Ultra-320 SCSI Calibration Strategy

Russ Brown
Quantum Corporation
Objectives

- Discuss calibration and training pattern requirements
- Propose a flexible training pattern suitable for various timing de-skew and other receiver adjustment techniques
- Discuss calibration options for Ultra-320 SCSI.
 - A: Major CALs on each transmission
 - B: Host-initiated Major CALs, plus Update CALs on each transmission
 - C: Host-initiated Major CALs on system commands only
CAL and Training Pattern Requirements:

- Provide for calibrations with sufficient stability to require infrequent re-CALs
- Minimize protocol overhead
- Simple implementation in protocol and hardware
- Adequate pattern length to accommodate calibration with averaging for timing de-skew and other receiver calibrations as required.
- Allow flexibility for various vendor-specific CAL circuit techniques by including:
 - Settled asserted and de-asserted LVD levels
 - Isolated rising and falling edges
 - Maximum frequency 101010 and lower frequency 11001100 patterns
Proposed Training Pattern

1.6 µsec Training Interval

- 200ns De-asserted
- 200ns Asserted
- 600ns 1010…pattern
- 600ns 11001100…pattern
• Calibration options for Ultra-320 SCSI.

 • A: Major CALs on each transmission

 • B: Host-initiated Major CALs, plus Update CALs on each transmission

 • C: Host-initiated Major CALs on system commands only
A: Major CAL at start of every transmission

- **Pros:**
 - no need to store CAL data for multiple targets & initiators
 - CAL sequence built into the data phase

- **Cons:**
 - All CALs must be full-range and not just updates, because there is no guarantee of CAL interval
 - Overhead is high on short transmissions
 - Minimizing CAL time restricts the use of averaging, and multiple calibrations
CAL Strategy B

B: Host-Initiated Major CAL on power-up, timer, or detected error; Minor up-date CAL on every transmission:

- **Pros:**
 - works well with frequent short transfers

- **Cons:**
 - Update CAL duration is overhead on every data transmission.
 - Must store CAL data for multiple targets & initiators
 - Requires CAL control sequences for both stand-alone and data mode CALs.
CAL Strategy C:

C: Host-Initiated Major CAL only, on power-up, timer, or detected error:

- Pros:
 - Least overhead of A, B or C
 - Single CAL sequence; no minor “update” CAL required
 - Low overhead allows time for a flexible training pattern
 - accommodates multiple calibrations
 - accommodates different vendor-specific calibration techniques
 - Low overhead allows time for calibration averaging
 - Better CAL accuracy

- Cons:
 - Must store CAL data for multiple targets & initiators
CAL Stability Issue

- All Calibrations must be stable over longest data transmissions (can be msec range).
 - Switching from Transmit-to-Receive will cause receiver chip temperature changes during a data transmission (receive power is much lower).
 - Power supply changes due to other activities during a data phase (e.g., Disk Drive Seek or Servo-Idle-Read sequencing) could also affect cal settings.

- Expected short-term power supply and temperature factors will be comparable to long term changes in ambient power supply and temperature, therefore:
 - CAL circuitry must be designed with good stability over power supply and temperature
 - “Update” CAL with each data transmission is not expected to have a significant CAL accuracy advantage over less frequent major CALs
Cal Strategy Pros/Cons

<table>
<thead>
<tr>
<th>Strategy</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol overhead</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Method complexity</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Memory requirements</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flexibility</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Averaging</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Recommended Approach:

- Host-Initiated Major CALs only, on power-up, timer, or detected error:
 - Least transmission time overhead
 - Least impact on control and signaling
 - Maximum flexibility for CAL approaches and averaging
 - CAL circuit stability versus temperature and voltage is required in all A, B, or C strategies anyway
 - Temperature and supply voltage changes during a data phase, e.g. due to IC power changes on Transmit-to-Receive mode change, expected to be the most severe stability requirement.
 - Requirement to store CAL data is not severe.