Determining First Pulse Attenuation

Wally Bridgewater

adaptec

3/2/01

Managing Output Driver Power

- PCI-X is looking at increase speed or a possible increased bus loading, but mostly increased speed.
- PCI-X power dissipation can double, because of the above
- Need to insure that we haven't 'over' worst cased the SCSI driver.

adaptec

Creating a 1st pulse model

- Determine cable attenuation vs. frequency
- Create Hspice W element cable model that matches frequency roll off characteristics.
- Find cable length for 12db loss @ 200MHz
- Sweep cable length, and display result such that 12db loss @ 200MHz is 100% point of the X-axis

3/2/01 3

185mV holding level assumptions

- Eye mask has always allowed for dips to 30mV.
- 60mV X-talk is not likely because, if it is on a quite output from the driving side, then 22mV is the X-talk.
- If you consider X-talk on the clock that is flowing in the direction against the data, there is always at least 1 quiet signal right next to it on one side, and many quiet signals on the other side.
- Anyway, if you add 30mV + 60mV, plus allow 95mV for more than 25% reflections, = 185mV.
- 185mV holding is after any driver or system offset.

3/2/01

adaptec

Good Model

Old model

Corrected Spread Sheet

Voltage level in table represents ~3ns signal width

Cable roll off to 60% signal -60 mV crosstalk & Noise 23% DC loss from cable, connectors and terminators										
Trans FB 22% roll off to 60%	103, 19072	149.5016	158.3227	160,528	186.9914	213.4547	248.7392	266.3814	292.8448	
Trans F.B. 33% roll off to 60%	111.39584	160.0352	169.2998	171.616	199.4099	227.2038	264.2624	282,7917	310.5856	
Trans FB 40% roll off to 60%	115.4984	165, 302	174.7884	177,16	205.6192	234 0784	272.024	290,9968	319.456	
Trans FB 50% roll off to 60%	122.336	17408	183.936	186.4	215.968	245.536	28496	304.672	33424	
Right equation	((((V+VFB)*	.76)•Vfb)*0.	.77)-60) 📄							
	100 mV receiver required, 60 mV Crosstalk and System Noise									

3/2/01

In Closing

- Free running attenuation is much greater than 1st pulse attenuation
- There was no need for such a high holding level after pre-comp cutback.
- Let each company decide it's own driver output offset budget.

I

Test parameter	Test conditions (figure A.1)(note 1)	Minimum (mV) (note 2)	Maximum (mV)
V _A Differential output voltage magnitude (asserted) (note)	V ₁ = 1,056 V V ₂ = 0,634 V	320	800
	V ₁ = 1,866 V V ₂ = 1,444V	320	800
V _N Differential output voltage magnitude (negated) (note)	$V_1 = 1,056 V$ $V_2 = 0,634 V$	320	800
	V ₁ = 1,866 V V ₂ = 1,444V	320	800
V _A Differential output voltage magnitude (asserted)	All four above conditions	0,69 x V N + 50	1,45 x V n - 65
Notos			

Table A.2 - Driver stead	ly-state test limits and	conditions for synchronous	-non-paced transfers

Notes:

1 The test circuit (figure A.1) is approximately equivalent to two terminators creating the normal system bias.

2 Minimum standard drive level. If there is a pre-comp cutback, then the minimum

drive level after cutback must be greater than 185mV after all system & driver offsets are taken into account.

3 The test limits shall be within the shaded area of figure A.2.

Table A.3 - Driver stead	v-state test limits	and conditions for	or paced transfers
	y state test mints		

Test parameter	Test conditions (figure A.1)(note 1)	Minimum (mV) (note 2)	Maximum (mV)	
V _A Differential output voltage magnitude (asserted) (note)	$V_1 = 1,056 V$ $V_2 = 0,634 V$	370	800	
	$V_1 = 1,866 V$ $V_2 = 1,444V$	370	800	
V _N Differential output voltage magnitude (negated) (note)	V ₁ = 1,056 V V ₂ = 0,634 V	370	800	
	$V_1 = 1,866 V$ $V_2 = 1,444V$	370	800	
V _A Differential output voltage magnitude (asserted)	All four above conditions	0,90 x V n - 23	1,11 x V N + 26	

Notes:

1 The test circuit (figure A.1) is approximately equivalent to two terminators creating the normal system bias.

2 Minimum standard drive level. If there is a pre-comp cutback, then the minimum drive level after cutback must be greater than 185mV after all system & driver offsets are taken into account.

3 The test limits shall be within the shaded area of figure A.3.