
T10/00-262 revision 0
Date: June 28, 2000

To: T10 Committee (SCSI)

From: Jim Hafner (IBM) (hafner@almaden.ibm.com)

Subject: Suggested changes to OSD model in osd-r01

ABSTRACT :

The Object Based Storage Device Commands document (osd-r01.pdf, heretofore
referred to as Rev01) defines a model for a new type of SCSI device where data is
accessed by initiators via object addressing and the physical (or virtual-physical)
addressing within the device is managed by the device itself. Additional, quality of ser-
vice and other higher level concepts may be enabled with this object model. The model
defined in rev01 appears (to this author) to be more complicated than it need be to meet
the intended requirements. In this document, we outline an alternative model with
respect to a number (but not all) features of the OSD proposal.

1.0 Outline of differences with Rev01

There are a number of differences between Rev01 and this proposal. These are summa-
rized here:

a) An OSD is always an OSD. That is, it doesn’t become one by the FORMAT com-
mand and can’t change to a block based device within the context of the OSD com-
mand/service action set.

b) A block-based device cannot be created as an object within the OSD. (See Rev01,
Appendix B, “Emulating a BBSD on an OSD”.) Both of this function and the “cre-
ation” of an OSD belong, in our opinion, outside the scope of the OSD command
specification itself (e.g., in the controller command set or in the vendor-specific
space).

c) Sessions are states for I/O data transfers and are always established independent
of objects. In Rev01, a Create of an object or an I/O operation on an object can cre-
ate a session which persists beyond the I/O operation itself. This seemed unneces-
sarily too complex.

d) Simplified object model. There are only three types of objects in this model, each
object has meta-data and data. The two “well-known” objects have pre structured
data. (In other words, we combine the Storage Device Control Object and the
Object Group List object into one; additionally, the Object Group Control Object and
Object Group Object List are joined. In both cases, the “List” object becomes the
“data” of the “Control Object”.)

e) Objects get attributes (as part of their meta-data); Sessions get parameters. This is
just vocabulary but it helps separate the concepts involved.
1 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
f) More things are optional. For example, sessions (other than the default session) are
optional in this proposal.

g) The specific semantics of a number of service actions is different.

h) A READ is only valid against a UserObject (i.e., not one of the “well-known”
objects”). A LIST action is used to get lists of GroupIDs and UserObject IDs. This
has a rich and extensible syntax that can aid in navigating the objects in the OSD.

i) A number of major open design questions are raised (see 4.0).

Other differences will be seen by comparing this document with Rev01.

1.1 Design principles

In proposing these alternatives (and raising the design questions), we have tried to use
the following design principles:

a) Simplify the model as much as possible

b) Minimize the resource requirements for mandatory functions while enabling
optional functions requiring more resources

c) Separation of independent functions

d) Stay within existing SCSI model limitations, so as to minimize the extensions to cus-
tomary SCSI protocols.

In particular, item (d) implies that we do not require any changes to customary usage of
response data formats (status byte, sense data, etc.). See the discussion in 1.1.1.

1.1.1 Command parameters and Response data

The SCSI model customarily assumes that response data contains SCSI Status and if
the status indicates CHECK CONDITION, then either included with the status or avail-
able on REQUEST SENSE, detailed Sense Data with ASC/ASCQs is provided. This
OSD model (as defined in Rev01) seems to imply a different structure. See, for example,
Table 20, “Response to CREATE object action” where SCSI status and additional data
are embedded together. It is as if Rev01 presumes that status and additional data can be
returned in response to any command or service action.

However, the OSD protocols would benefit from the ability to both send and receive com-
plex data structures, along with user data, within a given command cycle. In general,
this is not a requirement, though it would enable compound service actions (e.g., CRE-
ATE plus WRITE plus SET_ATTRIBUTES). Compound service actions may reduce
latency.

In order to facilitate receipt of complex data within the response phase, it might be possi-
ble to define precise extensions to the format of response data (status, plus sense, plus
new additional fields beyond the 18 or so bytes used customarily). This would enable
2 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
some simpler protocols in some instances and some compound protocols in others.
Some things to note:

a) This currently doesn’t fit the existing SCSI protocol, particularly in the context of
parallel SCSI (where status doesn’t come with additional data and sense data is
provided for a CHECK CONDITION status, on request or as part of the response,
depending on the underlying transport protocol.)

b)This might conflict with existing vendor-specific usages of longer sense data, though
that might be mitigated by the fact that this is a completely new device model.

c) There are only two types of data that need to be returned in response data and they
are mutually exclusive. Namely, either the command was successful (in which case
the additional fields can be specified in an OSD-specific way) or the command was
unsuccessful and the response contains status other than GOOD and sense data
(in the usual way). Perhaps this provides a mechanism for implementing some of
the semantics of Rev01 within the context of the current SCSI model.

For something like this to work, it might require changes to SAM-x.

