To:T10 Technical CommitteeFrom:Rob Elliott, Compaq Computer Corporation (Robert.Elliott@compaq.com)Date:30 June 2001Subject:SPI-4 negotiation message rewrite

Revision History

Revision 0 (16 April 2001): first revision released to T10. Revision 1 (30 June 2001): incorporated feedback from Brian Cockburn (Adva Optical) and the May Parallel SCSI WG. Added figures for initiator-originated and target-originated WDTR and SDTR.

Related Documents

spi4r04 - SCSI Parallel Interface - 4 revision 5

Overview

The PPR, WDTR, and SDTR message descriptions are full of duplications and contain some errors. This proposal rewrites the three sections, moving most of the text into a model section in clause 4 and simplifying the individual sections in clause 16. It attempts to eliminate duplications and fix errors. It only attempts to change behavior that needs to be changed.

Most of the errors are in the descriptions of error handling – parity errors and unexpected bus frees. The standard is not clear on when the initiator and target should maintain their negotiated settings and when they should reset them to asynchronous. This does not cause many problems in practice because errors are rare, and today's software probably issues a bus resets when errors occur, which brings all the devices back to a known state.

Suggested Changes

Editor's directions: Add the new model section to chapter 4. Remove sections 16.3.10 PPR, 16.3.14 SDTR, and 16.3.16 WDTR. Add a new Negotiation section 16.x (parallel to the Link section) with subsections for PPR, SDTR, and WDTR.

The text was originally pulled from SPI-4 revision 0; some changes made through revision 5 may have been missed.

Table of contents:

4.1 Negotiation	. 3
4.1.1 Negotiation introduction	
4.1.2 Negotiation algorithm	. 3
4.1.3 When to negotiate	. 4
4.1.4 Negotiable fields	. 5
4.1.4.1 Negotiable fields introduction	. 5
4.1.4.2 Transfer agreements	. 6
4.1.4.3 Transfer period factor	. 6
4.1.4.4 REQ/ACK offset	. 7
4.1.4.5 Transfer width exponent	. 8
4.1.4.6 Protocol options	. 9
4.1.4.6.1 Protocol options introduction	. 9
4.1.4.6.2 IU_REQ	. 9
4.1.4.6.3 DT_REQ	10
4.1.4.6.4 QAS_REQ	
4.1.4.6.5 HOLD_MCS	10
4.1.4.6.6 WR_FLOW	10
4.1.4.6.7 RD_STRM	10
4.1.4.6.8 RTI	
4.1.4.6.9 PCOMP_EN	
4.1.5 Negotiable field combinations	
4.1.6 Message restrictions	12
4.1.7 Negotiation message sequences	13
4.1.7.1 Negotiation message sequences overview	13
4.1.7.2 Initiator originated PPR negotiation	14
4.1.7.3 Initiator originated WDTR negotiation	
4.1.7.4 Initiator originated SDTR negotiation	
4.1.7.5 Target originated WDTR negotiation	
4.1.7.6 Target originated SDTR negotiation	22
4.1.8 Data transfer modes	
4.1.8.1 Asynchronous transfers	
4.1.8.2 Synchronous transfers	
4.1.8.3 Paced transfers	24
16.1 Negotiation messages	24
16.1.1 Negotiation message codes	24
16.1.2 PARALLEL PROTOCOL REQUEST message description	25
16.1.3 SYNCHRONOUS DATA TRANSFER REQUEST message description	25
16.1.4 WIDE DATA TRANSFER REQUEST message description	26

4.1 Negotiation

4.1.1 Negotiation introduction

PARALLEL PROTOCOL REQUEST (PPR), SYNCHRONOUS DATA TRANSFER REQUEST (SDTR), and WIDE DATA TRANSFER REQUEST (WDTR) messages are used to alter the transfer agreement between two ports (see 3.1.76). The transfer agreement defines the protocol used during DATA phases (e.g., transfer period, REQ/ACK offset, transfer width) and agreement on features not affecting DATA phases (e.g., QAS). All other information transfer phases (COMMAND, MESSAGE, and STATUS) use eight-bit asynchronous data transfers.

The default transfer agreement is narrow and asynchronous (see 4.1.4.2).

PPR, SDTR, and WDTR are called negotiation messages. When an initiator sends one of them, the message names are PPR OUT, SDTR OUT, and WDTR OUT. When a target sends one of them, the message names are PPR IN, SDTR IN, and WDTR IN. A negotiation sequence consists of at least one matching set of negotiation messages, e.g., PPR OUT and PPR IN.

A transfer agreement is maintained for each pair of ports. Each port (see 3.1.76) may be used as either a target port (see 3.1.xx) or an initiator port (see 3.1.xx). All communication that occurs though a port shall use the transfer agreement regardless of whether the port is acting as a target port or an initiator port (e.g., if port 7 is used as an initiator port and port 0 is used as a target port, the same transfer agreement also applies when port 7 is used as a target port and port 0 is used as an initiator port).

Negotiations are maintained on a port basis. All logical units in a target share the same transfer agreement.

4.1.2 Negotiation algorithm

An initiator port and target port exchange negotiation messages to perform negotiation. The originating port is the one that sends the first negotiation message and the responding port is the one that replies.

Ports shall not set message fields to values they do not support. The originating port should set the fields in the originating negotiation message to the maximum values (e.g., fastest transfer period, largest REQ/ACK offset, etc.) it supports. If the responding port is able to support the requested values, it shall return the same values in the responding negotiation message. If the responding port requires different values (i.e., a subset of the originating port's request), it shall return those values in the responding negotiation message (e.g., if the originating port asks for a REQ/ACK offset of 32 and the responding port only supports a REQ/ACK offset of 16, the originating message requests an offset of 32 and the responding message replies with an offset of 16).

If the responding negotiation message contains values the originating port does not support, the originatingport shall respond with a MESSAGE REJECT.

The valid error-free negotiation message sequences are shown in Figure 1. A description of all possible message sequences is in section 4.1.7.

