
T10 / 00-328r0 1

Enhancing SBP-2 Performance

Eric Anderson
FireWire Software

Apple Computer, Inc.

T10 / 00-328r0 2

Problem

• SBP-2 works well with large transfers and large
task sets

• But small tasks, executed serially, suffer from
high start-up latency

• Focus of this proposal:
 Disk drives and other fast storage devices

T10 / 00-328r0 3

SBP-2 Review

• Initiator - for example, a computer
• Target - for example, a disk drive
• 1394 allows the target to directly access memory

in the Initiator without interrupts or software
overhead

T10 / 00-328r0 4

Operation Request Block

• Initiator assembles ORB(s) in system memory,
each with:
– A command (approximately 12 bytes)
– A data buffer for I/O (usually)
– A next_ORB pointer (may be null)
– Various transfer parameters (direction, length, etc.)

• A typical ORB is 32 bytes (may vary)
• ORB Pointer is 64-bit 1394 address of ORB

structure

T10 / 00-328r0 5

SBP-2 Operation
(first time)

• Initiator writes Target's ORB Pointer register
• Target sees write (1394 8-byte block write) and:

– Reads ORB from Initiator memory
– Executes ORB
– Transfers data to or from buffer in 1394 memory
– May send status to Initiator upon ORB completion
– Executes additional ORBs linked to first ORB (if any)
– Enters Suspended (idle) state when final ORB complete

T10 / 00-328r0 6

SBP-2 Operation
(after first time - normal)

• Initiator writes new ORB Pointer into final ORB's
next_ORB field (in Initiator memory)
– Target may or may not have reached final ORB

• Initiator writes Target's Doorbell register
– If Target is Suspended (idle), Target will re-examine

next_ORB field in final ORB
– If Target is not Suspended, Doorbell has no effect

• Either way, the new ORB will be executed as soon
as possible

T10 / 00-328r0 7

SBP-2 Operation
(after first time - special)

• Initiator knows Target is in Suspended (idle) state
– Possible if all previous ORBs have completed

• Initiator may write a new ORB Pointer directly to
the Target's ORB Pointer register

• Target will fetch the new ORB immediately
• Indirection of re-fetching the previous ORB is

avoided
• This optimization is allowed by SBP-2 today

T10 / 00-328r0 8

SBP-2 Start-up Latency

• To execute an ORB, the Target must know
– The ORB Pointer
– The ORB contents (command, buffer, etc.)
– Page Tables (for some transfers)

• Target needs three transactions on 1394 to learn
each of these three items
– Each is a small packet on 1394, so arbitration (5-6

times) and overhead (headers and CRC) dominate
– Between each packet, other nodes may use the bus

T10 / 00-328r0 9

SBP-2 Start-up Latency
In

iti
at

or

T
ar

ge
t

ORB_Pointer (8 byte block write)

ORB fetch (32 byte block read)

ORB (32 byte block read response)

PTE fetch (8+ byte block read)

PTE (8+ byte block read response)

First payload transfer (read or write)

T10 / 00-328r0 10

Does Latency Matter?

• If Target device is kept busy with multiple
requests, Target can fetch ORBs in advance (in
parallel with ORB execution)

• If transfers are large, payload I/O dominates bus
usage, and 1394 efficiency is high

• But this usage is not typical on most computers

T10 / 00-328r0 11

When Latency Matters

• Small transfers, such as VM paging
– Just 4K per I/O; only on demand; random addresses

• Serial transfers
– Each I/O must complete before next can be requested
– Example: Directory scan (transfers are small too)

T10 / 00-328r0 12

Proposal: Fast-start Packet

• Initiator sends ORB pointer, ORB contents, and
page table together in one 1394 packet

• "Fast-start" packet is larger, so more efficient
• Several 1394 arbitration cycles are avoided
• Only used when Initiator knows Target is

Suspended (idle)
– Otherwise, use traditional ORB append (Doorbell)

T10 / 00-328r0 13

Fast-start Packet Format

ORB_Pointer (8 bytes)

ORB (32 bytes is typical)

PTE(s) (8 bytes or more)

T10 / 00-328r0 14

Implementing Fast-start

• Few new demands on Target
– Target already stores ORB Pointer, ORB contents, and

page table entries (at least one)
– Target must indicate fast-start capability
– Target must recognize fast-start packet

• Few new demands on Initiator
– Initiator must assemble Fast-start packet
– Initiator must identify fast-start packet as such
– Initiator "good behavior" reduces Target complexity

T10 / 00-328r0 15

Indicating Fast-start Capability

• New Key in Target's 1394 Config ROM
– Root, Unit, or LUN directory

• Or, indicate in SBP-2 Login response
• Proposal: New key in Unit or LUN directory

– Not all LUNs (or Units) created equal
– New key ignored by legacy software

• Cost: 4 bytes in Config ROM

T10 / 00-328r0 16

Identifying a Fast-start Packet

• ORB_Pointer register is 8 bytes
– Too small to absorb Fast-Start packet

• Proposal: Define a new register address based on
Fetch Agent address
– SBP-2 already allows vendor / protocol-specific

registers in this area
– So, allow the Target to indicate an offset in the new key

T10 / 00-328r0 17

Fetch Agent Registers

Agent_State
Agent_Reset

ORB_Pointer

Doorbell
Unsolicited_Status_Enable

reserved
reserved

T10 / 00-328r0 18

SBP-2 Features Key

• 4-byte key in 1394 Config ROM indicates:
– Capability for Fast-start
– Maximum PTE count in Fast-start packet
– Address of Fast-start register

• Key has room for additional SBP-2 features

T10 / 00-328r0 19

138 83

SBP-2 Features Key

reserved3E16 offsetfs

• 3E16: proposed Key_Type / Key_Value pair
• fs: fast_start_feature

– Zero if not supported
– Encodes max PTE count in Fast_start packet (2n-1)

• offset: location of Fast_start register
– Relative to Fetch agent base location (in quadlets)

T10 / 00-328r0 20

Summary of Fast-start Advantages

• Reduced latency for small and / or serialized I/O
• More efficient use of 1394 bus
• No performance loss in any scenario
• Full backwards compatibility
• Completely optional
• Low cost in ROM and Target firmware

T10 / 00-328r0 21

Contact Information

Questions, suggestions, and discussion are welcome:

Eric Anderson
ewa@apple.com
+1-408-974-1394

