T10/01-067r1

Document: T10/01-067r1

Date: 03/23/2001

Author: Lance Flake (lance_flake@maxtor.com)

Title: RBC Access For AV/C Data Interchange in SBP-3

New RBC Commands and Annex

This proposal includes two sets of new RBC commands for object-aware access. The first
set would provide read/write access, and include Read Object Relative and Write Object
Relative. The second set would provide for management capabilities for RBC objects,
and include Read RBC Object List, Create RBC Object, and Change RBC Object Size.
After the commands is a proposed informative annex explaining their usage.

Read Object Relative Command

The Read Object Relative command (see [Table 1) requests that the target transfer data to
the initiator. The most recent data value written in the addressed logical block shall be
returned.

Table 1- READ OBJECT RELATIVE Command Descriptor Block

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation Code (xxh)
1 Reserved | FUA | Reserved
2 (MSB)
: Logical Block Address
9 (LSB)
10 (MSB)
: Transfer Length
13 (LSB)
14 (MSB)
: Object ID
17 (LSB)
18 Control = 00h

A FORCE UNIT ACCESS (FUA) bit of zero indicates that the target may satisfy the
command by accessing the cache. A FUA bit of one indicates that the target shall access
the media in performing the command prior to returning GOOD status.

The LOGICAL BLOCK ADDRESS field specifies the first logical block of the range of
logical blocks within the object that shall be read.

T10/01-067r1

The TRANSFER LENGTH field specifies the number of contiguous logical blocks of
data that shall be transferred. A TRANSFER LENGTH of zero indicates that no logical
blocks shall be transferred, and this condition shall not be considered an error.

The OBJECT ID field specifies the object containing the logical block(s) requested for
transfer. For RBC types of objects the OBJECT ID refers to an object created through the
CREATE RBC OBJECT command. For all other types of objects the OBJECT ID refers
to an object managed through another command protocol.

Write Object Relative Command

The Write Object Relative command (see [Table 2) requests that the target write data
transferred from the initiator to the medium.

Table 2- WRITE OBJECT RELATIVE Command Descriptor Block

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation Code (xxh)
1 Reserved | FUA | Reserved
2 (MSB)
: Logical Block Address
9 (LSB)
10 (MSB)
X Transfer Length
13 (LSB)
14 (MSB)
: Object ID
17 (LSB)
18 Control = 00h

A FORCE UNIT ACCESS (FUA) bit of zero indicates that the target may satisfy the
command by accessing the cache memory if the WCD bit in RBC mode page 06h is set
to zero. Logical blocks may be transferred directly to the cache memory and GOOD
status may be returned to the initiator prior to writing the logical blocks to the medium.
Any error that occurs after GOOD status is returned is a deferred error. A FUA bit of one
indicates that the target shall access the media in performing the command prior to
returning GOOD status. The command shall not return GOOD status until the logical
blocks have actually been written on the media (i.e., the data is not write cached).

If the target supports write caching, FUA support shall be implemented. If write caching
is not supported then the FUA bit may be ignored.

The LOGICAL BLOCK ADDRESS field specifies the first logical block of the range of
logical blocks within the object that shall be written.

T10/01-067r1

The TRANSFER LENGTH field specifies the number of contiguous logical blocks of
data that shall be transferred. A TRANSFER LENGTH of zero indicates that no logical
blocks shall be transferred, and this condition shall not be considered an error.

The OBJECT ID field specifies the object containing the logical block(s) requested for
transfer. For RBC types of objects the OBJECT ID refers to an object created through the
CREATE RBC OBJECT command. For all other types of objects the OBJECT ID refers
to an object managed through another command protocol.

Read RBC Object List

The Read RBC Object List command (see [Table 3) requests that the target transfer to the
initiator a pointer into target memory, where the initiator can read a list of existing RBC
objects’ descriptions.

Table 3- READ RBC OBJECT LIST Command Descriptor Block

Bit 7 6 5 4 3 2 1 0
Byte
0 Operation Code (xxh)
1
: Reserved
8
9 Control = 00h

READ RBC OBJECT LIST data (see [Table 4) shall be returned to the initiator prior to
sending GOOD status for the command.

Table 4- READ RBC OBJECT LIST Data

Bit 7 6 5 4 3 2 1 0
Byte
0 (MSB)
: Address of RBC Object List
7 (LSB)
8 (MSB)

Length of RBC Object List

11 (LSB)

The ADDRESS OF RBC OBJECT LIST field specifies an address within the target
memory. The LENGTH OF RBC OBJECT LIST field specifies the number of bytes
available at the address in target memory. A list length of zero indicates no RBC objects
exist on the medium, and all other list lengths shall be a multiple of 12.

T10/01-067r1

The list format in target memory is shown in

Table 5- OBJECT CAPACITY LIST Data

Bit 7 6 5 4 3 2 1 0
Byte
0 (MSB)
: Object ID
3 (LSB)
4 (MSB)
: Size in Logical Blocks
11 (LSB)
12 (MSB)
: Object ID
15 (LSB)
16 (MSB)

Size in Logical Blocks

23 (LSB)

The OBJECT ID field indicates the reference value for the object, used in all other
object-relative RBC commands. The SIZE IN LOGICAL BLOCKS field indicates the
capacity of the object referred to by the immediately preceding object ID.

