Worst Case Signal Amplitude Calculations Spreadsheet T10/00-350r0

Seagate - Bruce Manildi

Huntington Beach, CA September 12, 2000

SeptSCSI.ppt - 1 ABM 9/06/00

Worst Case Calculations

- One cannot just take all worst cases and apply them simultaneously as some are mutually exclusive
- Even when excluding the above, the union of all remaining events becomes infinitesimally small
- One needs to comprehend the entire specification when selecting cases

SeptSCSI.ppt - 2 ABM 9/06/00 What would you say is the worst case weather/natural disaster?

Monsoon?

Temperature -40 degrees w/ -20 degrees wind chill?

Hurricane? Tornado?

Blizzard?

Earthquake?

Volcano?

SeptSCSI.ppt - 3 ABM 9/06/00 What about hearing from our friends from Mass.?

- A Russian ICBM might hit at the same time who can guarantee it won't?
- If all these hit at once the population would be wiped out at that location
- How likely are the to occur simultaneously even though they happen many times a year separately or a few at a time

SeptSCSI.ppt - 4 ABM 9/06/00

What about our worst case calculations

- Crosstalk The worst crosstalk happens with the largest interfering signals on adjacent lines.
- What about worst case noise and driver asymmetry
 - Worst case noise occurs with all drives accessing
 - Worst case asymmetry happens at WC-slow (i.e. 0 degrees Centigrade)

SeptSCSI.ppt - 5 ABM 9/06/00

Worst Case Spreadsheet Components

- We have found through extensive testing of actual subsystems that the practical worst case attenuation is about 30%
- 60 mv (120 mv p-p) crosstalk with this amount of attenuation is unrealistic (say 30 mv). We have tested with severe crosstalk and noise, increase it by 20 mv?

SeptSCSI.ppt - 6 ABM 9/06/00

Update to worst case

Driver Precomp Proposal, Review ²											
Update to											
Paul Aloisi - TI/ABM-Seagate	427	500	600	700	800	Millivolt d	ive				
Nominal Voltage											
No driver imbalance, matched assertion and negatio	n										
Driver fall back 15%	363	425	510	595	680	376	6 mV	First step	min 650 m	V 427 mV	with
Driver fall back 25%	320	375	450	525	600	427 mV cable loss at proposed cutba				sed cutbac	:k
Driver Fall back 33%	282	330	396	462	528	48	5 mV				
Driver Fall Back 40%	256	300	360	420	480	533	8 mV				
Worst case						Min high	drive, for 320) mV			
Cable roll off to 71% signal											
Trans FB 15% roll off to 71%	198	232	278	324	371						
	178	209	250	292	334	10% cabl	e / system	loss			
Trans FB 40% roll off to 71%	229	246	296	345	394	mV signa	at the rece	eiver minus	cable loss		
	206	222	266	310	355	10% cabl	e / system	oss			
Blue 80 mV receiver											
80 mV @ receiver											
60 mV noise+crosstalk	140	140	140	140	140	mV Signal required with Noise + Crosstalk					
20 mV noise+crosstalk	100	100	100	100	100	mV					
Tolerance driver											
Cable roll off to 71% signal											
Trans fb 15% roll off to 71%	188	214	250	285	321	mV signa	at the rece	eiver minus	cable loss		
	169	193	225	257	289	10% cabl	e / system	loss			
Trans fb 40% roll off to 71%	219	250	293	336	379	mV signa	at the rece	eiver minus	cable loss		
	197	225	264	303	341	10% cabl	e / system	oss			
Drive tolerance calculation			((0.85*V)+50	0+Vfb)*0.7	1)-Vfb		Signal at f	he receiver			

SeptSCSI.ppt - 7 ABM 9/06/00

Conclusions

- Precompensation works at worst case extremes which will actually occur (even those with <u>very</u> small probability)
- Precomp has extra margin even under these conditions

SeptSCSI.ppt - 8 ABM 9/06/00

Invitational Challenge

- We set up our lab to facilitate these kind of measurements - and partially automated the collection of data and its presentation
 - First Pulse
 - Frequency attenuation
 - Cable measurements
- We invite you to use our lab
 - Send us you materials and we will measure
 - Come with your materials and we can measure together
 - (If Quantum we'll set it up in the park next door)

