SAN Management & Mode Pages

Roger Cummings

January 17, 2001

Contents

- Introduction & Background
- Problem #1 Definition
- Need & Proposal
- Problem #2 Definition
- Need & Proposal
- Putting all this together Phases
- Summary

Introduction

- Two related problems to present in the area of SCSI Control & Status
 - Solving will require work in both T10 & T11
- Problem definition based on experience with developing management applications for a wide range of current SANs
 - And extrapolating trends with respect to the HUGE SANs of the future
- Aim is to define one approach now that will work for all sizes of SANs, regardless of the transport type (SCSI, FC, TCP/IP etc.)

Background

- All the high-end storage devices today have an Ethernet port in addition to SCSI/FC ports
- And the devices are reachable over the LAN from the servers connected to the SAN

What this means ?

- Management apps can obtain information from the SAN via 4 methods:
 - SNMP (over Ethernet)
 - FC Fabric Services
 - SCSI Mode and Log Pages
 - SCSI Inquiry Data
- Information is not always consistent
- Trend is clearly towards more and more information being available via "out-of-SAN" access:
 - More secure (if only by obscurity)
 - Often "almost but not quite" same information as in Inquiry and Mode Pages

And further....

- iSCSI has additional method to get information -Text Command and Text Response
 - Multiple key:value pairs separated by ASCII NUL
 - Used for addressing, URLs, enabling Request To Transfer etc.
 - Equivalent to Process Login
 - Target processes each key separately
 - If not recognized, not echoed in Text Response
 - Easily add vendor-unique keys:
 - Prepend with reversed domain name (e.g. com.veritas.enablemode1:Yes)

Why was this done?

- Religious issue REAL Networks don't do management and control with binary data
- There is actually some sense behind the religion:
 - Binary data is:
 - Not self-describing (its just a bunch of bits)
 - Not human-readable
 - Not much use for offline analysis and change detection
- Lets be honest, network guys have more experience in managing LARGE numbers of interconnected equipments than we do:
 - We can learn from their approaches

And....

- Existing SCSI Mode Page scheme is not very user-friendly
 - Each page has a different layout
 - Pages can be truncated need to get exact transfer length (and networks don't always provide this)
 - No way to mask information
 - Have to do a read before write
 - "Return All Pages" is of almost no use
- Vendor unique extensions to SCSI are difficult & require completely new pages

But...

- SNMP et al is good at reading data, but less good at real time control
- CIM is gaining in popularity, but a complete storage subsystem model in CIM is a daunting task:

– It will happen, just not anytime soon

- Meanwhile methods of status retrieval and control proliferate...
 - Added piecemeal with new transport support (as in iSCSI)

Need #1

- Need one storage status & control scheme that works over ALL existing transports and new ones:
- Need something more easily extended than current SCSI page-based scheme
- Need single field "namespace" (if only to prevent confusion in multiple transport case)
- Eventually need to secure access to mode pages and some other SCSI functions:
 - Authentication of access
 - Protect against changed configuration by application that should only be accessing data
 - Transaction basis (send, check, execute)

Proposal #1

- T10 defines a standard translation of SCSI Mode Pages and Inquiry Data to XML
- Why XML?
 - Self-describing, human-readable plain-text
 - Transport-neutral (works over LANs, also FC)
 - Can represent complex hierarchies
 - Each field can be read and set separately
 - Supports variable field length
 - Better field contents typing
 - Can indicate allowable ranges
 - Can use vendor-unique naming like iSCSI
 - Its key to the future of the Internet (i.e. there will be LOTS of tools)

Why XML (Contd)?

- Standards exist for:
 - Signing and encrypting XML docs
 - Displaying XML in browsers (style sheets)
 - Searching and transforming etc.
- "Get All" will finally be useful
 - All information can be retrieved in one operation and processed offline
 - Standard format for analyzer output?
- Format can infinitely extendable without page and bit constraints
 - But it's not about minimizing interface bandwidth!
 - See the tutorial

Tutorial

- XML is like HTML, but with user-defined tag values
 - It's also simplified SGML
 - Much less tolerance for sloppy formatting than HTML
- Tags don't define display properties:
 - That's what style sheets (XSL or CSS) are for!
- Definition of tags used in an associated Document Type Definition (DTD) file
 - Allows XML document to be "parsed" for correct structures
 - Extension being proposed for values as well

Simplified Example

<?xml version="1.0" ?> <SCSIMLTransaction id=14567> <TransactionType>Response </TransactionType> <**SCSIClass**>Mode_Page <Epoch>987</Epoch> <**Page**> <PageName>Disconnectreconnect</PageName> <Field> <**Name**>Data_Transfer_Discon nect_Control</Name> <SizeBits>3</SizeinBits>