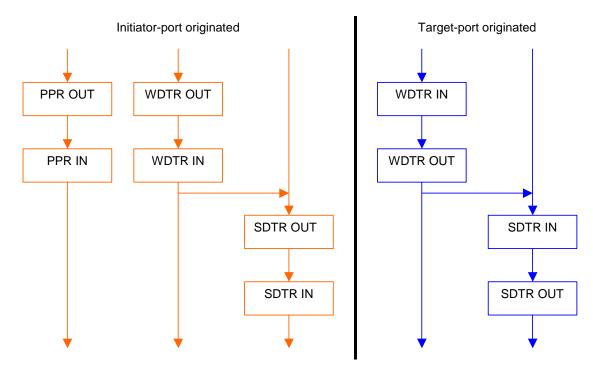


Figure 1. Error-free negotiation message sequences.

4.1.3 When to negotiate

A target port shall consider its transfer agreement invalid after:

- a) a reset event (see 12.5); or
- b) an error occurs while transmitting a responding negotiation message.

An initiator port shall consider its transfer agreement invalid after:

- a) a reset event (see 12.5));
- b) a unit attention status is received with an additional sense code whose ADDITIONAL SENSE CODE field contains 29h (e.g., POWER ON, RESET, OR BUS DEVICE RESET OCCURRED; POWER ON OCCURRED; SCSI BUS RESET OCCURRED; BUS DEVICE RESET FUNCTION OCCURRED; DEVICE INTERNAL RESET; TRANSCEIVER MODE CHANGED TO SINGLE-ENDED; or TRANSCEIVER MODE CHANGED TO LVD);
- NOTE: These additional sense codes are never reported in a status information unit because SCSI devices default to information units disabled.
- c) when selecting without using attention condition (i.e., when selecting a target with information units enabled), the initiator port detects an unexpected COMMAND phase. This may occur if the target has been hot-swapped; or
- d) an error occurs while transmitting a responding negotiation message.

A logical unit reset has no effect on a transfer agreement.

An initiator port shall originate negotiation before sending a command whenever it has an invalid transfer agreement. A target port shall originate negotiation before accepting a command whenever it has an invalid transfer agreement.

A port may originate negotiation even if it has a valid transfer agreement (e.g., to change the settings or as part of integrity checking procedures). Negotiation should not be originated after every selection. Because ports remember their transfer agreements between connections, negotiation is unnecessary and performance impact from extra negotiations is likely.

NOTE: Target ports may have had their support for originating negotiation after power on disabled to support broken initiator software. If an initiator port sends a command to a target that has been powered on (e.g., after a hot plug) that results in a unit attention condition, the initiator port realizes the transfer agreement is invalid and originates negotiation before the next command. However, if the command is INQUIRY, REPORT LUNS, or REQUEST SENSE, a unit attention condition is not created. An invalid data phase may occur if the target port does not originate negotiation. If the initiator port always originates negotiation before sending those commands, the data phase runs correctly. When information units are disabled, an initiator port should originate negotiation with its currently negotiated settings before each INQUIRY, REPORT LUNS, or REQUEST SENSE command. When information units are enabled, the selection without attention results in an unexpected COMMAND phase that notifies the initiator port that its transfer agreement is invalid.

4.1.4 Negotiable fields

4.1.4.1 Negotiable fields introduction

Table 1 lists the fields that may be negotiated and the effects of successful negotiation on those fields by each of the different negotiation messages. Ports shall implement a given message if they implement fields that are only negotiable with that message.

Field Name	Field Name Negotiation message pair		e pair	
		PPR	WDTR	SDTR
TRANSFER PERIOD FACTOR		negotiated (valid values: 08h-FFh)	No requirement	negotiated (valid values: 0Ah-FFh)
REQ/ACK OFF	SET	negotiated	Resets to 00h	negotiated
TRANSFER WIDTH EXPONENT		negotiated	negotiated	unchanged
PROTOCOL	PCOMP_EN	negotiated	Resets to 0	Resets to 0
OPTIONS	RTI	negotiated	Resets to 0	Resets to 0
	RD_STRM	negotiated	Resets to 0	Resets to 0
	WR_FLOW	negotiated	Resets to 0	Resets to 0
	HOLD_MCS	negotiated	Resets to 0	Resets to 0
	QAS_REQ	negotiated	Resets to 0	Resets to 0
	DT_REQ	negotiated	Resets to 0	Resets to 0
	IU_REQ	negotiated	Resets to 0	Resets to 0

Table 1. Negotiable fields and effects of successful negotiation

When negotiating, the responding port shall respond with values that are a subset of the values in the originating message as indicated by the "Response shall be" column in

Table 2 (e.g., if the originating message requests a REQ/ACK offset of 10h, the responding message is 10h or lower).

 Table 2. Responding message requirements

Fiel	Field Name		Response shall be numerically
TRANSFER PE	ERIOD FACTOR	PPR, SDTR	Greater than or equal
REQ/ACK OFF	SET	PPR, SDTR	Less than or equal
TRANSFER W	IDTH EXPONENT	PPR, WDTR	Less than or equal
PROTOCOL	PCOMP_EN	PPR	Any value
OPTIONS	RTI	PPR	Less than or equal
	RD_STRM	PPR	Less than or equal
	WR_FLOW	PPR	Less than or equal
	HOLD_MCS	PPR	Less than or equal
	QAS_REQ	PPR	Less than or equal
	DT_REQ	PPR	Less than or equal
	IU_REQ	PPR	Less than or equal

4.1.4.2 Transfer agreements

The valid transfer agreements that are in effect for various combinations of field values are described in Table 3. The terms are not exclusive; more than one may be in effect at the same time.

Transfer agreement	Description
default	REQ/ACK offset set to 00h, transfer width exponent set to 00h, all
	protocol options set to 0.
asynchronous	REQ/ACK offset set to 00h, all protocol options set to 0.
synchronous	REQ/ACK offset greater than or equal to 01h, transfer period
	factor greater than or equal to 09h, all protocol options set to 0.
paced	REQ/ACK offset greater than or equal to 01h, transfer width
	exponent set to 01h, transfer period factor set to 08h, DT_REQ set
	to 1.
wide	Transfer width exponent set to 01h.
narrow	Transfer width exponent set to 00h.
ST data	REQ/ACK offset greater than or equal to 01h, DT_REQ set to 0.
DT data	REQ/ACK offset greater than or equal to 01h, DT_REQ set to 1.

Table 3	. Valid	transfer	agreements
---------	---------	----------	------------

[Editor's note: add "data group" and "information unit"?]