Create RBC Object Command

The Create RBC Object command (see requests that the target create a new
RBC-format object of a specified or unspecified number of logical blocks.

Table 6- CREATE RBC OBJECT Command Descriptor Block

Bit 7 6 5 4 3 2 1 0
Byte

0 Operation Code (xxh)

1 (MSB)

: Object ID

4 (LSB)

5 (MSB)

: Size in Logical Blocks

12 (LSB)
13 Control = 00h

T10/01-067r1

If there is no available space on the medium the target shall return status of CHECK
CONDITON, sense of ILLEGAL REQUEST, and additional sense of INSUFFICEINT
RESOURCES.

The OBJECT ID field specifies the desired reference value for the new object. If this
value refers to an existing object the target shall return status of CHECK CONDITION,
sense of ILLEGAL REQUEST, and additional sense of INVALID FIELD IN CDB. If the
value is OXFFFFFFFF, the target shall assign a previously unused ID to the new object.

The SIZE IN LOGICAL BLOCKS field specifies the capacity of the new object. If the
value is OXFFFFFFFFFFFFFFFF, the target shall create the largest possible object and
return GOOD STATUS. For any other value, if the available free space is less than the
requested object size the target shall return status of CHECK CONDITON, sense of
ILLEGAL REQUEST, and additional sense of INSUFFICEINT RESOURCES.

CREATE RBC OBJECT data (see [Table 7) shall be returned to the initiator prior to
sending GOQD status for the command.

Table 7- CREATE RBC OBJECT Data

Bit 7 6 5 4 3 2 1 0
Byte

0 (MSB)

: Object ID

3 (LSB)
4 (MSB)

: Size in Logical Blocks

11 (LSB)

The OBJECT ID field indicates the reference value for the new object, used in all other
object-relative RBC commands. The SIZE IN LOGICAL BLOCKS field indicates the
capacity of the new object.

Change RBC Object Size Command

The Change RBC Obiject Size command (see requests that the target change the
size of the specified RBC-format object.

T10/01-067r1

Table 8- CHANGE RBC OBJECT SIZE Command Descriptor Block

Bit 7 6 5 4 3 2 1 0
Byte

0 Operation Code (xxh)

1 (MSB)

: Object ID

4 (LSB)

5

: Size in Logical Blocks

12

13 Control = 00h

The OBJECT ID field specifies the object to be modified. If this value does not refer to
an existing RBC object the target shall return status of CHECK CONDITION, sense of
ILLEGAL REQUEST, and additional sense of INVALID FIELD IN CDB.

The SIZE IN LOGICAL BLOCKS field specifies the new capacity of the object. If the
value is 0x0000000000000000, the target shall remove the ID from the list of RBC
objects and de-allocate the associated logical blocks. If the value is less than the existing
object size the target shall de-allocate the logical blocks beyond the new size. If the new
size is larger than the existing size and the requested additional number of blocks are
greater than the available free space, the target shall return status of CHECK
CONDITON, sense of ILLEGAL REQUEST, and additional sense of INSUFFICEINT
RESOURCES.

Annex X
(informative)

Object Relative Command Usage

Object relative commands provide access to logical blocks for two primary purposes:
LBA-based access to foreign objects managed by other command protocols such as
AV/C, and access of native RBC objects.

An object ID for a foreign object would be a handle returned through an action of another
command protocol. The object-relative access commands (Read and Write Object
Relative) would allow convenient access to blocks within the object but leave object
management to the other protocol. The RBC object management commands are not used
for this application: the application or computer system residing above the RBC layer
would have to be fluent in the other protocol’s object management functions. Any
ramifications of block modification through the Write Object Relative command must be
dealt with through the other protocol’s functions as well.

T10/01-067r1

In contrast, RBC objects can be wholly managed through the RBC commands Read RBC
Object List, Create RBC Object, and Change RBC Object Size. Any object attributes
required beyond existence and size are application dependent and outside the scope of
this standard. The initiator can maintain object meta-data external to the target, or it can
store meta-data within object(s).

In all cases of object relative access the target is assumed to contain some type of object
management that maps each object’s logical blocks to the physical medium. The RBC
commands have no knowledge of this mapping, allowing it to be implementation
specific. For each object the target presents a linear extent of LBA’s for RBC access.

One benefit of having the target maintain object management for RBC access is that it
already must maintain such a system for other protocols such as AV/C. Common object
management enables multiple protocols to access the same data in different ways.

For a computer system to take advantage of object relative commands, some part of its
file system/driver stack would need slight modification to add the object-aware
capabilities. Where before a single volume was created on the computer for the single
RBC partition, computer-specific volumes can now be created from one or more objects
dedicated to RBC data. One approach would be to have an object represent a single
computer file. Other implementations are possible as well.

	New RBC Commands and Annex
	Read Object Relative Command
	Write Object Relative Command
	Read RBC Object List
	Create RBC Object Command
	Change RBC Object Size Command

	Annex X

