SCSI Connector and Cable Modeling from TDR Measurements

Dima Smolyansky

TDA Systems, Inc. http://www.tdasystems.com

Presented at SCSI Signal Modeling Study Group

Rochester, MN, December 1, 1999

Outline

- Interconnect Modeling Methodology
- Single-Ended TDR Modeling
 - TDR Basics
 - REQ Signal Model
- Differential TDR Modeling
 - TDR Basics
 - REQ Signal Model

Signal Integrity Modeling

- Goal: create SPICE models to predict connector/cable performance
- Model required range of validity is defined by a greater of
 - signal rise time: f_{bw} =0.35 / t_{rise}
 - signal clock rate: $f_{bw} = (3 \sim 5) \cdot f_{clock}$
- It may be desired to extend the required range of model validity beyond *f*_{bw}

Measurement Based Approach

IConnect™ Modeling Process

Outline

- ✓ Interconnect Modeling Methodology
- Single-Ended TDR Modeling
 - TDR Basics
 - REQ Signal Model
- Differential TDR Modeling
 - TDR Basics
 - REQ Signal Model

TDR Block Diagram

Note: TDR source may actually be implemented as a Norton equivalent current source

Inductance and Capacitance Analysis

Differential TDR

- Virtual ground plane
- Even and odd mode measurements

REQ: Acquire Waveforms

Partition Impedance Profile and Create a Model

Model Listing

Composite Model Generation

Create Piecewise Linear Source

Simulate and Verify

User Rise Time Filtering to Achieve Simple Models

Correlation to Physical Structure

PCB section

Cable section

Outline

Interconnect Modeling Methodology

- TDR Basics

1

- Differential TDR Modeling

- REQ Signal Model

Symmetrical Coupled Line Model

- Assumptions:
 - the lines are symmetrical
 - TDR pulses are symmetrical
 - TDR pulses arrive at the lines at the same time at the beginning of both lines

Differential TDR Measurement Setup

- Virtual ground plane
- Assumptions:
 - Lines under test (DUT) are symmetrical
 - TDR pulses are symmetrical
 - TDR pulses arrive at the DUT at the same time

Equalize the TDR Delay

• Watch for the symmetry in the traces rather than relative position in time

Acquire Waveforms

Single Line Impedance vs. Odd and Even

Create a Model

Symmetrical Coupled Line Model

directly obtained from odd and even impedance profiles

Practical Model Output

•To avoid negative Z in theoretical model:

Model Listing

Composite Model Generation

Simulate and Verify

Filter to Desired Rise Time

Correlation to Physical Structure: Differential

PCB section Cable section

Summary and Further Work

- Accurate cable models are obtained
- Better understanding of connector
 geometries will
 improve the
 connector model

Supplementary Information

Transmission line equation reference

$$Z_0 = \sqrt{\frac{R + jwL}{G + jwC}} \approx \sqrt{\frac{L}{C}}$$

$$V_p = \frac{1}{\sqrt{LC}}$$

$$L = Z_0 \cdot t_p \qquad C = \frac{t_p}{Z_0}$$

Differential Transmission Line

$$Z_{even} = \sqrt{\frac{L_{self} + L_m}{C_{tot} - C_m}} \qquad \qquad Z_{odd} = \sqrt{\frac{L_{self} - L_m}{C_{tot} + C_m}}$$

$$t_{even} = \sqrt{(L_{self} + L_m)(C_{tot} - C_m)}$$
$$t_{odd} = \sqrt{(L_{self} - L_m)(C_{tot} + C_m)}$$

TDR Multiple Reflection Effects

Z-line Example

L-C Even-Odd Mode Analysis for Line with Constant Impedance

$$L = \frac{1}{2} \left(t_{even} Z_{even} + t_{odd} Z_{odd} \right)$$

$$C = \frac{t_{even}}{Z_{even}}$$

$$L_m = \frac{1}{2} \left(t_{even} Z_{even} - t_{odd} Z_{odd} \right)$$

$$C = \frac{1}{2} \left(\frac{t_{odd}}{Z_{odd}} - \frac{t_{even}}{Z_{even}} \right)$$

3-Line Symmetrical Coupled Line Model

$$Z = Z_{even}$$

$$Z_{m} = \frac{2Z_{odd}Z_{even}}{Z_{even} + Z_{odd}}$$

Note:
$$Z_0 = \sqrt{Z_{odd} Z_{even}}$$

Ζ

Ζ

Alternatively, for differential lines: t_{mutual} = t_{odd}

Differential Line Modeling

- Short interconnect
 - use lumped-coupled model
- Long interconnect
 - split lines in multiple segments

Practical rule of "short" or "lumped" (RLC) interconnect

$$t_{rise} > t_{prop \ delay} \bullet 6$$

Propagation delay

- Time required for signal to propagate through interconnect
- Dependent on velocity and interconnect length
- Examples:
 - prop. delay in vacuum: 1/c_{light}=1 ns/foot (velocity 3•10⁸ m/sec)
 - propagation delay per length in FR4: 150ps/inch

Reflections in Interconnects

- Interconnects are transmission lines
- Impedance is the measure of *transmission properties* of interconnects
- In any transmission media, at the impedance discontinuity part of the energy is reflected back

Crosstalk

- Energy coupling between adjacent lines
- Forward (far-end) and backward (near-end)
- Sum of capacitive and inductive

Losses

• Skin effect losses

$$R_{s} = \frac{g}{P} \sqrt{\frac{\boldsymbol{p} \cdot \boldsymbol{m}}{\boldsymbol{s}}} \cdot \sqrt{f} \quad \frac{\Omega}{\text{inch}}$$

Example (copper):

$$R = \frac{g}{P} \cdot 3.07 \cdot 10^{-7} \cdot \sqrt{f} \quad \frac{\Omega}{\text{inch}}$$

• Dielectric Losses

$$\boldsymbol{G} = \boldsymbol{g}_d \cdot 2 \cdot \boldsymbol{p} \cdot \boldsymbol{f} \cdot \boldsymbol{e} \cdot \tan \boldsymbol{d}$$

Ground Bounce, or Simultaneous Switching Noise (SSN)

- SSN cause: inductance between IC, package and PCB ground
- SSN factors:
 - signal rise time
 - number of simultaneously switching buffers
 - package inductance
 - load capacitance

$$t_{r\,final} = \sqrt{t_{signal}^2 + t_{interconnect}^2}$$