<Value Type="bin"> 011</Value> <Attr>PPI,1,NVPC </Attr> <SPCPageCode>02 <SPCPageCode> <SPCName>DTDC </SPCName> <**SPCStart**>12/2</**SPCStart** ><SPCEnd>12/0</SPCEnd> </Field>

</Page> </SCSIClass > </Transaction>

Proposal

- Start with an XML representation of Inquiry & Mode Page information in SPC-2
- Possible to add new optional types of information for each field, e.g.:
 - Per Port or Per Initiator all Ports or Per Port per Initiator
 - Per LUN or 1 value all LUNs
 - Volatile or Non-Volatile across Resets or Non-Volatile across power cycles

Proposal

- Add an Epoch ID from Target
 - Number incremented by 1 each time a configuration change is made in a device
 - Quick check that SOMETHING has changed without having to check every bit
- Need a Transaction ID from Initiator
 - Tag to link response to a specific management request
 - Will eventually allow a full set of changes to be received, checked, "complied" and then activated

Problem #2

- As SANs grow:
 - The number of Initiators seen by each device grows
 - Management becomes more specialized, and more separate from normal access
- Storage status and control as in traditional SCSI is based based on two assumptions, each becoming less true:
 - The Initiator is a portal to BOTH the data access application and the management application
 - All storage status changes are associated with access
- What if management is separate?
- Do you really need to tell the next accessing application that a fan just died in the RAID cabinet?

Need #2

- A method of storage status & control that is separate from data access:
 - Doesn't have to be on the same system as the application accessing data
 - Doesn't have to use the same driver stack:
 - Doesn't have to deal in the same levels of abstraction
 - Doesn't have to have read or write access to the storage
 - Perhaps doesn't even have to be able to access the storage device directly

Proposal #2

- Create a "Device Service" in the SAN
 - Accessed via a well-known address (like a Name Server) or equivalent methods over TCP/IP
 - Repository of SCSI Mode Sense and Inquiry Data for all attached storage devices
 - Note many fabrics already poll for storage devices today to add their addresses to Name Server
- Management apps talk to the service, not the devices
 - Walled off from normal access paths
 - May even be able to provide information across Zones with this approach

Proposal

- The Device Service provides and accepts data in the XML format defined earlier
- Can retrieve all parameters for one device (or multiple devices) in a single transaction
- Supports a "subscribe" model to receive information about changes (similar to state change notification in FC today)
 - Support a LARGE number of devices without impacting the storage devices themselves

Putting all of this together

- Multiple year project with at least four phases
- T11 & T10 parts, also get SNIA & IETF IP Storage Working Group involved
- Important to get the overall XML structure defined quickly
- Migration strategy incorporated
- Will this ever get incorporated in a single SCSI disk ?
 - Maybe, but that's not a key reason for doing this

Anticipated Phases

Phase	Features
1	a) Agree XML Format
	b) Create standard DTD, XSL
2	a) Define FC Device Service (read)
	b) Define TCP/IP access (read)
3	a) Add set access definition
	b) Add security (authentication)
4	a) Add new fields (not in SPC-2)
	b) Define In/Out Service Actions for
	XML command

- Agree the basic XML structure and the field names (in T10 TR?)
- Define the DTD and XSL
- Work with W3C to get a namespace established for storage devices
 - Allow multiple organizations to define fields and preserve unique names
- Ensure enough flexibility for future developments

- In parallel with Phase 1 work to get a "Device Service" definition which uses the XML representations (for read access only)

 Defined in FC-GS-4
 - Defined for access across TCP/IP (LDAP, SOAP, Browser access etc.)
- Work with IETF IP Storage WG on establishing methods of storage management access over TCP/IP

- Extend the XML definition to support set capability
 - Possibly also add non-mode functionality that needs restricted access (e.g. format, prevent/allow medium removal)
- Incorporate security features:
 - Authentication using Public Key Infrastructure
 - Encryption
 - Can be made optional or mandatory

- Define new status and control parameters

 Cannot be accessed via Inquiry, Mode Pages etc.
- Define new SCSI command to transport XML directly to & from the device
 - Could even just be service actions of an existing command

One SCSI Command

- One command, 2 Service Actions only required:
 - XML In
 - XML Out
- Allocation Length required only everything else should be in XML
- Infinitely extendable
- Simple to add new fields (as long as the names do not conflict)
- Richer set of value types
- Clean way of supporting vendor unique information

Summary

- Existing status & control doesn't support management approach need for a large SAN
 - Separate scheme for each transport adds complexity
 - Always dealing with inconsistent information
- XML-based schemes can
 - Cleanly map the existing information
 - Provide significant flexibility for the future
 - Work with all transport types now & in the future
- One more chance to get it right
 - Must support all future evolutions of SANs even the ones we cannot anticipate
 - Leverage Internet trends

Feedback Please!

Even if it is only "this XML stuff is CRAZY"