# Annex D Error detection and recovery action examples

## (Informative) [Draft, based on T10/00-137r5]

#### **D.1Introduction**

This annex diagrams various error detection and recovery procedures for SCSI devices conforming to this profile.

| Drawing Convention | Meaning                                                                            |
|--------------------|------------------------------------------------------------------------------------|
| <b>&gt;</b>        | Acknowledged or<br>Unacknowledged Frame                                            |
|                    | Acknowledgement Frame                                                              |
|                    | Time-out value<br>exceeded, caused<br>transmission of IU or ELS                    |
|                    | IU or ELS received is<br>processed to transmit IU<br>or ELS                        |
| X                  | Frame lost or dropped                                                              |
| Continue<br>V      | Error detection complete.<br>Operation continues with<br>specified Error Recovery. |

#### Table D.1 - Diagram Drawing Conventions







Figure D.3 - FCP\_CMND Lost, Acknowledged Classes





Upon expiration of E\_D\_TOV, the initiator performs error recovery. Although it is possible for the Exchange to continue when the ACK is lost, in the interest of simplicity, error recovery is performed.

The use of REC to determine status for error recovery shall not be used.

It was not decided how to proceed if the exchange "continues" or "completes" before the  $E_D_TOV$  expires.



The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP\_CMND is retransmitted in a new Exchange using the same CRN.



The REC ACC indicates the initiator holds Sequence Initiative and the Exchange is open.

Wait REC\_TOV\* before performing error recovery. If FCP\_XFER\_RDY is received before REC\_TOV\* expires, continue with the Exchange (REC ACC arrived before FCP\_XFER\_RDY, out of order). Otherwise continue recovery. For in-order topologies, the value of REC\_TOV\* is 0.



The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP\_CMND is retransmitted in a new Exchange using the same CRN.







The REC ACC indicates the initiator holds Sequence Initiative and the Exchange is complete. The target must keep the context of this Exchange until the OX\_ID value is reused in a new command (implicitly validating the receipt of FCP\_RSP), or for at least RR\_TOV in order to preserve the FCP\_RSP information. This long time-out can be avoided by using FCP\_CONF.

Wait REC\_TOV\* before performing error recovery. If FCP\_RSP is received before REC\_TOV\* expires, continue with the Exchange (REC ACC arrived before FCP\_RSP, out of order). Otherwise perform error recovery.



The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP\_CMND is retransmitted in a new Exchange using the same CRN.









### No Error Recovery

If the OX\_ID value is reused in a new command before E\_D\_TOV expires, this implicitly validates the initiator received the FCP\_RSP (no need to send ABTS). If E\_D\_TOV expires, the target sends ABTS and the receipt of BA\_RJT indicates the Exchange is unknown and therefore complete. No error recovery is required.

The target establishes a Recovery Qualifier. The issuance of the RRQ is optional, as no Recovery Qualifier was established by the initiator. For in-order topologies, the value of R\_A\_TOV\* is 0.



If the OX\_ID value is reused in a new command before E\_D\_TOV expires, this implicitly validates the initiator received the FCP\_RSP (no need to send ABTS). If E\_D\_TOV expires, the target sends ABTS and the receipt of BA\_RJT indicates the Exchange is unknown and therefore complete. No error recovery is required.

The target establishes a Recovery Qualifier. The issuance of the RRQ is optional, as no Recovery Qualifier was established by the initiator. For in-order topologies, the value of R\_A\_TOV\* is 0.

For out-of-order topologies, if the initiator sent a FCP\_CMND with the same OX\_ID as the one in the received ABTS, the initiator takes no action on the ABTS until the ACK to the outstanding FCP\_CMND Sequence has been received or E\_D\_TOV\* expires, allowing the analysis to take into consideration the RX\_ID to eliminate ambiguity.



















Figure D.21 - ACK Lost on Read (Acknowledged Classes)

Although it is possible for the exchange to continue when the ACK is lost, in the interest of simplicity, error recovery is performed when the initiator receives the ABTS. Does the initiator send BA\_ACC or go directly to recovery and send ABTS(retry)? If BA\_ACC is sent, target might send FCP\_RSP.



The initiator sends an ABTS(retry) requesting the Exchange be retried. The FCP\_CMND is retransmitted in a new Exchange using the same CRN.







**No Error Recovery** 

The LS\_RJT for the REC indicates the Exchange is unknown. That implicitly indicates that the initiator received FCP\_RSP and sent FCP\_CONF.

The context for the Exchange in the target must be preserved for another R\_A\_TOV to prevent possible aliasing. If FCP\_CONF is received before LS\_RJT received, it is accepted and the context for the Exchange can be purged. For in-order topologies, the value of  $R_A_TOV^* = 0$ .







BA\_RJT is the response to the ABTS, since no context exists for this Exchange and the ABTS was not issued on the first sequence of a new Exchange.

The initiator establishes a Recovery Qualifier. The issuance of the RRQ is optional, as no Recovery Qualifier was established by the target. For in-order topologies, the value of  $R_A_TOV^* = 0$ .















Error Recovery

The BA\_ACC payloads indicate that the RECs were not received by the target. The failure of two RECs issued against the same Exchange indicates a "double error" and causes all associated Exchanges to be aborted.

The initiator transmits ABTS for the original FCP exchnage with Bit 0 = 0 set in the Parameter field (abort exchange).





ISSUE: If after the ACC to the original REC is received, the initiator sends another REC using the same OX\_ID (it does not know that the ACK was lost), the E\_D\_TOV timer on the target could expires and send the ABTS against the new REC Exchange.