

May 4, 2000

T11/00-284 version 0 T10/00-230 revision 0

To:	Kumar Malavalli, chairperson, T11, John Lohmeyer, chairperson, T10
From:	Bob Snively
Date:	February 2, 2000
Subject:	FCP-2 items that need to be included in FC-FS

During the creation of FCP-2, a number of items were identified that must be corrected or added to FC-FS. As comment resolution continues, there may be more such requirements and the present requirements may change slightly. This document is intended to track those requirements that have been proposed and those that have been agreed to for FCP-2 and FC-FS.

Ref	FCP-2 clause	FCP-2 comment	FC-FS clauses	Proposed	Revision	Approval for FC-FS
1	B.2.1	00-150r3, 1.49	12.6, 12.12, 15.2.2,	05/04/00		
2	B.3.1	00-150r3, 1.49	15.4	05/04/00		

Changes to FC-FS identified during FCP-2 development

1 Change requested to ABTS in Annex B.2.1 of FCP-2

The text of B.2.1 is intended to improve the capabilities of the ABTS basic link service. FCP-2 explains the required change with the following text, slightly modified from revision 4:

The Abort Sequence Basic Link Service frame shall be used by the Sequence Initiator or Sequence Recipient to request that the ABTS Recipient abort one or more sequences, or abort the entire Exchange, based on the value of bit 0 in the parameter field

ABTS Parameter Field Bit Definitions

Parameter Field	Meaning
Bit 0 = 0	Abort Exchange
Bit 0 = 1	Abort Sequence

To meet the requirements of the FCP-2 standard, the default value of bit 0 in the ABTS request parameter field shall be interpreted as requiring the aborting of the exchange, as described in section 9.1.2.2 on page 41 of FCP-2, revision 4. A value of 1 in bit 0 of the parameter field re-

Brocade Communications Systems, Inc. 1901 Guadalupe Parkway ■San Jose, CA 95131 T 408.487.8000 ■F 408.487.8101 www.brocade.com quires that the sequence be aborted as described in FC-FS and as described in section 12.4 on page 67 of FCP-2 revision 4.

To install this, the following changes must be placed in FC-FS, using T11/99-145v1 as the reference.

In 12.6, table 22, the following modification must be made in the control field definition:

Control Field	Word 2, Bits	Description	Reference
Relative Offset present	3	0 = <u>Parameter field defined for some frames</u> 1 = Parameter Field = Relative Offset	15.2.2

In section 12.6, explanation of word 2 bit 3, the following modification must be made:

Bit 3- Relative Offset present

When bit 3 is set to zero on a Data frame, the Parameter Field is not meaningful. That is, it may be set by the Sequence Initiator, but it shall be ignored by the Sequence Recipient. When bit 3 is set to one in a Data frame, the Parameter Field contains the Relative Offset for the Payload of the frame. Bit 3 is only meaningful on Data frames of a Sequence and shall be ignored on ACK and Link_Response frames. <u>Regardless of the state of bit 3</u>, the parameter field has defined meanings for certain Link Control frames and Basic Link Data frames.

NOTE - When bit 3 is set to 0 on a Data frame, although the Sequence Recipient ignores the value in the Parameter Field, it may pass it to an upper level.

In 12.12, the following changes must be made to reflect the expanded capability demanded of the parameter field.

12.12 Parameter

The Parameter field (Word 5, Bits 31-0) has two meanings based on frame type. For <u>Basic Link Data frames and for Link</u>_Control frames, the Parameter field is used to carry information specific to the individual <u>Link_Control</u> frame. For Data frames, the Parameter field specifies Relative Offset, a four-byte field that contains the relative displacement of the first byte of the Payload of the frame from the base address as specified by the ULP. Relative Offset is expressed in terms of bytes (see 11.7). The use of the Relative Offset field is optional and is indicated as a Login Service Parameter. The setting of F_CTL bit 3 determines whether the Parameter Field shall be meaningful as a Relative Offset for Data frames.

The offset value shall be relative to an Information Category within a Sequence for an Exchange. If Relative Offset is being used, the number of bytes transmitted in a single Sequence shall not exceed the maximum value of the Relative Offset (Parameter) field.

NOTE - Performance may be improved if data is aligned on natural boundaries.

See clause 21 for a discussion concerning Relative Offset. See clause 14 for a discussion concerning use of the Parameter field in Link_Control frames. <u>See clause 12 for a discussion concerning use of the Parameter field in Basic Link Data frames.</u>

In 15.2.2, the following change must be made.

