Ultra-320 SCSI Summary & Recommendations

Pat McGarrah
Quantum Corporation
What we showed today and last month

- We have shown our initial concerns with how to implement drivers that can support 1.8x precomp
 Dick Uber (00-103r0)
- We have shown measured data at 320MB/s rates for a few configurations using available high-quality cable
 Andy Bishop (00-104r0)
 - heavily and lightly loaded configs, long & short busses, backplanes & cables
 - transmit pre-compensation and simulated receive equalization
 - with & without cross-talk
- We have shown the resulting eye diagrams, with acceptability judged by an error mask based on:
 Andy Bishop (00-104r0)
 - amplitude errors from SPI-3 specs, and interconnect resistance data
 - estimated timing errors for Ultra320, mostly from T10/99-261, LSI Logic
 - We have NOT established the required margin for acceptable error rate performance
- We have compared Calibration strategies and proposed a flexible training pattern
 Russ Brown (00-105r1)
Transmitter vs. Receiver

- Transmit Pre-comp ‘boost on transition’ actual results
 - 1.8X boost required to frequency compensate for SPI-3 configurations with 400mV / 720mV drive levels
 - is INADEQUATE for 10m cable length configurations
 - uses all available driver headroom with NO MARGIN for further amplitude increases
 - 1.8X boost presents serious driver design difficulties

- Receive Equalization simulated results
 - Equalizer performance with 400mV transmit amplitudes is much better than 1.8X Pre-comp performance with 400mV / 720mV drive levels
 - Equalizer achieved with simple equalization filter and simple training pattern used for adaption
 - Equalizer gives optimized equalization for each receiver bus location

- We recommend Receive Equalization over Transmit Pre-compensation
• **CAL strategy**
 - Our analysis indicates that Host-initiated Major Calibrations on power-up, timer or error is the preferred strategy

• **Training Pattern**
 - We recommend a flexible training pattern containing low and high frequency components that allows vendor-specific CAL approaches for timing de-skew, receive equalization and other possible compensation techniques