Quantum_™

00-106R0: Ultra-320 SCSI Summary & Recommendations

Pat McGarrah

Quantum Corporation

What we showed today and last month

 We have shown our initial concerns with how to implement drivers that can support 1.8x precomp

Dick Uber (00-103r0)

 We have shown measured data at 320MB/s rates for a few configurations using available high-quality cable

Andy Bishop (00-104r0)

- heavily and lightly loaded configs, long & short busses, backplanes & cables
- transmit pre-compensation and simulated receive equalization
- with & without cross-talk
- We have shown the resulting eye diagrams, with acceptability judged by an error mask based on:

Andy Bishop (00-104r0)

- amplitude errors from SPI-3 specs, and interconnect resistance data
- estimated timing errors for Ultra320, mostly from T10/99-261, LSI Logic
- We have NOT established the required margin for acceptable error rate performance
- We have compared Calibration strategies and proposed a flexible training pattern

Russ Brown (00-105r1)

- Transmit Pre-comp 'boost on transition' actual results
 - 1.8X boost required to frequency compensate for SPI-3 configurations with 400mV / 720mV drive levels
 - is INADEQUATE for 10m cable length configurations
 - uses all available driver headroom with NO MARGIN for further amplitude increases
 - 1.8X boost presents serious driver design difficulties
- Receive Equalization simulated results
 - Equalizer performance with 400mV transmit amplitudes is much better than 1.8X Pre-comp performance with 400mV / 720mV drive levels
 - Equalizer achieved with simple equalization filter and simple training pattern used for adaption
 - Equalizer gives optimized equalization for each receiver bus location
- We recommend Receive Equalization over Transmit Precompensation

Calibrations and Training Pattern

CAL strategy

 Our analysis indicates that Host-initiated Major Calibrations on power-up, timer or error is the preferred strategy

Training Pattern

 We recommend a flexible training pattern containing low and high frequency components that allows vendor-specific CAL approaches for timing de-skew, receive equalization and other possible compensation techniques