In some cases, the OSD model might also benefit from additional parameters in the com-
mand phase, as well as having DataOut write-type data. This could be accomplished by
appending this optional data in the CDB with the (potentially undesirable) consequences:

a) a given service action might have variable length CDB (that is, the additional length
field of the CDB would not only be a function of the service action code); parsing
such CDBs might be expensive.

b) the additional parameters, which requires a rich specification language, might force
the size of the variable length CDB to be “unreasonable”.

c) implementation changes required for host HBAs, changes to specification of trans-
port protocols (like FCP), etc.

We raise these issues and alternatives in order to facilitate a detailed discussion of these
questions. However, in this proposal, we have stayed within the customary usage of the
command and response phase of the SCSI protocol. In our simplified approach, each
service action is a simple operation; compound service actions are not defined.
3 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
2.0 Basic model

2.1 Object Types

An OSD is a logical unit within a SCSI device. As such, an OSD will return the OSD
Device Type value in response to an INQUIRY command.1 On OSD contains only
objects. Objects have two types of information associated with them:

a) Meta-data

b) Data

Meta-data describe specific characteristics or attributes of the object (more details are
given below and in 2.2). This will include the size of the meta-data itself, the total amount
of bytes occupied by the object (including Meta-data), logical size of the object, as well
as many other parameters. The Data is the actual data contained in the object (e.g., user
data).

There are three different types of objects:

a) Root : this unique object is always present in the device. Its Meta-data contains
device-global characteristics. This includes the total capacity of the logical unit,
maximum number of objects (of each type, see the next two items) that it may con-
tain, as well as certain quality of service characteristics (such as data integrity char-
acteristics, e.g., if the device stores all its data in RAID5). Its Data contains the list
of currently valid Group IDs (see next item). This is maintained by the OSD itself.

b) Group : this object is created by specific commands from an initiator. Its purpose is
to contain a list of UserObjects (see next item), that share some common attributes.
Its Meta-data contains its GroupID (a 32bit unsigned integer), the maximum num-
ber of UserObjects it can contain, the current number of UserObjects, the quota
capacity of the group, the current capacity utilized by the group, as well as quality of
service attributes common to all the objects in the group. The default attributes for a
Group are inherited from the attributes of the device (i.e., Root object). The Data
component of a Group is the list of currently valid UserObject IDs. This is main-
tained by the OSD itself.

c) UserObject 2: these are the primary objects that contain user data. Consequently,
the Data for this kind of object is user data; the OSD manages this data on behalf of
the initiators. The Meta-data for a UserObject contains characteristics specific to
the object. This includes the UserObject ID (a 64 bit unsigned integer), the logical
size of the user data, and quality of service attributes. Default attributes for a Use-
rObject are inherited from the attributes of the group in which it is contained.

1. This Device Type value (and the characteristic of being an OSD) should be immutable within the context of the OSD
model. This is not exactly implied by the current draft (see FORMAT command of Rev01). However, a device (like a
controller or RAID box) may have the ability to configure logical units as either block storage devices (like SBCs) or
as OSDs. If this is the case, this creation or change of a logical unit from one type to another should be done in
the context of controller commands (SCCs) or in vendor specific ways.

2. A different name for this might be better: e.g., “Basic” or “Generic” object.
4 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
From the factory1, only the Root object exists. It attributes are the “factory defaults”.
There are no Groups or UserObjects so the Data for the root object is empty. (A FOR-
MAT command to the OSD will restore the device to this original state.)

There is only one Root object per OSD. There can be many Group objects (up to the
capacity of the OSD). The Root and Group objects might be called “well-known” in that
the structure of the meta-data and data associated with these objects is predefined.
Additionally, for the Root object, the GroupID and ObjectID are predefined (zero in both
cases). For the Group object, the GroupID is that of the group itself (it is assigned by the
OSD when the group is created), and the ObjectID is predefined (zero). Only UserOb-
jects can contain arbitrary data (the content of this data is owned by the initiators). Use-
rObjects have GroupID of the group they belong to. Their ObjectID is that assigned by
the OSD when the object is created.

Meta-data attributes for an object can be queried by the GET_ATTRIBUTE service action
and may be changed by the SET_ATTRIBUTE service action.

To get a list of the valid GroupIDs, an initiator can do a LIST service action against the
Root object. To get a list of the ObjectIDs in a group, the initiator can do a LIST service
action against the Group object. READ and WRITE service actions to these objects are
not allowed.

READ/WRITE/APPEND service actions are used to interface with the data of a UserOb-
ject.

2.2 Meta-data Attributes

The above description of the basic objects contains a couple of specifics about object
meta-data. There are a number of open issues in this regard, many of which are covered
in more or less detail in Rev01. Other issues are raised in 4.1.

NOTE: This proposal separates the notion of attributes for a session (referred to here as
session parameters) and attributes of objects. This differs somewhat from Rev01.

Some Meta-data attributes of objects are immutable (forever); for example, the total byte
capacity of the OSD is not changeable (that is, within the OSD framework directly). Muta-
ble attributes come in three types. Those changed by the OSD autonomously, those
changed by the OSD in response to other initiator actions that indirectly effect the
attributes of an objects, and those that are set by an initiator action. An example of the
first might be the total number of bytes used in a sparse representation of an object. An
example of the second type is the size of the Data of a Group object; this changes with
creation of new UserObjects, but this is not directly “set” by the initiator. Other examples
of the second type are time of creation, time of last read, time of last write, position of
“last written byte”, etc.