4.1.4.3 Transfer period factor

The TRANSFER PERIOD FACTOR field selects the transfer period (see 3.1.101) and determines which timing values in tables 31 and 32 shall be honored. The field values are defined in Table 4. The TRANSFER PERIOD FACTOR field is negotiated with the PPR and SDTR messages. If REQ/ACK OFFSET is greater than or equal to 01h, a value of 08h indicates that a paced transfer agreement is in effect and that DT_REQ is set to 1, while a value of 09h indicates that a DT transfer agreement is in effect and that DT_REQ is set to 1.

Value	Description	Message	Timing Values (see table 31 and table 32)
00h - 07h	Reserved. Faster transfer periods may be defined by future standards.		
08h	Transfer period equals 6,25 ns. Only valid for paced transfers.	PPR	Fast-160
09h	Transfer period equals 12,5 ns. Only valid for DT transfers.	PPR	Fast-80
0Ah	Transfer period equals 25 ns	PPR, SDTR	Fast-40
0Bh	Transfer period equals 30,3 ns	PPR, SDTR	Fast-40
0Ch	Transfer period equals 50 ns	PPR, SDTR	Fast-20
0Dh - 18h	Transfer period equals the TRANSFER PERIOD FACTOR x 4	PPR, SDTR	Fast-20
19h - 31h	Transfer period equals the TRANSFER PERIOD FACTOR x 4	PPR, SDTR	Fast-10
32h - FFh	Transfer period equals the TRANSFER PERIOD FACTOR x 4	PPR, SDTR	Fast-5

Table 4. Transfer Period Factor

Table 5 shows which transfer period factors may be used with different types of data transfer agreements.

Value	Data group transfers	Information unit transfers	Synchronous data transfers	Paced data transfers
00h - 07h		rese	rved	
08h	no	yes	no	yes
09h	yes	yes	yes	no
0Ah	yes	yes	yes	no
0Bh	yes	yes	yes	no
0Ch	yes	yes	yes	no
0Dh - 18h	yes	yes	yes	no
19h - 31h	yes	yes	yes	no
32h - FFh	yes	yes	yes	no

 Table 5. Transfer Period Factor relationships

4.1.4.4 REQ/ACK offset

The REQ/ACK OFFSET field determines the maximum number of REQs allowed to be outstanding before a corresponding ACK is received at the target. The REQ/ACK OFFSET field is negotiated with the PPR and SDTR messages.

For ST data transfers (i.e., DT_REQ negotiated to zero) the REQ/ACK OFFSET is the maximum number of REQ assertions allowed to be outstanding before a corresponding ACK assertion is received at the target. The REQ/ACK offset represents the number of bytes if the transfer width is one byte or twice the number of bytes if the transfer width is two bytes.

For DT synchronous data transfers (i.e., DT_REQ negotiated to one and IU_REQ negotiated to zero) the REQ/ACK OFFSET is the maximum number of REQ transitions allowed to be outstanding before a corresponding ACK transition is received at the target. The REQ/ACK offset represents twice the number of bytes, since DT data transfers always use a transfer width of two bytes.

For paced DT DATA IN transfers the REQ/ACK OFFSET is the maximum number of data valid state REQ assertions (see 10.8.4.3) allowed to be outstanding before a corresponding ACK assertion is received at the target. The REQ/ACK OFFSET represents four times the number of bytes.

For paced DT DATA OUT transfers the REQ/ACK OFFSET is the maximum number of REQ assertions allowed to be outstanding before a corresponding data valid state ACK assertion is received at the target. The REQ/ACK OFFSET represents four times the number of bytes.

Transfer agreements in effect	Definition of REQ/ACK offset	REQ/ACK offset represents
narrow transfer agreement synchronous transfer agreement ST data transfer agreement	Maximum number of REQ assertions allowed to be outstanding before a corresponding ACK assertion is received at the target.	the number of bytes
wide transfer agreement synchronous transfer agreement ST data transfer agreement	Maximum number of REQ assertions allowed to be outstanding before a corresponding ACK assertion is received at the target.	2 times the number of bytes
synchronous transfer agreement DT data transfer agreement	Maximum number of REQ transitions allowed to be outstanding before a corresponding ACK transition is received at the target.	2 times the number of bytes
paced transfer agreement DT DATA IN	Maximum number of data valid state REQ assertions (see 10.8.4.3) allowed to be outstanding before a corresponding ACK assertion is received at the target	4 times the number of bytes
paced transfer agreement DT DATA OUT	Maximum number of REQ assertions allowed to be outstanding before a corresponding data valid state ACK assertion is received at the target	4 times the number of bytes

See 4.8 for an explanation of the differences between ST and DT data transfers.

The REQ/ACK OFFSET value is chosen to prevent overflow conditions in the port's receive buffer and offset counter. The values are defined in Table 6. Table 6 also indicates which timing values in table 31 shall be honored. A REQ/ACK OFFSET value of zero indicates asynchronous data transfer mode and that the PERIOD FACTOR field and the PROTOCOL OPTIONS field shall be ignored; a value of FFh indicates unlimited REQ/ACK offset. If the REQ/ACK offset is not zero either a synchronous or paced transfer agreement is in effect.

Table 6. REQ/ACK offset

Value	Description	Timing values (See table 31 and table 32)
00h	Asynchronous transfer agreement. Transfer period factor and protocol options shall be ignored.	Asynch
01h-FEh	Synchronous or paced transfer agreement. Specified offset.	Determined by Transfer Period Factor. See Table 4.
FFh	Synchronous or paced transfer agreement. Unlimited offset.	Determined by Transfer Period Factor. See Table 4.

4.1.4.5 Transfer width exponent

The TRANSFER WIDTH EXPONENT field defines the transfer width to be used during DATA IN and DATA OUT phases during data transfers. The values are defined in Table 7. The TRANSFER WIDTH EXPONENT field is negotiated with the PPR and WDTR messages. If any of the protocol options bits are one, the only valid transfer width is 16 bits (01h). If all the protocol options bits are zero, a valid transfer width is 8 bits

(00h) or 16 bits (01h). A TRANSFER WIDTH EXPONENT field value of 02h is obsolete and values greater than 02h are reserved.

If the transfer width is 8 bits a narrow transfer agreement is in effect. If the transfer width is 16 bits a wide transfer agreement is in effect.