15.2.2 Abort Sequence (ABTS)

The Abort Sequence Basic Link Service frame shall be used

1) by the Sequence Initiator to request that the Sequence Recipient abort one or more Sequences (see 15.2.2.1 and 23.6.1.1).

2) by the Sequence Initiator or Sequence Recipient to request that the ABTS Recipient abort the entire Exchange (see 15.2.2.2).

The decision to attempt to abort one or more Sequences may be determined by the Sequence Initiator (Sequence time-out) or the Sequence Recipient (ACK frame Abort Sequence Condition bits 5-4 or P_RJT frame).

The Sequence Initiator may optionally require that the Sequence Recipient abort one or more sequences by setting bit 0 of the parameter field to 1. If the parameter field bit 0 is set to 0, the Sequence Recipient may elect to abort one or more sequences or elect to abort the entire Exchange in a protocol specific manner.

The Sequence Recipient may request that one or more Sequences in progress be aborted by setting the Abort Sequence Condition bits to a value of 0 1 on an ACK frame (see 12.6). The ABTS frame may be transmitted without regard to which N_Port holds, or may hold, the Sequence Initiative.

2 Addition of REC to ELS definitions in FC-FS

The following text, presently included as normative clause B.3.1, defines the REC ELS. This is intended to be defined in the standard format as specified in section 15.4 of FC-FS. The text should be placed in 15.4.x, probably (by alphabetical order) just after section 15.4.9. Changes that need to be included are:

On page 169 of FC-FS, table 50 needs an additional line having the following format:

Encoded Value (Bits 31-24)	Description	Abbr.
0001 0011	Read Exchange Concise	REC

Table 50 - LS_Command codes

Just after section 15.4.9, the following description of REC must be installed. This is all new text. The text has been partially updated to reflect the present state of the FCP-2 comment resolution document and the change in context from FCP-2 to FC-FS.

15.4.x Read Exchange Concise (REC)

The REC (Read Exchange Concise) Extended Link Service request Sequence requests an N_Port to return Exchange information for the RX_ID and OX_ID originated by the S_ID specified in the Payload of the request Sequence. The specification of OX_ID and RX_ID shall be

provided for the destination N_Port to locate the status information requested. The RX_ID may have the unassigned value of FFFFh if no sequences have been transmitted from the responder or if RX_IDs are not used by the responder. A Responder destination N_Port would use the RX_ID and verify that the OX_ID is consistent, unless the RX_ID was undetermined (i.e., RX_ID = FFFFh). If the RX_ID is specified as undetermined in the request, the Responder must identify the Exchange by means of the S_ID and OX_ID. An Originator N_Port would use the OX_ID and verify that the RX_ID is consistent.

If the destination N_Port of the REC request determines that the Originator S_ID, OX_ID, or RX_ID are inconsistent, then it shall reply with an LS_RJT Sequence with a reason code hex '09' (i.e. Unable to perform command request).

Refer to FC-FS for a description of other applicable LS_RJT reason codes and reason code explanations if the N_Port or SCSI Target is unable to perform the REC request.

The REC shall be sent in a new Exchange.

Protocol:

Read Exchange Concise request Sequence Accept (ACC) reply Sequence

Format:

FT_1

Addressing:

The S_ID field designates the source N_Port requesting the Exchange information. The D_ID field designates the destination N_Port to which the request is being made.

Payload:

The format of the Payload is shown in the following table.

REC Payload			
ltem	Size - Bytes		
hex '13000000'	4		
Reserved	1		
Exchange Originator S_ID	3		
OX_ID	2		
RX_ID	2		

REC Payload

Reply Link Service Sequence:

Service Reject (LS_RJT)

Signifies rejection of the REC request.

ACC

Signifies that the N_Port has transmitted the requested data.

Accept payload:

- The format of the Accept Payload is shown in the table below. The format of the Concise Exchange Status is specified below.

REC Accept Payload			
Item	Size - Bytes		
hex '02000000'	4		
Concise Exchange Status			
OX_ID	2		
RX_ID	2		
Originator Address Identifier	4		
Responder Address Identifier	4		
Data Transfer Count	4		
E_STAT	4		

REC Accept Payload

The E_STAT is as defined for the Exchange Status Block. The bits specifying whether the Exchange is complete (Bit 29) and whether the responder holds Sequence Initiative (Bit 30) must be valid; the setting of other bits is not required.

The Originator Address Identifier is set to the S_ID with the high-order byte reserved.

The Responder Address Identifier is set to the D_ID with the high-order byte reserved.

The Data Transfer Count is the number of bytes received by the Device Server for a write or the number of bytes transmitted by the Target for a read.