1. This includes the state of the OSD logical unit after it might be created under controller-type command.
5 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Besides being able to query the existing attributes, some attributes should be immutable
(that is, where the factory defaults are not-changeable). A method to ask what attributes
are changeable is also defined. All attributes for an object are required to be persistent
through power-cycles and resets. However, Data in a UserObject may be stored in vola-
tile storage (cache). This is “flushed” to persistent store by the FLUSH service action.

2.3 Sessions

A session is a set of state information maintained at the OSD for the purposes of setting
parameters for data transfer. They are used only for Read and Write (including Append)
type actions of user data.

Every OSD has a default session, that determines the parameters of its underlying data
transfer machinery. The SessionID of the default session is zero. Optionally, an OSD can
support other session parameters. The SessionID of any session other than the default
session must be non-zero. The SessionIDs are created by the OSD and provided to the
initiator in returned data of an OPEN_SESSION service action. The parameters that gov-
ern a session can be queried (GET_SESSION_PARAMS) and changed
(SET_SESSION_PARAMS).

In contrast to Rev01, Read and Write service actions will be handled only under an exist-
ing session. That is, such actions cannot create a session, they can only fall under the
auspices of an existing one.

A CLOSE_SESSION is used to close one or all non-default sessions.

The number of sessions that an OSD supports is vendor-specific (but it must be at least
one, for the default session).

Once a session is established, read/write actions can be requested within the context of
that session.

One parameter of a session may be an expiration time. Consequently, some sessions
may close automatically.

The close of a session or the change of parameters for a session shall not affect the data
transfer for any read/write action already being serviced by the OSD within that session.
Only new read/write actions specifying that SessionID shall be affected.1

1. This paragraph needs language analogous to the effect reservations have on existing commands. On the other
hand, this is not the only possible design point for the interaction of existing operations and new settings.
6 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
3.0 Command Service Actions

3.1 Summary

Command service actions fall into a number of different categories, as described in the
following subclauses. In short these are:

a) FORMAT

b) CREATE, DELETE

c) LIST

d) READ, WRITE, APPEND

e) FLUSH

f) GET_ATTRIBUTE, SET_ATTRIBUTE

g) Session Service Actions

The following additional service actions, if such are deemed to be of value, may be
defined later:

a) OPEN, CLOSE (of a UserObject; see 4.9)

b) LOCK, UNLOCK (see 4.10)

c) Other (see 4.11)

Given the complex structure of attribute specifications, and the uni-directional data trans-
fer limitations of SCSI, the use of attributes as optional parameters in some service
actions is problematic. See 1.1.1 for a discussion of these and related issues. For sim-
plicity, we’ve separated the setting of attributes to specific service actions.

3.2 FORMAT (Mandatory)

The FORMAT service action is used to restore the OSD to the factory default settings.
The syntax is

FORMAT()

This action has the same effect as deleting all UserObjects, deleting all Group objects,
and setting the attributes for the Root object to the factory default. There are no parame-
ters or other identifiers required in this service action (however, notions such as the
“immediate” behavior analogous to the FORMAT command for SBCs might be useful).

In contrast to Rev01, this command does not take an optional “length” field. This is (and
should be) an immutable attribute of the OSD itself. The notion of changing this capacity
value does not belong to the OSD itself, but to a higher level interface, e.g., a controller
which owns the OSD as a configurable logical unit. The ability to grow or shrink the phys-
ical capacity allocated to an OSD (from the outside) is a useful thing, but is beyond the
scope of this proposal.
7 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
The limits on number of Group objects and UserObjects supported by the OSD are
attributes. Consequently, they can be set with SET_ATTRIBUTES after the FORMAT
action. They may also be changed later, subject to defined consistency problems (e.g., a
request to set the maximum number of groups to a value less than the existing count).

There is no data transfer for this service action.

3.3 CREATE/DELETE (Mandatory)

These two service actions use the following syntax:

SA(GroupID, ObjectID)

These are both DataIn service actions.

To create a Group object, the GroupID and ObjectID must be set to zero (to indicate that
the Root object is being addressed). If the OSD can successfully complete this com-
mand, the OSD returns a GroupID in the parameter data. Once the group is created, the
attributes for that group (e.g., quota and the number of UserObjects which can be allo-
cated within the group) can be reset with the SET_ATTRIBUTES service action. As one
consequence of successful processing of this service action, the newly generated
GroupID is added to the Root object’s Data.

To create a UserObject, the GroupID must be a valid GroupID for an existing Group
object. The ObjectID must be zero. If successful, the returned parameter data shall con-
tain the ObjectID for the new object. As one consequence of this action, the newly cre-
ated ObjectID is added to the Data for the referenced Group object. It is an open
question what the state should be of the Data bytes for this new UserObject; one option
is uninitialized garbage, the other is initialized to all zero. Perhaps this should be an
option in the CREATE service action?