Value	Description
00h	8 bit data bus (narrow)
01h	16 bit data bus (wide)
02h	Obsolete
03h-FFh	Reserved

Table 7. Transfer Width Exponent

4.1.4.6 Protocol options

4.1.4.6.1 Protocol options introduction

The protocol options fields affect the protocol used between the ports. They may only be negotiated through PPR messages (which are originated only by initiator ports), and are set to zero by WDTR and SDTR messages.

The target port uses the protocol options bits to indicate to the initiator port if it agrees to enable the requested protocol options. Except for the PCOMP_EN bit, the target shall not enable any protocol options that were not enabled in the negotiation message received from the initiator.

Table 8 describes the protocol options bits.

Name	Description
PCOMP_EN	Precompensation enable
RTI	Retain training information
RD_STRM	Read streaming and read flow control enable
WR_FLOW	Write flow control enable
HOLD_MCS	Hold margin control settings
QAS_REQ	Quick arbitration and selection (QAS) enable request
DT_REQ	Dual transition (DT) clocking enable request
IU_REQ	Information units (IU) enable request

 Table 8. Protocol options bits

4.1.4.6.2 IU_REQ

The initiator port shall set IU_REQ to one in the PPR OUT message to request that information unit transfers be enabled. In response, the target port shall set its IU_REQ to one if it agrees to use information unit transfers or zero if it does not.

The initiator port shall set IU_REQ to zero in the PPR OUT message to request that information unit transfers be disabled. In response, the target port shall set IU_REQ to zero in the PPR IN message.

Table 9 defines valid combinations of IU_REQ and other fields.

Each time a negotiation results in the IU_REQ bit being changed from the previous agreement (i.e., zero to one or one to zero) the target shall go to a BUS FREE phase on completion of the negotiation. Additional requirements (see 14.1) shall be met if the IU_REQ bit is changed as a result of the negotiation.

4.1.4.6.3 DT_REQ

The initiator port shall set DT_REQ to one to request that DT DATA phases be enabled. In response, the target port shall set DT_REQ to one if it agrees to use DT DATA phases or zero if it does not.

The initiator port shall set DT_REQ to zero to request that information unit transfers be disabled. In response, the target port shall set DT_REQ to zero in the PPR IN message.

If DT_REQ is one, a DT data transfer agreement is in effect. If DT_REQ is zero, an ST data transfer agreement is in effect.

Table 9 defines valid combinations of DT_REQ and other fields.

4.1.4.6.4 QAS_REQ

The initiator port shall set QAS_REQ to one to request that QAS be enabled. In response, the target port shall set QAS_REQ to one if it supports QAS or zero if it does not.

The initiator port shall set QAS_REQ to zero to request that information unit transfers be disabled. In response, the target port shall set QAS_REQ to zero in the PPR IN message.

Table 9 defines valid combinations of QAS_REQ and other fields.

When QAS is enabled, the port shall participate in QAS arbitrations when attempting to connect to a port that has enabled QAS. When QAS is enabled and information unit transfers are enabled for a connected target port, that target port may issue a QAS REQUEST message to release the bus after a DT DATA phase. When QAS is enabled and information unit transfers are disabled for a connected target port, that target port shall not issue QAS REQUEST messages.

4.1.4.6.5 HOLD_MCS

The initiator port shall set HOLD_MCS to one to indicate that the target should hold any margin control settings set with the margin control subpage of the port control mode page (see 18.1.4). In response, the target port shall set HOLD_MCS to one if it is capable of retaining the settings and zero if it is not.

The initiator port shall set HOLD_MCS to zero to indicate that the target shall reset to their default values any margin control settings set with the margin control subpage of the port control mode page (see 18.1.4). In response, the target port shall set HOLD_MCS to zero.

4.1.4.6.6 WR_FLOW

The initiator port shall set WR_FLOW to one to indicate that the target should enable write flow control during write streaming (see Table 29, 4.10.3.3 and 8.2). In response, the target port shall set WR_FLOW to one if it is capable of write flow control and zero if it is not.

The initiator port shall set WR_FLOW to zero to indicate that the target shall disable write flow control during write streaming. In response, the target port shall set WR_FLOW to zero.

Write streaming and write flow control only occurs during information unit transfers.

Table 9 defines valid combinations of WR_FLOW and other fields.

4.1.4.6.7 RD_STRM

The initiator port shall set RD_STRM to one to indicate that the target should enable read streaming and read flow control (see Table 29, 4.10.3.3, 8.2, and 14.3.4). In response, the target port shall set RD_STRM to one if it is agrees of read streaming and read flow control and zero if it is not.

The initiator port shall set RD_STRM to zero to indicate that the target shall disable read streaming and read flow control. In response, the target port shall set RD_STRM to zero. Read streaming and read flow control only occur during information unit transfers.

Table 9 defines valid combinations of RD_STRM and other fields.

4.1.4.6.8 RTI

The initiator port shall set RTI to one to request saving paced data transfer training information (see 10.8.4.2.1) to indicate that the target should not retrain. In response, the target port shall set RTI to one if it is capable of saving paced data transfer training information and zero if it is not.

The initiator port shall set RTI to zero to if it does not support reword saving paced data transfer training information to indicate that the target shall retrain. In response, the target port shall set RTI to zero.

Table 9 defines valid combinations of RTI and other fields.

4.1.4.6.9 PCOMP_EN

The initiator port shall set PCOMP_EN to one to indicate that the target shall enable precompensation (see 4.9, 7.3.2, and 10.8.4.1). The initiator port shall set PCOMP_EN to zero to indicate that the target shall disable precompensation.

The target port shall set PCOMP_EN to one to indicate that the initiator shall enable precompensation. The target port shall set PCOMP_EN to zero to indicate that the initiator shall disable precompensation.

Table 9 defines valid combinations of PCOMP_EN and other fields. Ports that support fast-160 shall support enabling and disabling precompensation of their drivers.

4.1.5 Negotiable field combinations

Not all combinations of the negotiable fields are valid. Only the combinations defined in Table 9 shall be allowed. All other combinations of the listed fields are reserved.

