfer period factor and REQ/ACK offset between two SCSI devices.

01-131 Page 27 of 27

Table 12. SYNCHRONOUS DATA TRANSFER REQUEST message format

Byte
0 Extended Message (01h)
1 EXTENDED MESSAGE LENGTH (03h)
2 Synchronous Data Transfer Request (01h)
3 TRANSFER PERIOD FACTOR
4 REQ/ACK OFFSET

SDTR messages shall be supported by devices supporting synchronous data transfers (i.e., non-zero
REQ/ACK offsets). SDTR messages shall be supported by target ports with SYNC set to 1 in the
INQUIRY page of all their logical units (see SPC-2).

Only transfer period factors greater than or equal to 0Ah shall be negotiated with SDTR. PPR shall be
used for transfer period factors less than 0Ah.

Usage of this message is defined in 4.1. Fields are defined in 4.1.4.

16.1.4 WIDE DATA TRANSFER REQUEST message description
WIDE DATA TRANSFER REQUEST (WDTR) messages (see Table 13) are used to negotiate the
transfer width exponent between two SCSI devices.

Table 13. WIDE DATA TRANSFER REQUEST message format

Byte
0 Extended Message (01h)
1 EXTENDED MESSAGE LENGTH (02h)
2 Wide Data Transfer Request (03h)
3 TRANSFER WIDTH EXPONENT [“m” removed]

WDTR messages shall be supported by ports supporting wide data transfers (i.e., non-zero transfer width
exponents). WDTR messages shall be supported by target ports with WBUS16 set to 1 in the INQUIRY
page of all their logical unit (see SPC-2).

Usage of this message is defined in 4.1. Fields are defined in 4.1.4.

Additional changes
References to sections 16.3.12 (PPR), 16.3.16 (SDTR), and 16.3.18 (WDTR) need to be redirected to the
new section numbers (probably always safe since they refer to 4.x) or the 4.x model section (preferable if
a specific field is being referenced).

All references to the various field names need to be reviewed. (e.g., phrases like “if information units are
enabled” may need to change to “if an information unit transfer agreement is in effect”)

All references to “transfer agreement” need to be reviewed. (e.g. make sure terminology is consistent for
phrases like “paced data transfer agreement” vs. “paced transfer agreement”, and that we have all the
“transfer agreements” used in the main text defined in this section.)

	Negotiation
	Negotiation introduction
	Negotiation algorithm
	When to negotiate
	Negotiable fields
	Negotiable fields introduction
	Transfer agreements
	Transfer period factor
	REQ/ACK offset
	Transfer width exponent
	Protocol options
	Protocol options introduction
	IU_REQ
	DT_REQ
	QAS_REQ
	HOLD_MCS
	WR_FLOW
	RD_STRM
	RTI
	PCOMP_EN

	Negotiable field combinations
	Message restrictions
	Negotiation message sequences
	Negotiation message sequences overview
	Initiator originated PPR negotiation
	Initiator originated WDTR negotiation
	Initiator originated SDTR negotiation
	Target originated WDTR negotiation
	Target originated SDTR negotiation
	Asynchronous transfers
	Synchronous transfers
	Paced transfers

	SELECTION phase
	Selection without using attention condition
	Information unit transfers enabled or disabled

	Negotiation messages
	Negotiation message codes
	PARALLEL PROTOCOL REQUEST message description
	SYNCHRONOUS DATA TRANSFER REQUEST message description
	WIDE DATA TRANSFER REQUEST message description