The attributes of a UserObject (e.g., object logical size) may be reset with the
SET_ATTRIBUTES service action.

In both CREATE for a Group or a UserObject, the returned parameter data might contain
additional information. For example, the parameter data for creating a UserObject may
also include remain Group quota. Details of this still need to be worked out.

NOTE: by putting the created object ID in the returned parameter data (as opposed to
response data), we have disallowed the simultaneous creation/write of a new UserOb-
ject. See 1.1.1 for a discussion of the limitations of existing SCSI in this regard.

To delete a UserObject, the DELETE service action with GroupID and ObjectID is used.
Successful completion of this service action frees any space and resources allocated for
the object as well as removes the ObjectID from the Group object specified.

To delete a Group object, the DELETE service action with GroupID is used. The Objec-
tID must be zero. Successful completion of this action will result in deletion of all Use-
8 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
rObjects in the specified Group, freeing of any resources allocated to that Group and
removal of the GroupID from the Root objects Data.

NOTE: Should DELETE group succeed if the group is not empty?

The parameter data for a DELETE service action contains the same (once this is formal-
ized) data as a CREATE with the exception of the object ID.

The DELETE service action with GroupID set to zero is not allowed.

3.4 LIST (Mandatory)

The LIST service action is used to get data from the Root or a Group object. (The
READ action is reserved for UserObjects only). This service action is a DataIn type ser-
vice action and has the following syntax:

LIST(GroupID, Number, Index, [SortOrder], AllocationLength)

A zero GroupID refers to the Root object and non-zero GroupID refers to a valid Group
object. Number specifies the number of IDs to be returned (GroupIDs if referencing the
Root object and UserObject IDs otherwise). Index specifies the starting position of the
IDs within the specified SortOrder, with initial position value of zero. SortOrder is
optional. The default order is implementation dependent. Support for specific SortOrder
rules is optional. Examples are numerically by object ID, by creation time, by last access
time, by last write time, by size (e.g., quota for groups or object logical size of UserOb-
jects), or any other predefined sort rule. The AllocationLength is the amount of space (in
bytes) set aside in the DataIn buffer of the initiator. This might be more or less than is
necessary for the Number*(Size of IDs) requested and is handled in the usual way (trun-
cated if necessary). The returned data shall contain a header which specifies the sort
order, the GroupID, and other additional data to allow for the returned parameter data to
be self-parsable. (Details are TBD.)

There are no session parameters allowed for this data transfer.

3.5 READ/WRITE (Mandatory), APPEND (Optional)

These service actions take the following syntax:

SA(GroupID, ObjectID, [SessionID], TransferLength, Offset)

These service actions are used to read or write some or all of the Data for a given Use-
rObject. Consequently, the GroupID and ObjectID shall each be non-zero and shall refer
to an existing object in the OSD.

The READ action requests data from the specified UserObject, starting at the specified
Offset, and for the specified TransferLength. The TransferLength indicates the number of
bytes the initiator has set aside in the DataIn buffer.
9 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
The WRITE and APPEND actions write data to the specified UserObject of the size
specified in TransferLength. For the WRITE this starts at the specified Offset. For the
APPEND, it starts at the next byte offset beyond the last written by either a WRITE or
APPEND. (The OSD must maintain this offset within its internal data structures, particu-
larly, if it supports the APPEND service action.)

The SessionID for any of the service actions is optional (and optionally supported by the
OSD). If supported and the SessionID is valid, this requests the data transfer for the ser-
vice action be handled under the parameters (quality of service, etc.) of the specified
session. If the SessionID is set to zero, then the parameters of the “default” session
apply.

3.6 FLUSH (Mandatory)

This service action applies to UserObject Data. (The Root and Group Data are always
persistent and flushed.)

FLUSH(GroupID, ObjectID, [Length, Offset])

The FLUSH, with non-zero GroupID and ObjectID, is used to commit any changes to a
UserObject to persistent store (clear the volatile cache for the specified object within the
optionally specified Length and Offset).

A FLUSH service action with non-zero GroupID and zero ObjectID requires the OSD to
commit to persistent store all Data for all UserObjects in the specified Group. The Length
and Offset fields are ignored.

A FLUSH service action with both the GroupID and ObjectID set to zero requires the
OSD to commit to persistent store all Data for all UserObjects within the OSD. The
Length and Offset fields are ignored.

3.7 GET_ATTRIBUTE/SET_ATTRIBUTE (Mandatory)

Attributes are the contents of the Meta-data for specific objects. Each object type has a
specific set of attributes which cannot be changed directly, either because they are “fac-
tory defaults”, or because they are inherent to the object itself. Other attributes may be
changed by SET_ATTRIBUTE service action.

