
SAN Management & Mode Pages

Roger Cummings

January 17, 2001



Contents

• Introduction & Background

• Problem #1 Definition 

• Need & Proposal

• Problem #2 Definition

• Need & Proposal

• Putting all this together - Phases

• Summary



Introduction

• Two related problems to present in the area of 
SCSI Control & Status
– Solving will require work in both T10 & T11

• Problem definition based on experience with 
developing management applications for a wide 
range of current SANs
– And extrapolating trends with respect to the HUGE 

SANs of the future

• Aim is to define one approach now that will work 
for all sizes of SANs, regardless of the transport 
type (SCSI, FC, TCP/IP etc.)



Background

• All the high-end storage devices today have 
an Ethernet port in addition to SCSI/FC 
ports

• And the devices are reachable over the LAN 
from the servers connected to the SAN



What this means ?

• Management apps can obtain information from the 
SAN via 4 methods:
– SNMP (over Ethernet)
– FC Fabric Services
– SCSI Mode and Log Pages
– SCSI Inquiry Data

• Information is not always consistent
• Trend is clearly towards more and more information 

being available via “out-of-SAN” access:
– More secure (if only by obscurity)
– Often “almost but not quite” same information as in 

Inquiry and Mode Pages



And further…..

• iSCSI has additional method to get information -
Text Command and Text Response
– Multiple key:value pairs separated by ASCII NUL

– Used for addressing, URLs, enabling Request To 
Transfer etc.

• Equivalent to Process Login

– Target processes each key separately
• If not recognized, not echoed in Text Response

– Easily add vendor-unique keys:
• Prepend with reversed domain name (e.g. 

com.veritas.enablemode1:Yes)



Why was this done?

• Religious issue – REAL Networks don’t do 
management and control with binary data 

• There is actually some sense behind the religion:
– Binary data is:

• Not self-describing (its just a bunch of bits)

• Not human-readable

• Not much use for offline analysis and change detection

• Lets be honest, network guys have more 
experience in managing LARGE numbers of 
interconnected equipments than we do:
– We can learn from their approaches



And….

• Existing SCSI Mode Page scheme is not very 
user-friendly
– Each page has a different layout

– Pages can be truncated – need to get exact transfer 
length (and networks don’t always provide this)

– No way to mask information

– Have to do a read before write

– “Return All Pages” is of almost no use

• Vendor unique extensions to SCSI are difficult & 
require completely new pages



But…

• SNMP et al is good at reading data, but less 
good at real time control

• CIM is gaining in popularity, but a 
complete storage subsystem model in CIM 
is a daunting task:
– It will happen, just not anytime soon

• Meanwhile methods of status retrieval and 
control proliferate…
– Added piecemeal with new transport support 

(as in iSCSI)



Need #1

• Need one storage status & control scheme that 
works over ALL existing transports and new ones:

• Need something more easily extended than current 
SCSI page-based scheme

• Need single field “namespace” (if only to prevent 
confusion in multiple transport case)

• Eventually need to secure access to mode pages 
and some other SCSI functions:
– Authentication of access
– Protect against changed configuration by application 

that should only be accessing data
– Transaction basis (send, check, execute)



Proposal #1
• T10 defines a standard translation of SCSI Mode 

Pages and Inquiry Data to XML
• Why XML?

– Self-describing, human-readable plain-text
– Transport-neutral (works over LANs, also FC)
– Can represent complex hierarchies
– Each field can be read and set separately
– Supports variable field length
– Better field contents typing
– Can indicate allowable ranges
– Can use vendor-unique naming like iSCSI
– Its key to the future of the Internet (i.e. there will be 

LOTS of tools)



Why XML (Contd)?

• Standards exist for:
– Signing and encrypting XML docs
– Displaying XML in browsers (style sheets)
– Searching and transforming etc.

• “Get All” will finally be useful
– All information can be retrieved in one operation and 

processed offline
– Standard format for analyzer output?

• Format can infinitely extendable without page and 
bit constraints
– But it’s not about minimizing interface bandwidth!
– See the tutorial



Tutorial

• XML is like HTML, but with user-defined tag 
values
– It’s also simplified SGML
– Much less tolerance for sloppy formatting than HTML

• Tags don’t define display properties:
– That’s what style sheets (XSL or CSS) are for!