			Protocol options					Description			
Transfer period factor	REQ/ACK Offset	Transfer width exponent	PCOMP_E N	RTI	RD_STRM	WR_FLOW	HOLD_MC	QAS_REQ	DT_REQ	IU_REQ	
0Ah – FFh	00h	00h or 01h	0	0	0	0	0	0	0	0	Use ST DATA IN and ST DATA OUT phases to transfer data with asynchronous data transfers
0Ah - FFh	01h - FFh	00h or 01h	0	0	0	0	0	0	0	0	Use ST DATA IN and ST DATA OUT phases to transfer data with synchronous data transfers
09h - FFh	01h - FFh	01h	0	0	0	0	0	0	1	0	Use DT DATA IN and DT DATA OUT phases with data group transfers
09h - FFh	01h - FFh	01h	0	0	0	0	0	1	1	0	Use DT DATA IN and DT DATA OUT phases with data group transfers, and participate in QAS arbitrations
09h – FFh	01h – FFh	01h	0	0	0 or 1	0 or 1	0	0	1	1	Use DT DATA IN and DT DATA OUT phases with information unit transfers
08h	01h - FFh	01h	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0	1	1	Use DT DATA IN and DT DATA OUT phases with information unit transfers
09h – FFh	01h - FFh	01h	0	0	0 or 1	0 or 1	0	1	1	1	Use DT DATA IN and DT DATA OUT phases with information unit transfers, participate in QAS arbitrations, and use QAS for arbitration
08h	01h - FFh	01h	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	1	1	1	Use DT DATA IN and DT DATA OUT phases with information unit transfers, participate in QAS arbitrations, and use QAS for arbitration

Table 9. Valid negotiable field combinations

4.1.6 Message restrictions

PPR may be originated by initiator ports but shall not be originated by target ports. Initiator ports should only use PPR when requesting values not attainable via WDTR and SDTR (e.g., selecting a transfer period factor less than 0Ah or setting any protocol option bits to 1). If a target port responds to PPR with values that are attainable via WDTR and SDTR, the initiator port should repeat negotiation starting with a WDTR and SDTR negotiation sequence. This ensures that bus expanders that do not support PPR are still able to handle the data phase correctly.

WDTR and SDTR may be originated by either target ports or initiator ports. Since WDTR resets all the values that SDTR sets (see 4.1.4.1), it shall be sent first if both are needed.

4.1.7 Negotiation message sequences

4.1.7.1 Negotiation message sequences overview

An initiator originated negotiation sequence contains up to four steps:

- 1) Initiator port's originating message;
- 2) Target port response;
- 3) Initiator port response; and
- 4) Target port second response.

A target originated negotiation sequence contains up to four steps:

- 1) Target port's originating message;
- 2) Initiator port response;
- 3) Target port response; and
- 4) Initiator port second response.

4.1.7.2 Initiator originated PPR negotiation

Figure 2 shows how the initiator port shall respond to various target port responses to an originating PPR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

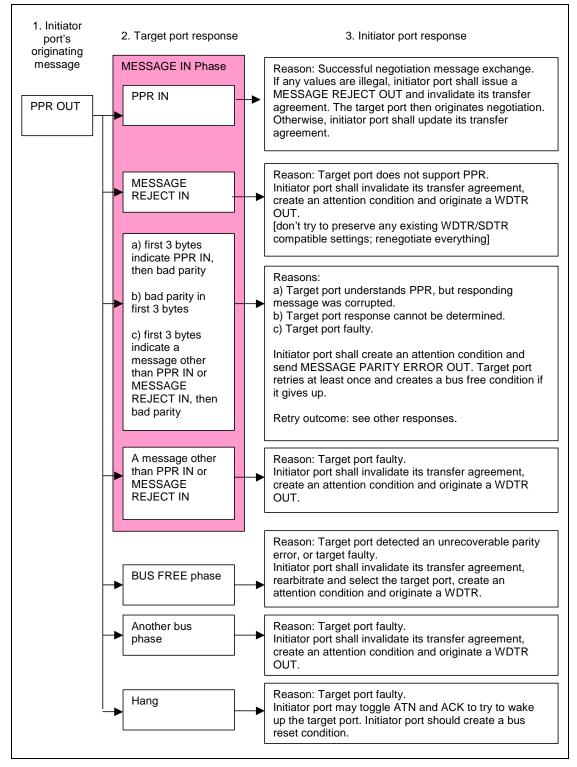


Figure 2. Initiator originated PPR negotiation: initiator response

Figure 3 shows how the target port shall respond to various initiator port responses to a responding PPR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

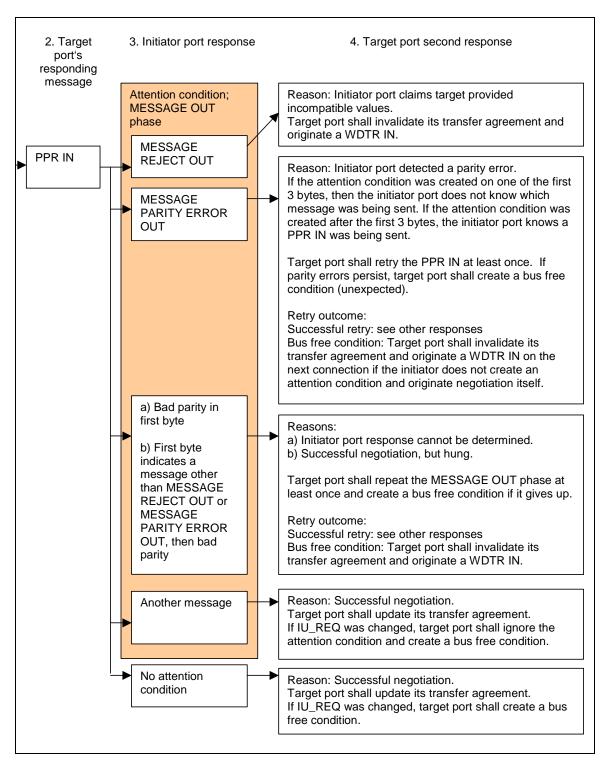


Figure 3. Initiator originated PPR negotiation: target response

4.1.7.3 Initiator originated WDTR negotiation

Figure 4 shows how the initiator port shall respond to various target port responses to an originating WDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