These two service actions require the following syntax:

SA(GroupID, ObjectID, AttributeMask, Changeable, TransferLength)

The SET_ATTRIBUTE service action is a DataOut operation, the parameter data con-
tains a description of the attributes that need to be set. In this case, the AttributeMask is
ignored. The TransferLength indicates the amount of parameter data that will be trans-
fered.
10 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
The GET_ATTRIBUTE service action is a DataIn operation. A Changeable bit set to one
requests that the OSD send a summary of the attributes it supports (subject to the Attrib-
uteMask) and indicating which attributes are changeable and what range of a values they
can attain. If the Changeable bit is set to zero, then the OSD returns the current value of
the attributes specified in the AttributeMask. The TransferLength indicates the size of the
initiators DataIn buffer.

The AttributeMask takes a role analogous to the PageCode (more precisely, a set of
Page Codes) field in MODE SENSE/SELECT and the Changeable bit is analogous to the
PC=changeable in MODE SENSE. See 4.1.

(More details on the structure of the AttributeMask and the data exchanged in these ser-
vice actions need to be worked on, see 4.1, but some of the essential pieces are already
part of Rev01.)

3.8 Session Service Actions

This suite of service actions is only suggested as a first pass on this subject.

NOTE: one major open question in the context of sessions is the scope of a session or
set of sessions (limited to the requesting initiator, valid for all initiators holding the Ses-
sionID, etc.)

3.8.1 LIST_SESSIONS (Optional)

This simple service action requests that the OSD return a list of the SessionIDs for exist-
ing sessions. The syntax is

LIST_SESSIONS(AllocationLength)

The AllocationLength specifies the size of the DataIn buffer of the requesting initiator.
The returned parameter data will contain a field containing a count of the number of open
sessions (other than the default session), and a list of SessionIDs (subject to the Alloca-
tionLength limitations).

NOTE: if the scope of a session extends beyond the initiator which created the session,
this service action will have to be mandatory.

3.8.2 OPEN_SESSION/CLOSE_SESSION (Optional)

Non-default sessions are created and destroyed with the OPEN/CLOSE_SESSION ser-
vice actions. The syntax is:

OPEN_SESSION(AllocationLength)

CLOSE_SESSION(SessionID)
11 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
The OPEN_SESSION service action is used to request that the OSD set aside
resources for a session. The returned parameter data contains a SessionID generated
by the OSD (and possibly other data TBD). The AllocationLength indicates the size of the
initiator’s DataIn buffer and should be large enough for a SessionID (that is, at least
4bytes). If the OSD has the resources to create and maintain the state of a new session
it returns the SessionID and responds with GOOD status. A session is open until closed
either by an explicit CLOSE_SESSION action or by actions taken autonomously by the
OSD itself (see 2.3).

The parameters of a new session are those of the default session. They can be changed,
while the new session is open, by the SET_SESSION_PARAMS service action.

NOTE: creation and parameter setting for new sessions are separate service actions.
This is a consequence of the limitations of the SCSI protocol.

The CLOSE_SESSION service action requires a 4byte SessionID as parameter. There
is no data transfer for this service action. The SessionID can be any valid SessionID or
the FFFFFFFFh value. An invalid SessionID is ignored and is not an error condition. The
all FF value means that all sessions (except the default session) are to be closed. See
2.3 for the actions taken on the part of the OSD when a session is closed.

3.8.3 GET_SESSION_PARAMS/SET_SESSION_PARAMS (Mandatory)

These two service actions are used to query the session parameters of an existing ses-
sion, or to change them. The syntax is:

SA(SessionID, TransferLength, Changeable)

The SessionID specifies the identifier of an existing session (this includes the value zero
for the default session). The TransferLength specifies the (maximum) amount of data that
shall be transferred through the DataIn (GET) or DataOut (SET) buffers.

The Changeable bit applies only to the GET_SESSION_PARAMS service action and
only when the SessionID is zero. It requests a summary of the session parameters (of
the default session) that can be changed for other sessions.

The SET_SESSION_PARAMS is only valid if the SessionID is not zero. In other words,
the default session parameters are unchangeable.

The structure of the parameter data that describes the parameters of sessions is TBD.

4.0 Open questions

4.1 Meta-data attributes

The specification of the types of attributes objects (of each type) may have, how they are
referenced, changed, packed into parameter data, etc., is still TBD. A partial specification
is given in Rev01, clause 5.3, but more work is needed.
12 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
NOTE: As noted earlier, this proposal separates the notion of attributes for a session
(referred to here as session parameters) and attributes of objects.

The Root object needs to have some way of describing (a) total physical capacity (b)
QoS properties of that capacity, subdivided by QoS ranges (e.g., how much is on RAID5,
how much is tape, how much has certain I/O characteristics), etc. Group objects need a
way to describe the quota, current use, static QoS properties, etc. There is at present, no
language for describing some of these properties.

A careful inventory of the minimal set and optional set of attributes is required. Addition-
ally, a mechanism for vendor-specific and for extensibility of the attribute concept will
have to be defined.

An AttributeMask is used in a service action in a manner analogous to Mode Page
codes. Namely, a bit position points to a relevant Attribute Page. An Attribute Page will
specify a set of attributes which have some commonality between them (e.g., RAID level
and capacity). In this way, we can utilize a relatively small size AttributeMask to refer-
ence relatively large amounts of data and still have some room for extensibility. So, 64bit
mask can reference 64 pages of data and each page of data can many more fields of
quite arbitrary size. Is this sufficient to meet the long term requirements?