• Definition of tags used in an associated Document 
Type Definition (DTD) file
– Allows XML document to be “parsed” for correct 

structures
– Extension being proposed for values as well



Simplified Example
<?xml version="1.0" ?>
<SCSIMLTransaction
id=14567>
<TransactionType>Response
</TransactionType>
<SCSIClass>Mode_Page
<Epoch>987</Epoch>
<Page>
<PageName>Disconnect-
reconnect</PageName>
<Field>
<Name>Data_Transfer_Discon
nect_Control</Name>
<SizeBits>3</SizeinBits>

<Value Type=“bin”> 
011</Value>

<Attr>PPI,1,NVPC </Attr>
<SPCPageCode>02
<SPCPageCode>
<SPCName>DTDC
</SPCName>
<SPCStart>12/2</SPCStart

>
<SPCEnd>12/0</SPCEnd>
</Field>
………..
</Page>
</SCSIClass >
</Transaction>



Proposal

• Start with an XML representation of Inquiry 
& Mode Page information in SPC-2

• Possible to add new optional types of 
information for each field, e.g.:
– Per Port or Per Initiator all Ports or Per Port 

per Initiator

– Per LUN or 1 value all LUNs

– Volatile or Non-Volatile across Resets or Non-
Volatile across power cycles



Proposal

• Add an Epoch ID from Target
– Number incremented by 1 each time a configuration 

change is made in a device

– Quick check that SOMETHING has changed without 
having to check every bit

• Need a Transaction ID from Initiator
– Tag to link response to a specific management request

– Will eventually allow a full set of changes to be 
received, checked, “complied” and then activated



Problem #2
• As SANs grow:

– The number of Initiators seen by each device grows
– Management becomes more specialized, and more 

separate from normal access

• Storage status and control as in traditional SCSI is 
based based on two assumptions, each becoming 
less true:
– The Initiator is a portal to BOTH the data access 

application and the management application
– All storage status changes are associated with access

• What if management is separate? 
• Do you really need to tell the next accessing 

application that a fan just died in the RAID 
cabinet?



Need #2

• A method of storage status & control that is 
separate from data access:
– Doesn’t have to be on the same system as the 

application accessing data
• Doesn’t have to use the same driver stack:
• Doesn’t have to deal in the same levels of 

abstraction

– Doesn’t have to have read or write access to the 
storage

– Perhaps doesn’t even have to be able to access 
the storage device directly



Proposal #2

• Create a “Device Service” in the SAN
– Accessed via a well-known address (like a Name 

Server) or equivalent methods over TCP/IP
– Repository of SCSI Mode Sense and Inquiry Data for 

all attached storage devices 
– Note - many fabrics already poll for storage devices 

today to add their addresses to Name Server

• Management apps talk to the service, not the 
devices
– Walled off from normal access paths
– May even be able to provide information across Zones 

with this approach



Proposal

• The Device Service provides and accepts 
data in the XML format defined earlier

• Can retrieve all parameters for one device 
(or multiple devices) in a single transaction

• Supports a “subscribe” model to receive 
information about changes (similar to state 
change notification in FC today)
– Support a LARGE number of devices without 

impacting the storage devices themselves



Putting all of this together

• Multiple year project with at least four phases

• T11 & T10 parts, also get SNIA & IETF IP 
Storage Working Group involved

• Important to get the overall XML structure 
defined quickly

• Migration strategy incorporated

• Will this ever get incorporated in a single SCSI 
disk ?
– Maybe, but that’s not a key reason for doing this



Anticipated Phases

a) Define FC Device Service (read)

b) Define TCP/IP access (read)

2

a) Add new fields (not in SPC-2)

b) Define In/Out Service Actions for 
XML command

4

a) Add set access definition

b) Add security (authentication)

3

a) Agree XML Format

b) Create standard DTD, XSL

1

FeaturesPhase



Phase 1

• Agree the basic XML structure and the field 
names (in T10 TR?)

• Define the DTD and XSL

• Work with W3C to get a namespace 
established for storage devices
– Allow multiple organizations to define fields 

and preserve unique names

• Ensure enough flexibility for future 
developments



Phase 2

• In parallel with Phase 1 work to get a 
“Device Service” definition which uses the 
XML representations (for read access only)
– Defined in FC-GS-4

– Defined for access across TCP/IP (LDAP, 
SOAP, Browser access etc.)

• Work with IETF IP Storage WG on 
establishing methods of storage 
management access over TCP/IP



Phase 3

• Extend the XML definition to support set 
capability
– Possibly also add non-mode functionality that 

needs restricted access (e.g. format, 
prevent/allow medium removal)

• Incorporate security features:
– Authentication using Public Key Infrastructure

– Encryption

– Can be made optional or mandatory



Phase 4

• Define new status and control parameters
– Cannot be accessed via Inquiry, Mode Pages 

etc.

• Define new SCSI command to transport 
XML directly to & from the device
– Could even just be service actions of an 

existing command



One SCSI Command

• One command, 2 Service Actions only required:
– XML In
– XML Out

• Allocation Length required only – everything else 
should be in XML

• Infinitely extendable
• Simple to add new fields (as long as the names do 

not conflict)
• Richer set of value types
• Clean way of supporting vendor unique 

information



Summary
• Existing status & control doesn’t support 

management approach need for a large SAN
– Separate scheme for each transport adds complexity
– Always dealing with inconsistent information

• XML-based schemes can
– Cleanly map the existing information
– Provide significant flexibility for the future
– Work with all transport types now & in the future

• One more chance to get it right
– Must support all future evolutions of SANs – even the 

ones we cannot anticipate
– Leverage Internet trends



Feedback Please!

Even if it is only “this XML stuff is CRAZY”


