Ultra-320 SCSI Calibration Strategy
00-105r1

Russ Brown
Quantum Corporation
Objectives

- Discuss calibration and training pattern requirements
- Propose a flexible training pattern suitable for various timing de-skew and other receiver adjustment techniques
- Discuss calibration options for Ultra-320 SCSI.
CAL and Training Pattern Requirements:

- Provide for calibrations with sufficient stability to withstand infrequent re-CALs
- Minimize protocol overhead
- Simple implementation in protocol and hardware
- Adequate pattern length to accommodate calibration with averaging for timing de-skew and other receiver calibrations as required.
- Allow flexibility for various vendor-specific CAL circuit techniques by including:
 - Settled asserted and de-asserted LVD levels
 - Isolated rising and falling edges
 - Maximum frequency 101010 and lower frequency 11001100 patterns
Proposed Training Pattern

1.6 μsec Training Interval

200ns
De-asserted

200ns
Asserted

600ns
1010…pattern

600ns
11001100…pattern
• All Calibrations must be stable over longest data transmissions (can be msec range).
 • Switching from Transmit-to-Receive will cause receiver chip temperature changes during a data transmission (receive power is much lower).
 • Power supply changes due to other activities during a data phase (eg. Disk Drive Seek or Servo-Idle-Read sequencing) could also affect cal settings.

• Expected short-term power supply and temperature factors will be comparable to long term changes in ambient power supply and temperature, therefore:
 • CAL circuitry must be designed with good stability over power supply and temperature
 • Minor Update CAL with each data transmission is not expected to have a significant CAL accuracy advantage over less frequent Major CALs
Calibration options for Ultra-320 SCSI.

A: Major CAL at start of each transmission
B: Host-initiated Major CAL on system commands, plus Minor Update CAL on each transmission
C: Host-initiated Major CAL on system commands
A: Major CAL at start of each transmission

- **Pros:**
 - No need to store CAL data for multiple targets & initiators
 - CAL sequence built into the data phase

- **Cons:**
 - All CALs must be full-range and not just updates, because there is no guarantee of CAL interval
 - Overhead is high on short transmissions
 - Minimizing CAL time restricts the use of averaging, and multiple calibrations
B: Host-initiated Major CAL on power-up, timer, or detected error; plus Minor Update CAL on each transmission:

Pros:
- Works well with frequent short transfers

Cons:
- Update CAL duration is overhead on every data transmission
- Must store CAL data for multiple targets & initiators
- Requires CAL control sequences for both major and update CALs
C: Host-initiated Major CAL only, on power-up, timer, or detected error:

- **Pros:**
 - Least overhead of A, B or C
 - Single CAL protocol sequence
 - Allows time for a flexible training pattern
 - accommodates multiple calibrations
 - accommodates different vendor-specific calibration techniques
 - Allows time for calibration averaging
 - better CAL accuracy

- **Cons:**
 - Must store CAL data for multiple targets & initiators
CAL Strategy Pro/Con Summary

<table>
<thead>
<tr>
<th>Requirement</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Overhead</td>
<td>👎</td>
<td>👎</td>
<td>👍</td>
</tr>
<tr>
<td>Complexity</td>
<td>👍</td>
<td>👎</td>
<td>👍</td>
</tr>
<tr>
<td>Memory Requirements</td>
<td>👍</td>
<td>👎</td>
<td>👎</td>
</tr>
<tr>
<td>Flexibility</td>
<td>👎</td>
<td>👍</td>
<td>👍</td>
</tr>
<tr>
<td>Averaging</td>
<td>👎</td>
<td>👍</td>
<td>👍</td>
</tr>
</tbody>
</table>
Recommended Approach:

- Host-Initiated Major CAL only, on power-up, timer, or detected error:
 - Least transmission time overhead
 - Least impact on control and signaling
 - Maximum flexibility for CAL approaches and averaging
 - CAL circuit stability vs. temperature and voltage is required in all A, B, or C strategies
 - Temperature and supply voltage changes during a data phase, e.g. due to IC power changes on Transmit-to-Receive mode change, expected to be the most severe stability requirement.
 - Requirement to store CAL data is not severe.