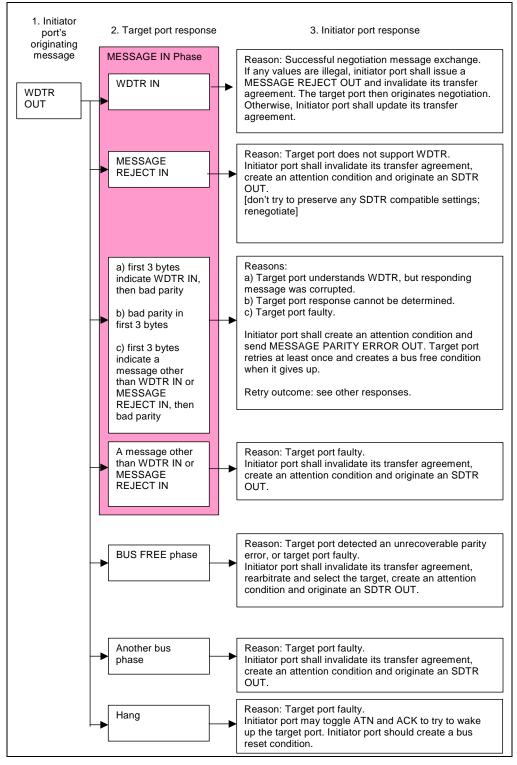


Figure 4. Initiator originated WDTR negotiation: initiator response

Figure 5 shows how the target port shall respond to various initiator port responses to a responding WDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

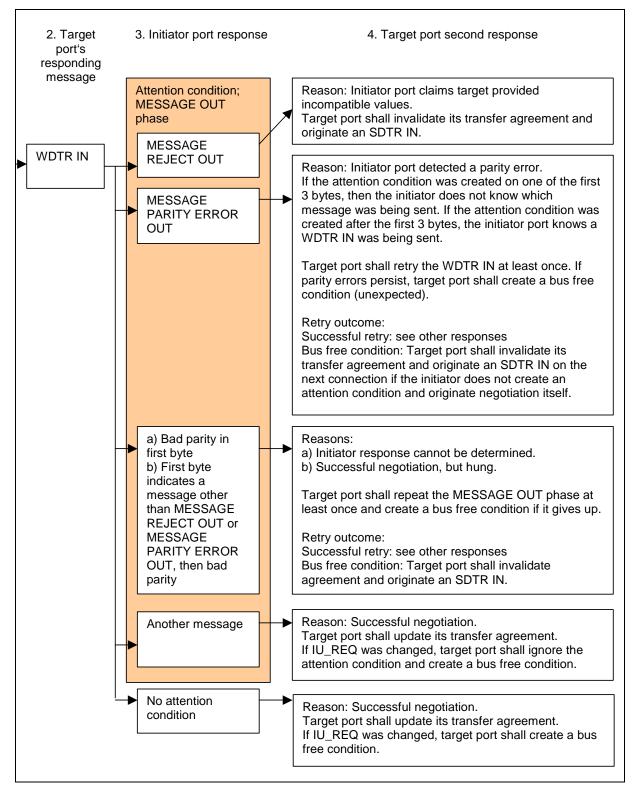


Figure 5. Initiator originated WDTR negotiation: target response

4.1.7.4 Initiator originated SDTR negotiation

Figure 6 shows how the initiator port shall respond to various target port responses to an originating SDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

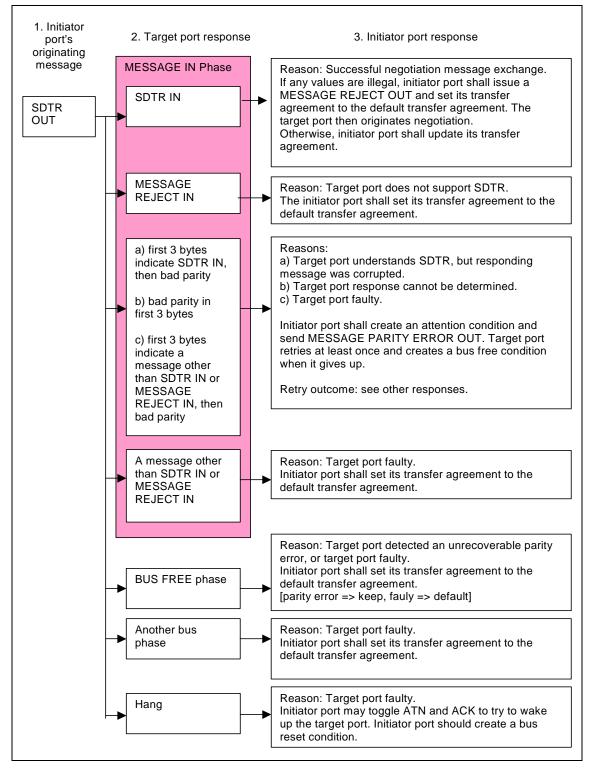


Figure 6. Initiator originated SDTR negotiation: initiator response

Figure 7 shows how the target port shall respond to various initiator port responses to a responding SDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

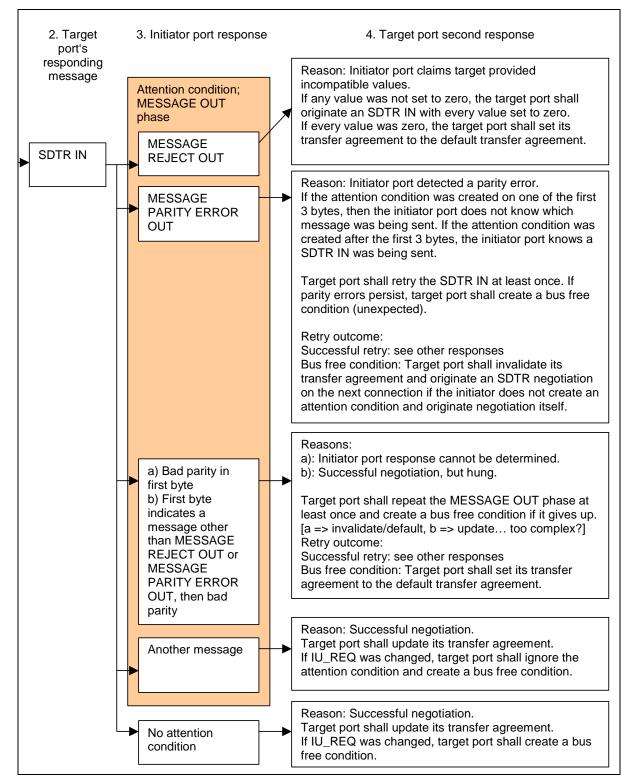


Figure 7. Initiator originated SDTR negotiation: target response

4.1.7.5 Target originated WDTR negotiation

Figure 8 shows how the target port shall respond to various initiator port responses to an originating WDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

