Ultra-320 SCSI Calibration Strategy 00-105r1

Russ Brown Quantum Corporation

Objectives

- Discuss calibration and training pattern requirements
- Propose a flexible training pattern suitable for various timing de-skew and other receiver adjustment techniques
- Discuss calibration options for Ultra-320 SCSI.

CAL and Training Pattern Requirements:

- Provide for calibrations with sufficient stability to withstand infrequent re-CALs
- Minimize protocol overhead
- Simple implementation in protocol and hardware
- Adequate pattern length to accommodate calibration with averaging for timing de-skew and other receiver calibrations as required.
- Allow flexibility for various vendor-specific CAL circuit techniques by including:
 - Settled asserted and de-asserted LVD levels
 - Isolated rising and falling edges
 - Maximum frequency 101010 and lower frequency 11001100 patterns

- All Calibrations must be stable over longest data transmissions (can be msec range).
 - Switching from Transmit-to-Receive will cause receiver chip temperature changes during a data transmission (receive power is much lower).
 - Power supply changes due to other activities during a data phase (eg. Disk Drive Seek or Servo-Idle-Read sequencing) could also affect cal settings.
- Expected short-term power supply and temperature factors will be comparable to long term changes in ambient power supply and temperature, therefore:
 - CAL circuitry must be designed with good stability over power supply and temperature
 - Minor Update CAL with each data transmission is not expected to have a significant CAL accuracy advantage over less frequent Major CALs

CAL Strategy Options

- Calibration options for Ultra-320 SCSI.
 - A: Major CAL at start of each transmission
 - B: Host-initiated Major CAL on system commands, plus Minor Update CAL on each transmission
 - C: Host-initiated Major CAL on system commands

CAL Strategy A

A: Major CAL at start of each transmission

- Pros:
 - No need to store CAL data for multiple targets & initiators
 - CAL sequence built into the data phase
- Cons:
 - All CALs must be full-range and not just updates, because there is no guarantee of CAL interval
 - Overhead is high on short transmissions
 - Minimizing CAL time restricts the use of averaging, and multiple calibrations

- B: Host-initiated Major CAL on power-up, timer, or detected error; plus Minor Update CAL on each transmission:
- Pros:
 - Works well with frequent short transfers
- Cons:
 - Update CAL duration is overhead on every data transmission
 - Must store CAL data for multiple targets & initiators
 - Requires CAL control sequences for both major and update CALs

C: Host-initiated Major CAL only, on power-up, timer, or detected error:

- Pros:
 - Least overhead of A, B or C
 - Single CAL protocol sequence
 - Allows time for a flexible training pattern
 - accommodates multiple calibrations
 - accommodates different vendor-specific calibration techniques
 - Allows time for calibration averaging
 - better CAL accuracy
- Cons:
 - Must store CAL data for multiple targets & initiators

Cal Strategy Pro/Con Summary

	CAL Strategy		
<u>Requirement</u>	<u>A</u>	<u>B</u>	<u>C</u>
Protocol Overhead	Ţ	Ţ	E)
Complexity	E.	Ţ	E)
Memory Requirements	E)	Ţ	9
Flexibility	Ţ	S	E)
Averaging	(J)	S	E)

Recommended Approach:

- Host-Initiated Major CAL only, on power-up, timer, or detected error:
 - Least transmission time overhead
 - Least impact on control and signaling
 - Maximum flexibility for CAL approaches and averaging
 - CAL circuit stability vs. temperature and voltage is required in all A, B, or C strategies
 - Temperature and supply voltage changes during a data phase, e.g. due to IC power changes on Transmit-to-Receive mode change, expected to be the most severe stability requirement.
 - Requirement to store CAL data is not severe.