It may be desirable that the AttributeMask have different interpretations if the GroupID/
ObjectID combination refers to the Root object, a Group object, or a UserObject.

There are open questions about the interaction of default attributes, setting/resetting of
attributes, relationship of attributes of an object with its parent object (User to Group or
Group to Root), and relationship of object attributes and session parameters.

This whole subject is a work-in-progress.

4.2 Size of UserObjects

There are a number of “size” notions applicable to a UserObject. The size of the Meta-
data is one such.

Additionally, there is the “object logical size”. This can have a number of different mean-
ings. One interpretation is equivalent to End-of-Write. That is, this size is the offset (plus
1?) of the last byte written by a WRITE service action. End-of-Write is a useful
(required) notion in the context of the APPEND operation.

Another interpretation is something like End-of-Object. This might be an offset that
exceeds the last location written.

A third interpretation is that all byte addresses below that value return initialized values
(zero unless expressly written with WRITE) and anything beyond is uninitialized, but any
offset is addressable in any case.
13 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
There is/should be a distinction between this “size” and the physical size of the object. In
particular, if the OSD can manage sparse objects, then logical size may be significantly
larger than the physical size of the object.

The following are open questions in this context that, in our opinion, have not been ade-
quately addressed (even here):

a) what “size” attributes are important

b) is there a notion of End-of-Write that is valid beyond the requirements of APPEND

c) is there a notion of End-of-Object that differs from End-of-Write

d) what is the initialization of bytes offsets below either “logical size” or EOW

e) is the physical size of an object information private to the OSD or should the initiator
be able to get this information (at this granularity).

4.3 FORMAT

Should the FORMAT service action be a DataIn command, with returned data summariz-
ing some/all of the default attributes of the Root object of the OSD?

Alternatively, should the FORMAT service action be a DataOut command, used to set the
default attributes, such as any “capacity” parameters of the Root object? This shouldn’t
include the total size of the OSD, but might include maximum number of Groups, maxi-
mum number of UserObjects, maximum number of UserObjects in any given Group,
maximum quota for Group, maximum size of UserObject’s Data, etc. Should the FOR-
MAT command enable changes to something other than the “factory default”? See the
MODE SENSE/SELECT options for persistence for a model of how this might be done.

4.4 CREATE/DELETE

Specification of the data returned in the CREATE action (beyond the ID of the object cre-
ated) and also of the data returned in a DELETE action is TBD.

It’s an open question whether the DELETE action on a group object should succeed if
the Group object is not humpy of UserObjects or whether it should fail in this case or
whether there should be a bit in the service action which effectively says delete the group
and all its objects unconditionally.

4.5 LIST

It is possible to unify the LIST service action for Root/Group objects into the READ ser-
vice action (essentially LIST just “reads” the Data for these objects). However, to get the
full semantic richness of LIST (with sort, etc.) would require adding features to READ
which apply only to a subset of the GroupID/ObjectIDs that can be specified. Additionally,
it is not clear that allowing SessionIDs for the LIST function are necessary. Finally, READ
14 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
is more naturally a counterpoint to WRITE; but WRITE can not apply to Root or Group
objects, so it seemed more natural to add the LIST action. Is this correct?

A specification of the predefined SortOrders for LIST is TBD, as is, the subset of these
which are required of all OSDs and which are optional. This specification should be
extensible and should allow for vendor-specific options as well.

4.6 READ/WRITE/APPEND

Given some interpretation to “allocation” or “object logical size”, it is open whether this
size can change automatically (i.e., independent of SET_ATTRIBUTES), whether it can
grow dynamically or whether this “dynamic” is a specific attribute of a given object. If size
is static, then READ/WRITE/APPEND beyond the size limit should clearly fail. If size can
grow dynamically, then WRITE/APPEND have, in effect, unlimited addressing. READs
beyond the size limit may or may not fail. If they don’t fail, it is open what the result is.
There are three choices (a) only return data within the size (End-of-Write or End-of-
Object), (b) return zero outside the End-of-XXX (c) return uninitialized garbage.

If the SessionID in a READ/WRITE/APPEND service action is not valid (for whatever
reason, see 4.8), then one of three design choices are possible: (a) fail the request with
error message; (b) service the request with the default session; (c) service the request
with the default session, but report this as RECOVERED ERROR status.

4.7 FLUSH

It is open whether the FLUSH syntax should support offsets/lengths or (always) mean
the entire object. We’ve given the more general syntax, but have no strong feeling about
this.

4.8 Sessions

It is not yet decided how volatile or non-volatile the state or parameters of a session
should be. One argument is that they should be volatile so that resets and power-cycles
should invalidate all non-default SessionIDs. An argument can be made for either per-
sistence or for optional persistence.

It is unclear what happens if the Meta-data attributes of the object being accessed and
the parameters of the session conflict (e.g., the object may be on tertiary storage and so
not be streamable, but the parameters of the session may request/require streaming).