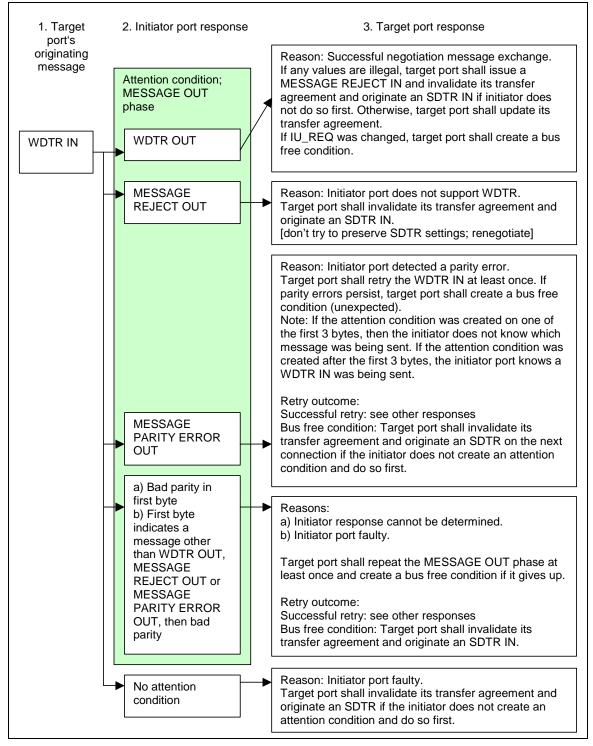


Figure 8. Target originated WDTR negotiation: target response

Figure 9 shows how the initiator port shall respond to various target port responses to a responding WDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

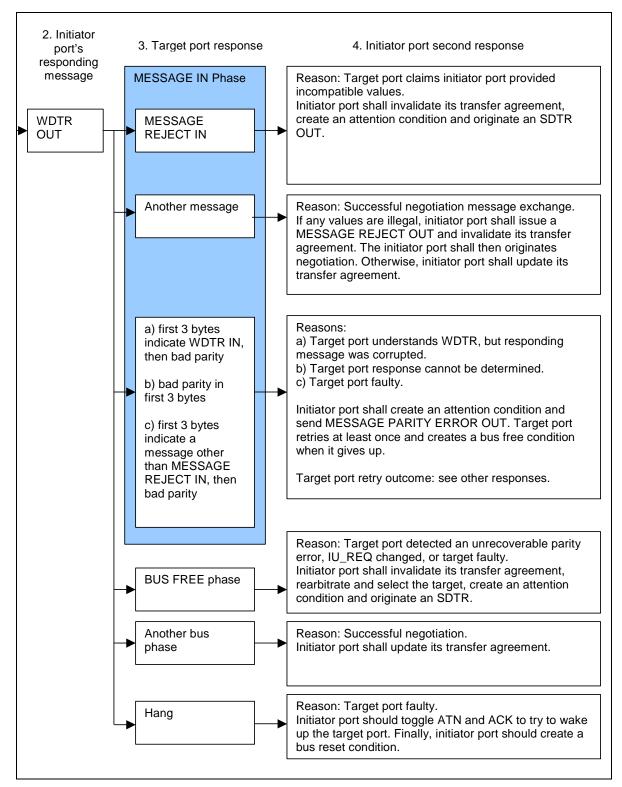


Figure 9. Target originated WDTR negotiation: initiator response

4.1.7.6 Target originated SDTR negotiation

Figure 10 shows how the target port shall respond to various initiator port responses to an originating SDTR IN. The target port shall maintain the previous transfer agreement unless otherwise indicated.

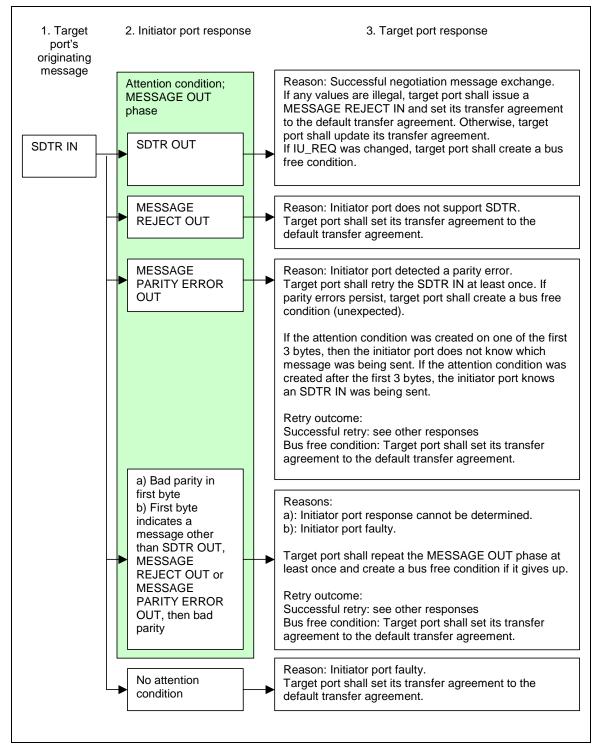


Figure 10. Target originated SDTR negotiation: target response

Figure 11 shows how the initiator port shall respond to various target port responses to a responding SDTR OUT. The initiator port shall maintain the previous transfer agreement unless otherwise indicated.

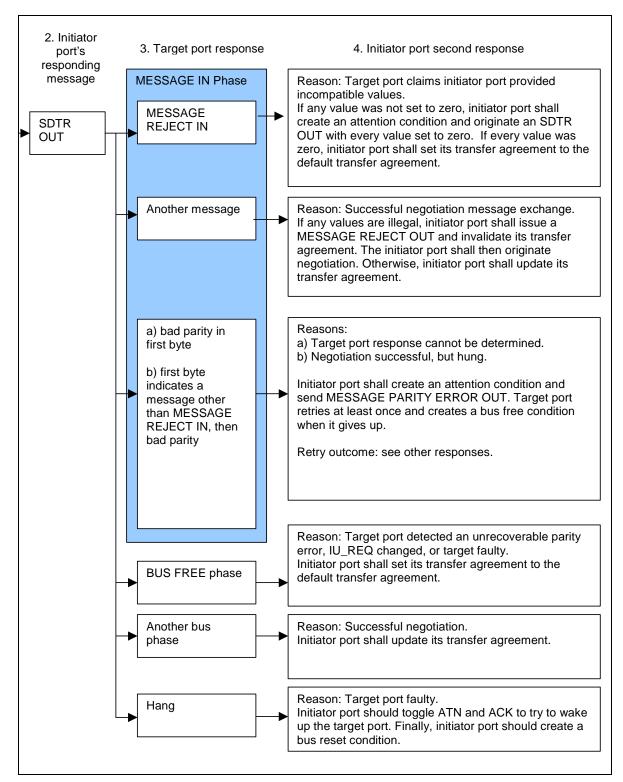


Figure 11. Target originated SDTR negotiation: initiator response

4.1.8 Data transfer modes

4.1.8.1 Asynchronous transfers

SCSI parallel interface devices default to 8-bit asynchronous transfers.

