The Effect of Noise on an Ultra320 SCSI System

Russ Brown
Quantum Corporation

Parallel SCSI Working Group Meeting
11 July 2000
Colorado Springs, CO
This presentation is a discussion of noise in an Ultra320 system including the effect of noise on a receiver equalizer scheme (AAF) and a transmitter precompensation with cutback scheme (TxPC).

The following are the assumptions used in this presentation:

- The driver level without TxPC (that used for AAF) is 500 mV.
- For TxPC: the maximum driver level is 500 mV, the cutback level is 330 mV (though the conclusions apply regardless of the ratio of maximum to cutback).
- The information-carrying signal is at 80 MHz.
- The cable attenuation = A.
Simplified Noise Calculation for AAF

- The signal-to-noise ratio at the equalizer input
 \[= \frac{A \times 0.5}{A \times V_n} = \frac{0.5}{V_n} \]

- At 80 MHz the equalizer boost = \(k \)
 The signal-to-noise ratio at the equalizer output
 \[= \frac{A \times k \times 0.5}{A \times k \times V_n} = \frac{0.5}{V_n} \]

- At frequencies lower or higher than 80 MHz the equalizer boost = \(g \) (which is less than \(k \))
 The signal-to-noise ratio at the equalizer output
 \[= \frac{(A \times k \times 0.5)}{(A \times g \times V_n)} = \frac{(k / g)(0.5)}{V_n} \]
 where \((k / g) > 1.0 \)
• At 80 MHz the signal-to-noise ratio at the receiver
 \[\frac{A \times 0.5}{A \times V_n} = \frac{0.5}{V_n} \]
which is identical to the equalizer.

• At frequencies lower than 80 MHz the amplitude of the driver is at the cutback level. Therefore the signal-to-noise ratio at the receiver
 \[\frac{A \times 0.33}{A \times V_n} = \frac{0.33}{V_n} \]
which is 1.5 times less than the signal-to-noise ratio for the equalizer scheme.
Conclusions

- For an equalizer (AAF) scheme:
 - AAF boosts signal and noise at 80 MHz by the same amount, so the signal-to-noise ratio remains the same for noise at 80 MHz regardless of the boost factor.
 - For noise at frequencies lower and higher than 80 MHz, AAF improves the signal-to-noise ratio due to the reduction of the boost of the other frequencies relative to 80 MHz.

- For a transmitter precomp (TxPC) scheme:
 - A signal running at cutback amplitude will have a worse signal-to-noise ratio than a signal at maximum amplitude (and the signal at maximum will only have the same signal-to-noise ratio as AAF at the same driver amplitude).
 - When the data pattern is random the amplitude will be at cutback more than 50% of the time, so most of the time, the signal-to-noise ratio will be that for the cutback amplitude.

- The overall effect of noise is worse on a system using a transmitter precomp scheme and better on a system using an equalizer scheme.
Frequency Response of Quantum's AAF