It is open whether the expiration time of a session should be allowed to be infinite and if
so, what that means for persistence through resets/power cycles.

Should parameter changes on a session be allowed to affect existing commands?

Are sessions “owned and private” to a given initiator or can any initiator use a valid Ses-
sionID in its I/O operations? If the latter, then some mechanism like LIST_SESSIONS
15 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
would be required. If the former, then what is the response to GET_SESSION_PARAMS
from an initiator that didn’t open the session in the first place?

This document proposes a LIST_SESSIONS service action. As noted, this is only
required if sessions can be shared by different initiators. If sessions are private to an ini-
tiator, then this may not need to be defined. If it is defined, then the returned list of Ses-
sionIDs should include only those which are valid for the requesting initiator.

4.9 Open/Close

It is an open question whether there is a need for OPEN/CLOSE semantics on a Use-
rObject. The above OPEN/CLOSE_SESSION can be used for setting data transfer
requirements.

One possible value in OPEN on an object is for locking purposes. But is this better suited
to a separate LOCK semantics (see 4.10), if such semantics are required from the OSD?
Another possible purpose is a hint to the OSD that I/O operations will be forthcoming on
this object, allowing the OSD to do some prefetching, cursor placement (SEEK?), etc. An
alternative to an OPEN of this sort may be achieved with a READ of zero bytes (and per-
haps with an offset, to “set the cursor”). A counterpoint is that READ is typically state-
less, whereas an OPEN migh imply a maintained state until CLOSE.

Other unanswered questions with respect to OPEN/CLOSE semantics are

a) who owns the OPEN (an initiator?)

b) who can issue the CLOSE (anyone, only the owning initiator, does it matter?)

c) how long does an OPEN last? Do they automatically CLOSE if the initiator “goes
away”, e.g., FC PRLOs? Do they close after a time-out?

d) is only one OPEN allowed on an object?

4.10 Locking

It is an open question whether locking semantics are a required feature of an OSD,
whether, the OSD should support such semantics at all, or whether the ability to put a
lock on an object is a changeable attribute. But, perhaps this can be accomplished within
the context of Persistent Reservations if those can be extended to objects (analogous to
elements within a medium changer). If it is judged that an independent locking semantics
is required, a number of questions need to be answered:

a) who owns the lock (an initiator or the holder of a lock handle)?

b) what data is required to release the lock?

c) can the lock be released by a non-owner and if so, how hard should that be?

Once these questions are answered, the particulars of LOCK/UNLOCK service actions
can be specified.
16 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
4.11 Other possible OSD functions

One suggested function of an OSD is something akin to version control on objects. This
might be an optional feature (as it might require many resources). The version control
would allow an initiator to do READ-type operations against older versions of an object.
How this might be specified is still open for debate. One choice is a service action which
takes an existing object, creates a new object which is a (possibly logical) copy of the
original. The new object would have a back reference to its source object. The source
object would become read-only (and perhaps indelible). This would enable a chain of
objects, which indicate the history. Another choice is an attribute of a single object that
requires version control. Then recovery or reads against the older versions would be
possible. The event that drives a new version state may be either any write operation or
by explicit service action.

4.12 Access Controls

The current OSD leaves open the question of access controls, aiming to define that
within the context of the full security model (encryption, etc.).

However, the SPC model of Access Controls (see ftp://ftp.t10.org/t10/document.99/99-
245r8.pdf, and 99-245r9.pdf when available) allows for (a cryptographically insecure but
manageable) set of access controls at the group level. It is worth investigating the value
of this type of access control as a preliminary step to full cryptographically secure mech-
anisms, defined at the UserObject level.

4.13 Security issues

In this proposal, we have avoided the issue of security (beyond what is mentioned above
for Access Controls). This is an area where much work is required, but we feel that the
first step in defining an OSD standard is to get the basic model defined precisely, before
issues of security obscure the fundamental issues. In other words, we need minimal
function before we can secure those functions.

On the other hand, some of the issues in SCSI-security may extend beyond the OSD
model, e.g., Key Management may have broader implications and applications. We
believe that the entire subject of SCSI-security should be addressed in the larger context
(SPC-x?), before any specific issues are settled within the context of OSDs.

4.14 Miscellaneous

This section contains a summary of some of the smaller open questions raised above,
and perhaps a few others:

a) rules for interaction of attributes for objects, their default attributes, session
attributes, etc.

b) limits on expiration time for open sessions (infinite) and on persistence of sessions
through resets and power cycles.
17 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
c) state of allocated Data for new UserObject on creation (initialized or not; optionally
specified in CDB or not).

d) Should a DELETE of group succeed always even if the Group object is non-empty
(i.e., contains UserObjects)? Should this be an optional parameter in CDB?

e) Should FLUSH support length/offset semantics? Should this be optional?

f) What are the requirements for Lock/Unlock? Can they be met with Persistent Reser-
vations at the UserObject level? Are locks required for Root and Group objects?

g) What types of Sort Order are useful in the context of the LIST (IDs) action?