The 8-bit asynchronous transfers are used for all information transfers except DATA phases. ST DATA phases use 16-bit asynchronous transfers when a wide transfer agreement (see 10.8.5) is in effect. Asynchronous transfers are not permitted when DT DATA phases are enabled.

4.1.8.2 Synchronous transfers

Synchronous transfers shall only be used in DATA phases when a synchronous transfer agreement is in effect (see 10.8.5).

ST DATA phases shall transfer data using synchronous transfers when a ST DATA phase enabled agreement is in effect. ST DATA phases use 16-bit synchronous transfers when a wide transfer agreement (see 10.8.5) is in effect.

DT DATA phases shall transfer data using synchronous transfers when a DT DATA phase enabled agreement is in effect (see 10.8.5). DT DATA phases shall only use 16-bit synchronous transfers.

4.1.8.3 Paced transfers

Paced transfers shall only be used in DT DATA phases when a fast-160 agreement is in effect (see 10.8.5). DT DATA phases shall only use 16-bit paced transfers.

16.1 Negotiation messages

[Editor's note: create a new section 16.x parallel to the Link control messages section.]

16.1.1 Negotiation message codes

[Editor's note: Move PPR, WDTR, and SDTR out of the Link control message codes table into a new table here. Split the OUT and IN messages into separate rows]

Extended Message, Length, and Code	Init	Targ	Message Name	In	Out	Clear Attention Condition
01h, 06h, 04h	0	0	PARALLEL PROTOCOL REQUEST (PPR) OUT		Out	Yes
01h, 06h, 04h	0	0	PARALLEL PROTOCOL REQUEST (PPR) IN	In		
01h, 03h, 01h	0	0	SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) OUT		Out	Yes
01h, 03h, 01h	0	0	SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) IN	In		
01h, 02h, 03h	0	0	WIDE DATA TRANSFER REQUEST (WDTR) OUT		Out	Yes
01h, 02h, 03h	0	0	WIDE DATA TRANSFER REQUEST (WDTR) IN	In		
In=Target Yes=Whe	to initia n sendi last A(ator, Out ing the n CK of the	=Optional support =Initiator to target nessage, the initiator shall cle e MESSAGE OUT phase.	ar the	e attenti	on condition

Table 10. Negotiation message codes

16.1.2 PARALLEL PROTOCOL REQUEST message description

PARALLEL PROTOCOL REQUEST (PPR) messages (see Table 11) are used to negotiate the transfer period factor, REQ/ACK offset, transfer width exponent, and protocol options between two SCSI devices.

Bit	7	6	5	4	3	2	1	0
Byte								
0	Extended Message (01h)							
1	EXTENDED MESSAGE LENGTH (06h)							
2	Parallel Protocol Request (04h)							
3	TRANSFER PERIOD FACTOR							
4	Reserved							
5	REQ/ACK OFFSET							
6	TRANSFER WIDTH EXPONENT ["m" removed]							
7	PROTOCOL OPTIONS							
	PCOMP_EN RTI RD_STRM WR_FLOW HOLD_MCS QAS_REQ DT_REQ IU_REQ						IU_REQ	

Table 11. PARALLEL PROTOCOL REQUEST message format

PPR messages shall be supported by ports supporting transfer period factors less than 0Ah or supporting any of the protocol options. PPR messages shall be supported by target ports with a CLOCKING field indicating DT support, IUS set to 1, or QAS set to 1 in the INQUIRY page of all their logical units (see SPC-2).

Usage of this message is defined in 4.1. Fields are defined in 4.1.4.

16.1.3 SYNCHRONOUS DATA TRANSFER REQUEST message description

SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) messages (see Table 12) are used to negotiate the transfer period factor and REQ/ACK offset between two SCSI devices.

Table 12. SYNCHRONOUS DATA TRANSFER REQUEST message format

Byte	
0	Extended Message (01h)
1	EXTENDED MESSAGE LENGTH (03h)
2	Synchronous Data Transfer Request (01h)
3	TRANSFER PERIOD FACTOR
4	REQ/ACK OFFSET

SDTR messages shall be supported by devices supporting synchronous data transfers (i.e., non-zero REQ/ACK offsets). SDTR messages shall be supported by target ports with SYNC set to 1 in the INQUIRY page of all their logical units (see SPC-2).

Only transfer period factors greater than or equal to 0Ah shall be negotiated with SDTR. PPR shall be used for transfer period factors less than 0Ah.

Usage of this message is defined in 4.1. Fields are defined in 4.1.4.

16.1.4 WIDE DATA TRANSFER REQUEST message description

WIDE DATA TRANSFER REQUEST (WDTR) messages (see Table 13) are used to negotiate the transfer width exponent between two SCSI devices.

Byte	
0	Extended Message (01h)
1	EXTENDED MESSAGE LENGTH (02h)
2	Wide Data Transfer Request (03h)
3	TRANSFER WIDTH EXPONENT ["m" removed]

Table 13. WIDE DATA TRANSFER REQUEST message format

WDTR messages shall be supported by ports supporting wide data transfers (i.e., non-zero transfer width exponents). WDTR messages shall be supported by target ports with WBUS16 set to 1 in the INQUIRY page of all their logical unit (see SPC-2).

Usage of this message is defined in 4.1. Fields are defined in 4.1.4.

Additional changes

References to sections 16.3.12 (PPR), 16.3.16 (SDTR), and 16.3.18 (WDTR) need to be redirected to the new section numbers or the 4.x model section.

All references to the various field names need to be reviewed. (e.g. "if information units are enabled")

All references to "transfer agreement" need to be reviewed. (e.g. paced data transfer agreement vs. paced transfer agreement)