

T10/00-168r0

Receive Equalizer used for Quantum Ultra320 Eye Diagram Data

Russ Brown Quantum Corporation

SCSI Physical Working Group Meeting 07 March 2000 Dallas, TX

Quantum™

Receiver Equalization

The Receive Equalizer is used to boost the AC magnitude at the receiver to compensate for the frequency response losses of the loaded cable plant.

Quantum Method for Calculating Equalized Eye

- Capture differential data from a cable and backplane setup.
- Send raw data to a PC to run mathematical simulation script:
 - Same data sets as used for no-comp and precomp measurements
 - Numerical adaptive equalization
 - Generate and evaluate eye diagrams

Equalizer Function used for calculated eye diagrams:

$H(s) = \frac{A \times (K \times s + B)}{(s + C) \times (s^2 + D \times s + E)}$

K = boost gain

Quantum Rx Equalizer Frequency Response

Equalizer AC response

Gain (dB)

- Receiver Equalization requires a training pattern containing both low and high frequency signals.
- Proposed adaption procedure:
 - Apply a low frequency pattern.
 - Sample and store the low frequency signal amplitude at the equalizer output.
 - Apply a maximum frequency "101010..." pattern.
 - Adjust equalizer boost to match the "1010" pattern equalized amplitude to the stored low-frequency amplitude value.

- Simple adaption gives excellent results for U320 speeds for a wide variety of cable and load configurations.
- Filter design requirements are not stringent:
 - Low order filter

- Fixed frequency filter design
 - No tuning range requirements
- Low sensitivity to component tolerances
 - Filter calibration not required
 - Adaption provides adequate compensation for tolerances
- Adapted by varying a single parameter (K)