5.0 PRESENTATION STARTS ON NEXT PAGE
18 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Basic OSD Device Model

An OSD is not a Controller

- physical size is fixed (e.g., from factory)

- Can’t create LUs internally

- Controller can create OSD (or BSD) across
physical storage

OSD manages user data with associative addressing
model (ID + offset + length)

Objects can have arbitrary length, be sparse, stored
in different types of media, etc.
19 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Mapping OSD Function to SCSI

SCSI limitiatons:

- One-way data transfer

- Status cannot come with additional data!

- not all protocols bundle Sense Data with
CHECK CONDITION status

CDBs should be easily parsed

- widely varying length is not necessarily good

CONCLUSION: Compound service actions (e.g.,
CREATE+WRITE+SET_ATTRIBUTE) difficult to map
to SCSI protocol
20 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Three basic objects

Each object has Meta-data and Data.

Root object:

- Meta-data: global data for OSD, default
attributes for groups and user objects

- Data: List of GroupIDs

Group objects:

- Meta-data: attributes for group, default
attributes for user objects

- Data: List of UserObjectIDs

UserObjects:

- Meta-data: attributes for object

- Data: user data
21 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Examples of Meta-data

Root:

OSD capacity (by type, RAID5, tape, etc.), max
number of Groups, UserObjects, default
attributes of Groups and UserObjects, etc.

Group:

quota, size (many meanings), max number of
UserObjects, default attributes of UserObjects,
etc.

UserObject:

size (many meanings), type of storage, time-
stamps, EOW, EOO, etc.
22 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Sessions

Sessions are opened independent of object I/O

- establish a set of characteristics/parameters for
data-phase (via GET/SET_SESSION_PARAMS)

- valid only for R/W operations on user data
(Data of UserObject)

- non-default sessions are optional

- all R/W operations are under existing session
(default or pre-established)

Some open questions:

- who owns the session (one initiator?)

- can it be shared by other initiators?

- who can close a session (anyone?)

- interaction of changes to session (e.g., close)
and existing R/W operations
23 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Required Service Actions

FORMAT (DataNone): restores OSD to “factory
default”

CREATE/DELETE (DataIn): creates or deletes
Group object or UserObject

LIST (DataIn): list objectIDs in specified sort order

READ/WRITE/APPEND (DataIn/DataOut/DataOut):
UserObject data transfer

FLUSH (DataNone): commit UserObject data to per-
sistent store

GET/SET_ATTRIBUTE (DataIn/DataOut): query/
change attributes for Root/Group/UserObject;
also get the set of “changeable” attributes
24 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Session Service Actions

LIST_SESSIONS (DataIn): get a list of current Ses-
sionIDs

OPEN/CLOSE_SESSION (DataIn/DataNone): cre-
ate/destroy session

GET/SET_SESSION_PARAMS (DataIn/DataOut):
query/change parameters for existing session;
also get the set of “changeable” parameters
25 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Other TBD Service Actions

OPEN/CLOSE (of UserObject)

LOCK/UNLOCK (of Group or UserObject)

VERSION (on UserObject)
26 Suggested changes to OSD model in osd-r01

T10/00-262 revision 0
Major Open Questions

Can/should we extend SAM-x to enable compound
service actions?

Do we really need/want compound service actions?

Is T10/SCSI the right protocol to define an OSD?

Issues:

- limitations on compound service actions

- security (encryption, authentications, capabili-
ties, etc.)
27 Suggested changes to OSD model in osd-r01

	1.0 Outline of differences with Rev01
	1.1 Design principles
	1.1.1 Command parameters and Response data

	2.0 Basic model
	2.1 Object Types
	2.2 Meta-data Attributes
	2.3 Sessions

	3.0 Command Service Actions
	3.1 Summary
	3.2 FORMAT (Mandatory)
	3.3 CREATE/DELETE (Mandatory)
	3.4 LIST (Mandatory)
	3.5 READ/WRITE (Mandatory), APPEND (Optional)
	3.6 FLUSH (Mandatory)
	3.7 GET_ATTRIBUTE/SET_ATTRIBUTE (Mandatory)
	3.8 Session Service Actions
	3.8.1 LIST_SESSIONS (Optional)
	3.8.2 OPEN_SESSION/CLOSE_SESSION (Optional)
	3.8.3 GET_SESSION_PARAMS/SET_SESSION_PARAMS (Mandatory)

	4.0 Open questions
	4.1 Meta-data attributes
	4.2 Size of UserObjects
	4.3 FORMAT
	4.4 CREATE/DELETE
	4.5 LIST
	4.6 READ/WRITE/APPEND
	4.7 FLUSH
	4.8 Sessions
	4.9 Open/Close
	4.10 Locking
	4.11 Other possible OSD functions
	4.12 Access Controls
	4.13 Security issues
	4.14 Miscellaneous

	5.0 PRESENTATION STARTS ON NEXT PAGE
	Basic OSD Device Model
	Mapping OSD Function to SCSI
	Three basic objects
	Examples of Meta-data
	Sessions
	Required Service Actions
	Session Service Actions
	Other TBD Service Actions
	Major Open Questions

